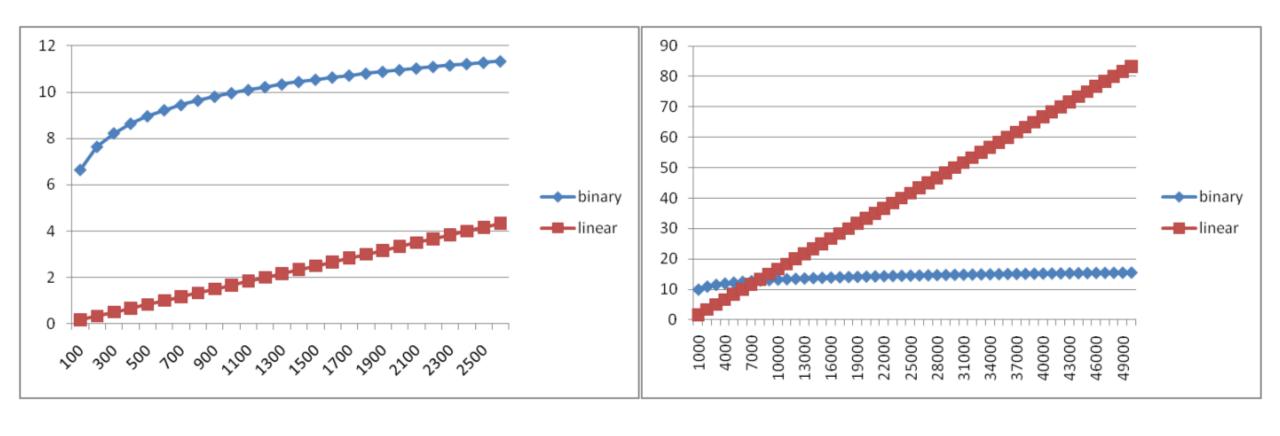
CSE 332 Autumn 2024 Lecture 4: Analysis 3

Nathan Brunelle

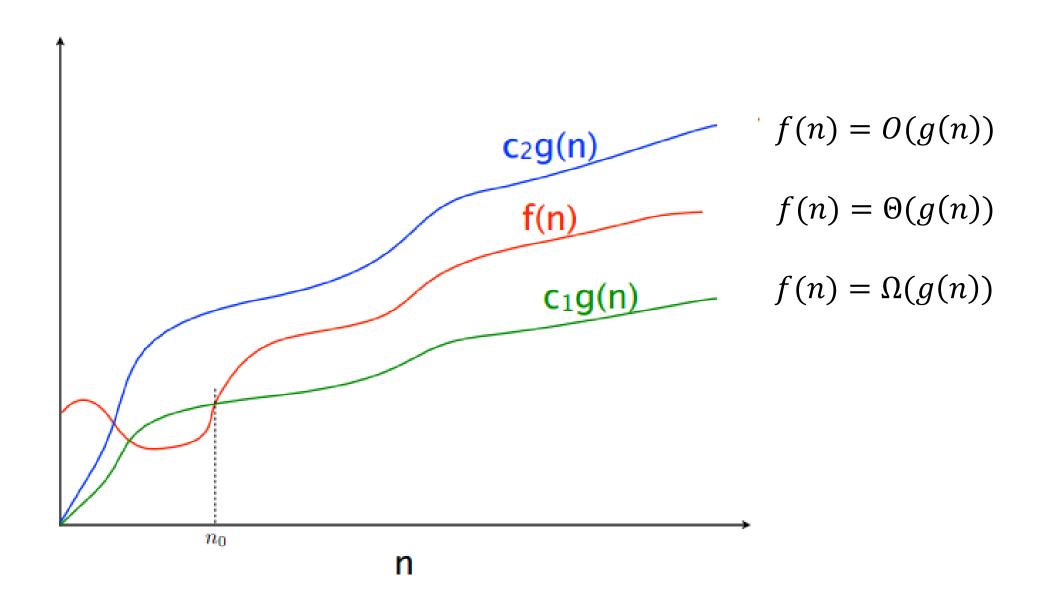
http://www.cs.uw.edu/332

Comparing



Comparing Functions

- To compare running times, we need a way to compare functions
- Desired properties
 - Ignores "small" values and compares long-term trends
 - Small inputs may be misleading
 - Usually less of a problem to spend less time on a small input
 - Ignores multiplicative constants
 - Gives us flexibility in counting operations
 - These constant differences may not hold across implementation environments
 - Some programming languages may do some operations faster than others
 - Some hardware may do some operations faster than others



Asymptotic Notation

- O(g(n))
 - The **set of functions** with asymptotic behavior less than or equal to g(n)
 - Upper-bounded by a constant times g for large enough values n
 - $f \in O(g(n)) \equiv \exists c > 0. \exists n_0 > 0. \forall n \ge n_0. f(n) \le c \cdot g(n)$
- $\Omega(g(n))$
 - the **set of functions** with asymptotic behavior greater than or equal to g(n)
 - Lower-bounded by a constant times g for large enough values n
 - $f \in \Omega(g(n)) \equiv \exists c > 0. \exists n_0 > 0. \forall n \ge n_0. f(n) \ge c \cdot g(n)$
- $\Theta(g(n))$
 - "Tightly" within constant of g for large n
 - $\Omega(g(n)) \cap O(g(n))$

- Show: $10n + 100 \in O(n^2)$
 - **Technique:** find values c>0 and $n_0>0$ such that $\forall n>n_0$. $10n+100\leq c\cdot n^2$
 - Proof:

- Show: $10n + 100 \in O(n^2)$
 - **Technique:** find values c>0 and $n_0>0$ such that $\forall n\geq n_0.$ $10n+100\leq c\cdot n^2$
 - **Proof:** Let c = 10 and $n_0 = 6$. Show $\forall n \geq 6.10n + 100 \leq 10n^2$ $10n + 100 \leq 10n^2$ $\equiv n + 10 \leq n^2$ $\equiv 10 \leq n^2 n$ $\equiv 10 \leq n(n-1)$

This is True because n(n-1) is strictly increasing and 6(6-1)>10

- Show: $13n^2 50n \in \Omega(n^2)$
 - **Technique:** find values c>0 and $n_0>0$ such that $\forall n\geq n_0$. $13n^2-50n\geq c\cdot n^2$
 - Proof:
 - c =
 - $n_0 =$

- Show: $13n^2 50n \in \Omega(n^2)$
 - **Technique:** find values c>0 and $n_0>0$ such that $\forall n\geq n_0$. $13n^2-50n\geq c\cdot n^2$
 - **Proof:** let c=12 and $n_0=50$. Show $\forall n \geq 50.13n^2-50n \geq 12n^2$ $13n^2-50n \geq 12n^2$ $\equiv n^2-50n \geq 0$ $\equiv n^2 \geq 50n$

$$\equiv n \geq 50$$

This is certainly true $\forall n \geq 50$.

- Show: $n^2 \notin O(n)$
- Want to show that there does not exist a pair of c and n_0 such that $\forall n_0 > n$. $n^2 \le c \cdot n$

• To Show: $n^2 \notin O(n)$

Proof by Contradiction!

- Technique: Contradiction
- **Proof:** Assume $n^2 \in O(n)$. Then $\exists c, n_0 > 0$ s. t. $\forall n > n_0, n^2 \le cn$ Let us derive constant c. For all $n > n_0 > 0$, we know: $cn \ge n^2$, $c \ge n$.

this

Since c is lower bounded by n, c cannot be a constant and make True.

Contradiction. Therefore $n^2 \notin O(n)$.

One More

Show $n^2 + 3n$ belongs to $O(4n^3)$

Gaining Intuition

- When doing asymptotic analysis of functions:
 - If multiple expressions are added together, ignore all but the "biggest"
 - If f(n) grows asymptotically faster than g(n), then $f(n) + g(n) \in \Theta(f(n))$
 - Ignore all multiplicative constants
 - $f(n) + c \in \Theta(f(n))$ for any constant $c \in \mathbb{R}$
 - Ignore bases of logarithms
 - Do NOT ignore:
 - Non-multiplicative and non-additive constants (e.g. in exponents, bases of exponents)
 - Logarithms themselves
- Examples:
 - 4n + 5
 - $0.5n\log n + 2n + 7$
 - $n^3 + 2^n + 3n$
 - $n\log(10n^2)$

Using This Intuition

- Is each of the following True or False?
 - $4 + 3n \in O(n)$
 - $n + 2 \log n \in O(\log n)$
 - $\log n + 2 \in O(1)$
 - $n^{50} \in O(1.1^n)$
 - $3^n \in \Theta(2^n)$

Common Categories

- O(1) "constant"
- $O(\log n)$ "logarithmic"
- O(n) "linear"
- $O(n \log n)$ "log-linear"
- $O(n^2)$ "quadratic"
- $O(n^3)$ "cubic"
- $O(n^k)$ "polynomial"
- $O(k^n)$ "exponential"

Defining your running time function

- Worst-case complexity:
 - max number of steps algorithm takes on "most challenging" input
- Best-case complexity:
 - min number of steps algorithm takes on "easiest" input
- Average/expected complexity:
 - avg number of steps algorithm takes on random inputs (contextdependent)
- Amortized complexity:
 - max total number of steps algorithm takes on M "most challenging" consecutive inputs, divided by M (i.e., divide the max total sum by M).

Beware!

- Worst case, Best case, amortized are ways to select a function
- O, Ω , Θ are ways to compare functions
- You can mix and match!
- The following statements totally make sense!
 - The worst case running time of my algorithm is $\Omega(n^3)$
 - The best case running time of my algorithm is O(n)
 - The best case running time of my algorithm is $\Theta(2^n)$

Recursive Binary Search

```
        5
        8
        13
        42
        75
        79
        88
        90
        95
        99

        0
        1
        2
        3
        4
        5
        6
        7
        8
        9
```

```
public static boolean binarySearch(List<Integer> lst, int k){
        return binarySearch(lst, k, 0, lst.size());
private static boolean binarySearch(List<Integer> lst, int k, int start, int end){
    if(start == end)
        return false;
    int mid = start + (end-start)/2;
    if(lst.get(mid) == k){
        return true;
    } else if(lst.get(mid) > k){
        return binarySearch(lst, k, start, mid);
    } else{
        return binarySearch(lst, k, mid+1, end);
```

Analysis of Recursive Algorithms

- Overall structure of recursion:
 - Do some non-recursive "work"
 - Do one or more recursive calls on some portion of your input
 - Do some more non-recursive "work"
 - Repeat until you reach a base case
- Running time: $T(n) = T(p_1) + T(p_2) + \dots + T(p_x) + f(n)$
 - The time it takes to run the algorithm on an input of size n is:
 - The sum of how long it takes to run the same algorithm on each smaller input
 - Plus the total amount of non-recursive work done at that step
- Usually:
 - $T(n) = a \cdot T\left(\frac{n}{b}\right) + f(n)$
 - Called "divide and conquer"
 - T(n) = T(n-c) + f(n)
 - Called "chip and conquer"

How Efficient Is It?

•
$$T(n) = 1 + T\left(\left\lceil \frac{n}{2}\right\rceil\right)$$

• Base case: T(1) = 1

T(n) = "cost" of running the entire algorithm on an array of length n

Let's Solve the Recurrence!

$$T(1) = 1$$

$$T(n) = 1 + T(n/2)$$

$$1 + T(n/4)$$

$$1 + T(n/8)$$

Substitute until T(1)So $\log_2 n$ steps

$$T(n) = \sum_{i=1}^{\log_2 n} 1 = \log_2 n$$

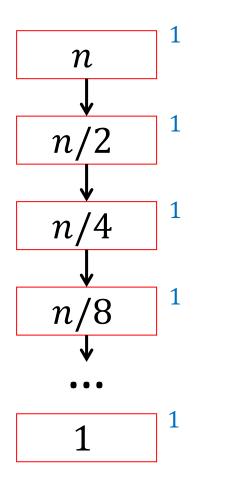
$$T(n) \in \Theta(\log n)$$

Make our method "prettier"

$$T(n) = T\left(\frac{n}{2}\right) + 1$$

- Draw a picture of the recursion
- Identify the work done per stack frame
- Add up all the work!
 - Sum is the answer!
 - In this case $\Theta(\log_2 n)$

The "Tree Method"



 $log_2 n$ levels of recursion

Recursive Linear Search

```
        5
        8
        13
        42
        75
        79
        88
        90
        95
        99

        0
        1
        2
        3
        4
        5
        6
        7
        8
        9
```

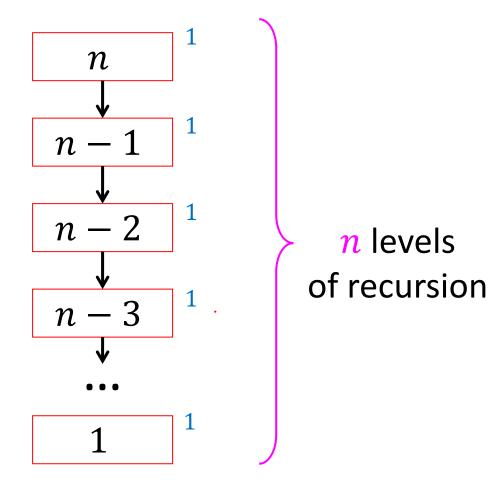
```
public static boolean linearSearch(List<Integer> lst, int k){
        return linearSearch(lst, k, 0, lst.size());
private static boolean linearSearch(List<Integer> lst, int k, int start, int end){
    if(start == end){
        return false;
    } else if(lst.get(start) == k){
        return true;
    } else{
        return linearSearch(lst, k, start+1, end);
```

Make our method "prettier"

$$T(n) = T(n-1) + 1$$

- Draw a picture of the recursion
- Identify the work done per stack frame
- Add up all the work!

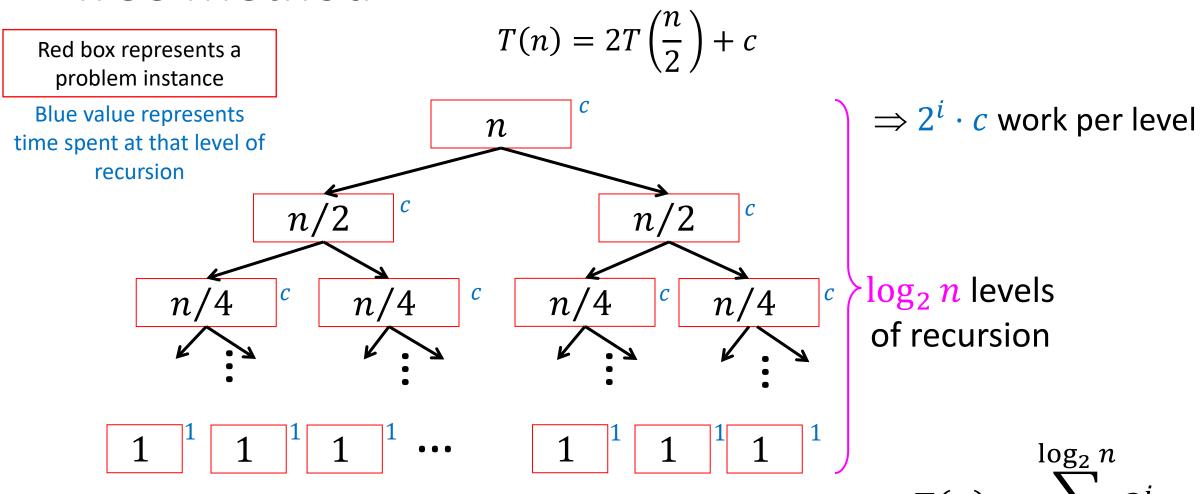
Running time: $\Theta(n)$



Recursive List Summation

```
sum(list){
       return sum_helper(list, 0, list.size);
sum helper(list, low, high){
       if (low == high){ return 0; }
       if (low == high-1){ return list[low]; }
       middle = (high+low)/2;
       return sum helper(list, low, middle) + sum helper(list, middle, high);
```

Tree Method



Recursive List Summation

$$T(n) = \sum_{i=1}^{\log_2 n} 2^i \cdot c$$

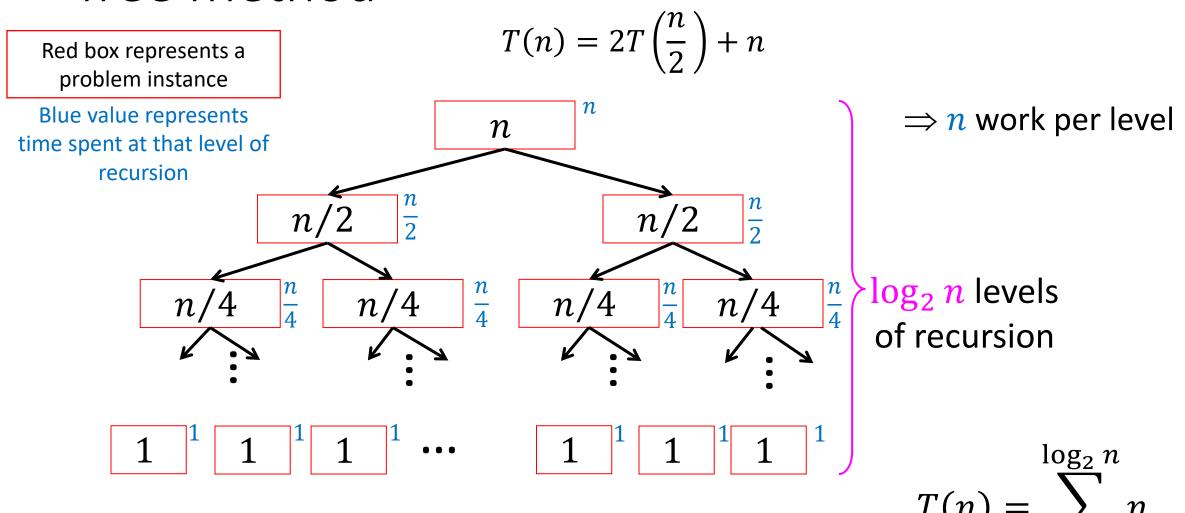
$$= c \cdot \sum_{i=1}^{\log_2 n} 2^i$$

$$= c \left(\frac{1 - 2^{\log_2 n}}{1 - 2} \right)$$

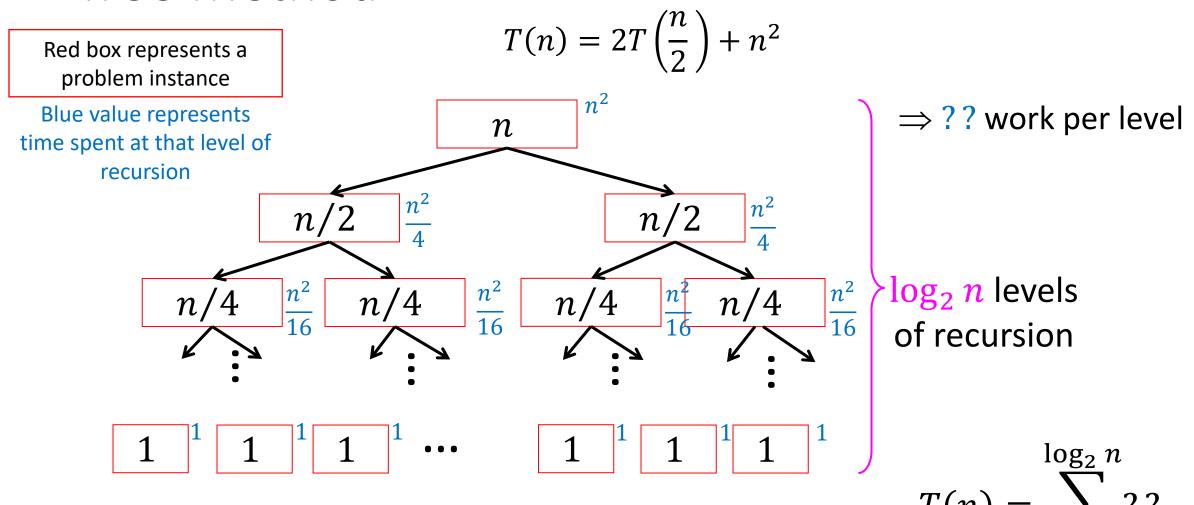
Let's do some more!

- For each, assume the base case is n=1 and T(1)=1
- $T(n) = 2T\left(\frac{n}{2}\right) + n$
- $T(n) = 2T\left(\frac{n}{2}\right) + n^2$
- $T(n) = 2T\left(\frac{n}{8}\right) + 1$

Tree Method



Tree Method

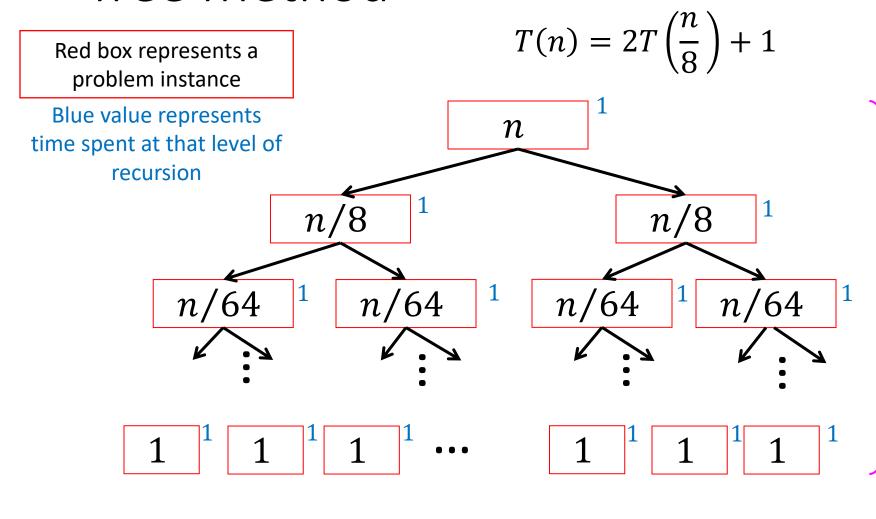


Recursive List Summation

$$T(n) = \sum_{i=1}^{\log_2 n} \frac{n^2}{2^i}$$

$$= n^2 \cdot \sum_{i=1}^{\log_2 n} \left(\frac{1}{2}\right)^i$$

Tree Method



 \Rightarrow 2ⁱ work per level

log₈ n levels of recursion

$$T(n) = \sum_{i=1}^{\log_8 n} 2^{i}$$

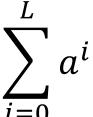
Recursive List Summation

$$T(n) = \sum_{i=1}^{\log_8 n} 2^i$$

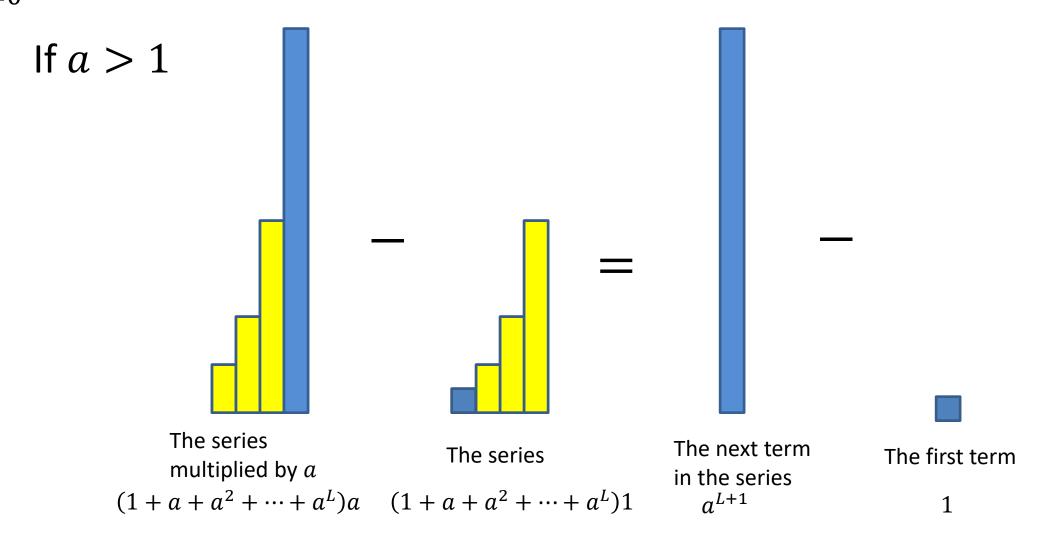
$$= \left(\frac{1 - 2^{\log_8 n}}{1 - 2}\right)$$

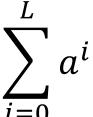
$$= 2^{\log_8 n} - 1$$

$$= n^{\log_8 2} = n^{\frac{1}{3}}$$



Finite Geometric Series





Finite Geometric Series

