CSE 332 Autumn 2024
Lecture 9: AVL Trees

Nathan Brunelle
http://www.cs.uw.edu/332

http://www.cs.uw.edu/332

Dictionary (hﬂ?p) ADT

* Contents: L/[
- (Setg)of key-+value pairs
* Keys must be comparable

.

* Operations:

. i/rl_se__rt(key, value)
* Adds the (key,value) pair into the dictionary

 If the key already has a value, overwrite the old value
* Consequence: Keys cannot be repeated

 find(key)
* Returns the value associated with the given key

e delete(key)
 Remove the key (and its associated value)

Nalve attempts

Unsorted Array

l Data Structure Time to delete
Q)
Oy

Unsorted Linked List
Sorted Array
Sorted Linked List

AVL Tree

O(1) O(n)
O(1) O(n)
C@J O(logn O(n)
O(n) O(n)
O(logn) O(n) 0(n)
O(n) O(n) O(n)
O(logn) O(logn) O(logn)

Binary Search Tree

-\

=

~

* Binary Tree
e Definition:
* Tree where each node has at most 2 children

* Order Property
* All keys in the left subtree are smaller than the root
* All keys in the right subtree are larger than the root

* Consequence: cannot have rfepeated value

Aside: Why not use an array?

* We represented a heap using an array, finding children/parents by
index

* We will represent BSTs with nodes and references. Why?
* We might have “gaps” in our tree

@ :
— 3
/?Q/ér Ms,\/ /C< _% _

Find Operation (recursive)

find(key, root){ T

if (root == Null){
- &

return N¢H7
{

if (key == root.key){

return root.value;
} S

if (key < root.key){
return find(key, root.left);

}
if (key > root.key){

— return find(key, root.right);

}

return Null;

Find Operation (iterative)

find(key, root){
while (root != Null && key != root.key){
if (key < root.key){
root = root.left;

}
else if (key > root.key){

root = root.right;

}
}
if (root == Null){
return Null;
}

return root.value;

Insert Operation (recursive)

insert(key, value, root){

root = insertHelper(key, value, root);
}
insertHelper(key, value, root){

if(root == null)

return new Node(key, value);
if (root.key < key)

root.right = insertHelper(key, value, root.right);
else

root.left = insertHelper(key, value, root.left); /
return root; -

} Note: Insert happens only at the leaves!

Insert Operation (iterative) a @

insert(key, value, root){

if (root == Null){ this.root = new Node(key, value); } G ° e

parent = Null;
while (root != Null && key !=root.key){ °
parent = root;
if (key < root.key){ root = root.left; }
else if (key > root.key){ root = root.right; }
}
if (root != Null){ root.value = value; }
else if (key < parent.key){ parent.left = new Node(key, value); }
else{ parent.right = new Node (key, value); }

} Note: Insert happens only at the leaves!

Delete Operation (iterative)

delete(key, root){
while (root != Null && key !=root.key){
if (key < root.key){ root = root.left; }

else if (key > root.key){ root = root.right; }

}

if (root == Null){ return; }
// Now root is the node to delete, what happens next?

Delete — 3 Cases

Q@(i.e. it’s a leaf) / j

1 Child <~ °
< o 7
~ " Replace the deleted node with its child -

| 2 Children |
o Ee!olac'e the deleted with theﬂge\stﬂgoile to its Ieﬂ‘or else the We_
o its right
g—% ((

— /7 ed .

Finding the Max and Min

maxNode(root){ \
e Max of a BST: if (root == Null){ return Null; °
' while (root.right != Null){

* Right-most Thing root = root.right;
} 0 © @

return root;

* Min of a BST:
* Left-most Thing

minNode(root){
if (root == Null){ return Null; }
while (root.left != Null){
root = root.left;

}

return root;

Delete Operation (iterative)

delete(key, root){

while (root != Null && key != root.key){
if (key < root.key){ root = root.left; } G
else if (key > root.key){ root = root.right; }

) O

if (root == Null){ return; }

if (root has no children){
make parent point to Null Instead;

}

if (root has one child){
make parent point to that child instead;

}

if (root has two children){
make parent point to either the max from the left or min from the right

Worst Case Analysis

* For each of Find; insert, Delete:
* Worst case running time matche ight of the tree

* What is the maximum height of a BST with n nodes?
/TN B

\ -

//j A

Improving the worst case

* How can we get a better worst case running time?
e Add rules about the shape of our BST

* AVL Tree

* A BST with some shape rules
» Algorithms need to change to accommodate those

“Balanced” Binary Search Trees

* We get better running times by having “shorter” trees

ol . «“ ” .
* Trees get tall due to them being “sparse” (many one-child nodes)

* |dea: modify how we insert/delete to keep the tree mor'

dea 1: Both Subtrees of Root/ have same
\Iclql_gs -

S \ ~~
¢7 E
/DZ{ C\(/Q

dea 2: Both Subtrees of Root have same
neight

|[dea 3: Both Subtrees of&ever Node have

same # Nodes

O

|dea 4: Both Subtrees of every Node have

same height
e

O =

AVL Tree

* A Binary Search tree that maintains that the EﬁWrees of
every node have heights that differ by at most one.
. heig?c of left subtree and height of right subtree off by at most 1
* Not too weak (ensures trees are short)
* Not too strong (works for any number of nodes)

e |dea of AVL Tree:

 When you insert/delete nodes, if tree is “out of balance” then modify the tree
* Modification = “rotation”

Using AVL Trees

Key =9

e Each node has: Value = "hello”
Height =3
* Key Left = Node 3
* Height

e Left child °
* Right child

Inserting into an AVL Tree

 Starts out the same way as BST:
* “Find” where the new node should go
e Putitin the right place (it will be a leaf)

 Next check the balance

* |f the tree is still balanced, you’re done!
* Otherwise we need to do rotations

Insert Example

Insert Example ()

Not Balanced!

nSolution: rotate the whole tree to the right

Balanced!

Right Rotation

* Make the left child the new root
* Make the old root the right child of the new

* Make the new root’s right subtree the old root’s left subtree
h+3 h+2

Right
Rotation

Insert Example

Not Balanced!

Solution: rotate the deepest
unbalanced root to the left

Balanced!

Left Rotation

* Make the right child the new root
e Make the old root the left child of the new

* Make the new root’s left subtree the old root’s right subtree

h+3

h+ 2

Left
Rotation

Insertion Story So Far

e After insertion, update the heights of the node’s ancestors
* Check for unbalance

* If unbalanced then at the deepest unbalanced root

* If the left subtree was deeper then rotate right This is incomplete!

i Th
* If the right subtree was deeper then rotate left Wheerreeatﬁ;g?eirfats\?vzrkl

= = -

Insertion Story So Far

e After insertion, update the heights of the node’s ancestors
* Check for unbalance

* If unbalanced then at the deepest unbalanced root:
e Case LL: If we inserted in the left subtree of the left child then rotate right
* Case RR: If we inserted in the right subtree of the right child then rotate left
* Case LR: If we inserted into the right subtree of the left child then ???
* Case RL: If we inserted into the left subtree of the right child then ???

Cases LR and RL require 2
rotations!

Case LR

* From deepest unbalanced root:
* Rotate left at the left child
* Rotate right at the root

Rotate Left

Rotate

Right at 9

Case LR in General

* Imbalance caused by inserting in the left child’s right subtree
* Rotate left at the left child
* Rotate right at the unbalanced node

Rotate .
Left at b Right at a

Case RL in General

* Imbalance caused by inserting in the right child’s left subtree
* Rotate right at the right child

e Rotate left at the unbalanced node
h+3

Rotate
Right at b Leftat a

Insert Summary

e After a BST insertion, update the heights of the node’s ancestors
* From leaf to root, check if each node is unbalanced

* If a node is unbalanced then at the deepest unbalanced node:
* Case LL: If we inserted in the left subtree of the left child then: rotate right
e Case RR: If we inserted in the right subtree of the right child then: rotate left

* Case LR: If we inserted into the right subtree of the left child then: rotate left at
the left child and then rotate right at the root

e Case RL: If we inserted into the left subtree of the right child then: rotate right at
the right child and then rotate left at the root

* Done after either reaching the root or applying one of the above cases

Delete Summary

e Tldr: same cases, reverse direction of rotation, may need to repeat with
ancestors

e After a BST deletion, update the heights of the node’s ancestors
* From leaf to root, check if each node is unbalanced

* |f a node is unbalanced then at the deepest unbalanced node:
Case LL: If we deleted in the left subtree of the left child then: rotate left
Case RR: If we deleted in the right subtree of the right child then: rotate right

Case LR: If we deleted into the right subtree of the left child then: rotate right at the
left child and then rotate left at the root

Case RL: If we deleted into the left subtree of the right child then: rotate left at the
right child and then rotate right at the root

* Continue checking until reach the root

	Slide 1: CSE 332 Autumn 2024 Lecture 9: AVL Trees
	Slide 2: Dictionary (Map) ADT
	Slide 3: Naïve attempts
	Slide 4: Binary Search Tree
	Slide 5: Are these BSTs?
	Slide 6: Aside: Why not use an array?
	Slide 7: Find Operation (recursive)
	Slide 8: Find Operation (iterative)
	Slide 9: Insert Operation (recursive)
	Slide 10: Insert Operation (iterative)
	Slide 11: Delete Operation (iterative)
	Slide 12: Delete – 3 Cases
	Slide 13: Finding the Max and Min
	Slide 14: Delete Operation (iterative)
	Slide 15: Worst Case Analysis
	Slide 16: Improving the worst case
	Slide 17: “Balanced” Binary Search Trees
	Slide 18: Idea 1: Both Subtrees of Root have same # Nodes
	Slide 19: Idea 2: Both Subtrees of Root have same height
	Slide 20: Idea 3: Both Subtrees of every Node have same # Nodes
	Slide 21: Idea 4: Both Subtrees of every Node have same height
	Slide 22: AVL Tree
	Slide 23: Is it an AVL Tree?
	Slide 24: Using AVL Trees
	Slide 25: Inserting into an AVL Tree
	Slide 26: Insert Example
	Slide 27: Insert Example
	Slide 28: Not Balanced!
	Slide 29: Balanced!
	Slide 30: Right Rotation
	Slide 31: Insert Example
	Slide 32: Not Balanced!
	Slide 33: Balanced!
	Slide 34: Left Rotation
	Slide 35: Insertion Story So Far
	Slide 36: Insertion Story So Far
	Slide 37: Case LR
	Slide 38: Case LR in General
	Slide 39: Case RL in General
	Slide 40: Insert Summary
	Slide 41: Delete Summary

