
CSE 332
Data Structures & Parallelism

Intro, Stacks & Queues

Melissa Winstanley
Spring 2024



Welcome!

We have 10 weeks to learn fundamental data structures and 

algorithms for organizing and processing information

● “Classic” data structures / algorithms and how to analyze 

rigorously their efficiency and when to use them

● Queues, dictionaries, graphs, sorting, etc.

● Parallelism and concurrency (!)



Today

● Introductions

● Administrative Info

● What is this course about?

● Review: Queues and stacks



CSE 332 Course Staff

Instructor:

Melissa Winstanley

Teaching Assistants:

● Amanda Yuan

● Arya GJ

● Chandni Rajasekaran

● Hans Easton

● Hitesh Boinpally

● Mohamed Awadalla

● Nile Camai

● Xunmei Liu

● Yijia Zhao



Me (Melissa)

● Undergrad and 5th year masters at UW
○ Research in NLP & computing in the developing world

○ TA-ing (intro, networks) and teaching my own class

● Teaching Computer Science at UW
○ CSE 143 (Intro II) / CSE 374 (Systems Programming) / DATA 515 (Software Design)

● Software Engineer at Meta, Convoy, & Snowflake
○ Focus on large-scale backend infrastructure and platforms

○ Extensive work with intern programs

○ Passionate about making students into software engineers



Credit for the course

Many thanks to:

● Ruth Anderson

● Winston Jodjana

● Nathan Brunelle



Today

● Introductions

● Administrative Info

● What is this course about?

● Review: Queues and stacks



Course Information

● Instructor: Melissa Winstanley, CSE 214

○ Office Hours: see course web page, and by appointment 

(mwinst@cs.washington.edu)

● Course Web page:

○ http://www.cs.uw.edu/332

● Text (optional):

Data Structures & Algorithm Analysis in Java

Mark Allen Weiss, 3rd edition, 2012

(2nd edition also o.k.)

http://www.cs.uw.edu/332


Communication

● Course email list: cse332a_sp24@uw
○ You are already subscribed

○ You must get and read announcements sent there

● Ed STEM Discussion board
○ Your first stop for questions about course content & assignments

● Anonymous feedback link
○ For good and bad: if you don’t tell us, we won’t know!



Course Meetings

● Lecture
○ Materials posted (sometimes afterwards), but take notes
○ Ask questions, focus on key ideas (rarely coding details)
○ No participation points - we’re all adults here

● Section
○ Practice problems!
○ Answer Java/project/homework questions, etc.
○ Occasionally may introduce new material
○ An important part of the course (not optional)
○ ESPECIALLY THIS WEEK!

● Office hours
○ Use them: please visit us



Course Materials

● Lecture and section materials will be posted
○ But they are visual aids, not always a complete description!

○ If you have to miss, find out what you missed

● Textbook: Weiss 3rd Edition in Java
○ Good read, but only responsible for lecture/section/hw topics

● Parallelism / concurrency units in separate free resources designed 

for 332



Course Work

● ~13 Weekly individual homework exercises (25%)

● 3 programming projects (with phases) (35%)
○ Use Java and IntelliJ, Gitlab

○ Done individually

● Midterm and final exam (40%)
○ In-person, in this room (CSE2 G20)

○ Dates:

■ Midterm: Friday April 26, during lecture

■ Final Exam: Thursday June 8, 8:30-10:20am



Collaboration policy

● Attempt the work on your own

● Then you can talk with classmates
○ “Whiteboard collaboration”

○ Do NOT take any photos/notes away from the session

○ Wait 30 minutes before writing your own solution

○ ONLY people from this iteration of the class

● Search the internet for general concepts only

● Cite any sources / collaboration
○ When in doubt, cite!



Homework for today!!!

1. Preliminary Survey: due Thursday

2. Project #1: Checkpoint 0 due Friday

3. Review Java & install IntelliJ

4. Reading (optional) in Weiss (see course web page)



Today

● Introductions

● Administrative Info

● What is this course about?

● Review: Queues and stacks



Data Structures + Parallelism

● About 70% of the course is a “classic data-structures course”
○ Timeless, essential stuff

○ Core data structures and algorithms that underlie most software

○ How to analyze algorithms

● Plus a serious first treatment of programming with multiple threads
○ For parallelism: Use multiple processors to finish sooner

○ For concurrency: Correct access to shared resources

○ Will make many connections to the classic material



What 332 is about

● Deeply understand the basic structures used in all software
○ Understand the data structures and their trade-offs

○ Rigorously analyze the algorithms that use them (math!)

○ Learn how to pick “the right thing for the job”

● Experience the purposes and headaches of multithreading

● Practice design, analysis, and implementation
○ The elegant interplay of “theory” and “engineering” at the core of 

computer science



Goals

● You will understand:
○ what the tools are for storing and processing common data types

○ which tools are appropriate for which need

● So that you will be able to:
○ make good design choices as a developer, project manager, or system 

customer

○ justify and communicate your design decisions



One view of this course

This is the class where you begin to think like a computer scientist

● You stop thinking in Java code

● You start thinking that this is a hashtable problem, a stack 

problem, etc.



Data Structures?

“Clever” ways to organize information in order to enable 

efficient computation over that information.



Example Trade-Offs



Trade-Offs

● A data structure strives to provide many useful, efficient 
operations

● But there are unavoidable trade-offs:
○ Time vs. space
○ One operation more efficient if another less efficient
○ Generality vs. simplicity vs. performance

● That is why there are many data structures and educated 
CSEers internalize their main trade-offs and techniques
○ And recognize logarithmic < linear < quadratic < exponential



Getting Serious: Terminology

● Abstract Data Type (ADT)

○ Mathematical description of a “thing” with set of operations on that “thing”

● Algorithm

○ A high level, language-independent description of a step-by-step process

● Data structure

○ A specific organization of data and family of algorithms for implementing an 

ADT

● Implementation of a data structure

○ A specific implementation in a specific language

List?



The Stack ADT

Stack operations:

push
pop
top/peek
is_empty



Terminology Example: Stacks

● The Stack ADT supports operations:
○ push: adds an item

○ pop: raises an error if isEmpty, else returns most-recently pushed item not yet 

returned by a pop

○ isEmpty: initially true, later true if there have been same number of pops as 

pushes

○ … (Often some more operations)

● A Stack data structure could use a linked-list or an array or something else, 

and associated algorithms for the operations

● One implementation is in the library java.util.Stack



Why useful

The Stack ADT is a useful abstraction because:

● It arises all the time in programming (see Weiss for more)
○ Recursive function calls
○ Balancing symbols (parentheses)
○ Evaluating postfix notation: 3 4 + 5 *
○ Clever: Infix ((3+4) * 5) to postfix conversion (see Weiss)

● We can code up a reusable library

● We can communicate in high-level terms
○ “Use a stack and push numbers, popping for operators…”
○ Rather than, “create a linked list and add a node when…”



Today

● Introductions

● Administrative Info

● What is this course about?

● Review: Queues and stacks



The Queue ADT

Queue operations:

enqueue
dequeue
is_empty



Circular Array Queue Data Structure

● What if queue is empty?
○ Enqueue?
○ Dequeue?

● What if array is full?

● How to test for empty?
● What is the complexity of the 

operations?



Linked List Queue Data Structure

● What if queue is empty?
○ Enqueue?

○ Dequeue?

● Can list be full?

● How to test for empty?

● What is the complexity of the 

operations?



Circular Array vs Linked List

Good about
 
circular arra
y:
- if we do w
ant 
to modify - l
ess 
error prone
- storing onl
y 
one piece o
f 
data

Good about the linked list?
- no set size - don't have define size 
at the start
- add elements in between easily



Circular Array vs Linked List

Array:
● May waste unneeded space or 

run out of space
● Space per element excellent
● Operations very simple / fast

List:
● Always just enough space
● But more space per element
● Operations very simple / fast

Operations not in Queue ADT, but
also:
● Constant-time “access to kth 

element”
● For operation “insertAtPosition”,

must shift all later elements

Operations not in Queue ADT, but
also:
● No constant-time “access to kth 

element”
● For operation “insertAtPosition” 

must traverse all earlier elements



Homework for today!!!

1. Preliminary Survey: due Thursday

2. Project #1: Checkpoint 0 due Friday

3. Review Java & install IntelliJ

4. Reading (optional) in Weiss (see course web page)


