
CSE 332 Autumn 2024
Lecture 4: Analysis 3

Nathan Brunelle
http://www.cs.uw.edu/332

http://www.cs.uw.edu/332

Comparing

Comparing Functions

• To compare running times, we need a way to compare functions
• Desired properties

• Ignores “small” values and compares long-term trends
• Small inputs may be misleading
• Usually less of a problem to spend less time on a small input

• Ignores multiplicative constants
• Gives us flexibility in counting operations
• These constant differences may not hold across implementation environments

• Some programming languages may do some operations faster than others
• Some hardware may do some operations faster than others

𝑓(𝑛) = 𝑂(𝑔 𝑛)

𝑓(𝑛) = Θ(𝑔 𝑛)

𝑓(𝑛) = Ω(𝑔 𝑛)

Asymptotic Notation

• 𝑂 𝑔 𝑛
• The set of functions with asymptotic behavior less than or equal to 𝑔 𝑛
• Upper-bounded by a constant times 𝑔 for large enough values 𝑛
• 𝑓 ∈ 𝑂 𝑔 𝑛 ≡ ∃𝑐 > 0. ∃𝑛0 > 0. ∀𝑛 ≥ 𝑛0. 𝑓 𝑛 ≤ 𝑐 ⋅ 𝑔 𝑛

• Ω(𝑔 𝑛)
• the set of functions with asymptotic behavior greater than or equal to 𝑔 𝑛
• Lower-bounded by a constant times 𝑔 for large enough values 𝑛
• 𝑓 ∈ Ω 𝑔 𝑛 ≡ ∃𝑐 > 0. ∃𝑛0 > 0. ∀𝑛 ≥ 𝑛0. 𝑓 𝑛 ≥ 𝑐 ⋅ 𝑔 𝑛

• Θ 𝑔 𝑛
• “Tightly” within constant of 𝑔 for large 𝑛
• Ω 𝑔 𝑛 ∩ 𝑂(𝑔 𝑛)

Asymptotic Notation Example

• Show: 10𝑛 + 100 ∈ 𝑂 𝑛2

• Technique: find values 𝑐 > 0 and 𝑛0 > 0 such that ∀𝑛 > 𝑛0. 10𝑛 + 100 ≤ 𝑐 ⋅
𝑛2

• Proof:

Asymptotic Notation Example

• Show: 10𝑛 + 100 ∈ 𝑂 𝑛2

• Technique: find values 𝑐 > 0 and 𝑛0 > 0 such that ∀𝑛 ≥ 𝑛0. 10𝑛 + 100 ≤ 𝑐 ⋅
𝑛2

• Proof: Let 𝑐 = 10 and 𝑛0 = 6. Show ∀𝑛 ≥ 6.10𝑛 + 100 ≤ 10𝑛2

 10𝑛 + 100 ≤ 10𝑛2

 ≡ 𝑛 + 10 ≤ 𝑛2

 ≡ 10 ≤ 𝑛2 − 𝑛

 ≡ 10 ≤ 𝑛 𝑛 − 1

 This is True because 𝑛(𝑛 − 1) is strictly increasing and 6 6 − 1 > 10

Asymptotic Notation Example

• Show: 13n2 − 50n ∈ Ω 𝑛2

• Technique: find values 𝑐 > 0 and 𝑛0 > 0 such that ∀𝑛 ≥ 𝑛0. 13𝑛2 − 50𝑛 ≥ 𝑐 ⋅ 𝑛2

• Proof:
• 𝑐 =

• 𝑛0 =

Asymptotic Notation Example

• Show: 13n2 − 50n ∈ Ω 𝑛2

• Technique: find values 𝑐 > 0 and 𝑛0 > 0 such that ∀𝑛 ≥ 𝑛0. 13𝑛2 − 50𝑛 ≥ 𝑐 ⋅ 𝑛2

• Proof: let 𝑐 = 12 and 𝑛0 = 50. Show ∀𝑛 ≥ 50. 13𝑛2 − 50𝑛 ≥ 12𝑛2

 13𝑛2 − 50𝑛 ≥ 12𝑛2

 ≡ 𝑛2 − 50𝑛 ≥ 0

 ≡ 𝑛2 ≥ 50𝑛

 ≡ 𝑛 ≥ 50
 This is certainly true ∀𝑛 ≥ 50.

Asymptotic Notation Example

• Show: 𝑛2 ∉ 𝑂 𝑛

• Want to show that there does not exist a pair of 𝑐 and 𝑛0 such that
∀𝑛0 > 𝑛. 𝑛2 ≤ 𝑐 ⋅ 𝑛

Asymptotic Notation Example

• To Show: 𝑛2 ∉ 𝑂 𝑛
• Technique: Contradiction
• Proof: Assume 𝑛2 ∈ 𝑂 𝑛 . Then ∃𝑐, 𝑛0 > 0 s. t. ∀𝑛 > 𝑛0, 𝑛2 ≤ 𝑐𝑛

 Let us derive constant 𝑐. For all 𝑛 > 𝑛0 > 0, we know:
 𝑐𝑛 ≥ 𝑛2,
 𝑐 ≥ 𝑛.

 Since 𝑐 is lower bounded by 𝑛, 𝑐 cannot be a constant and make
this True.
 Contradiction. Therefore 𝑛2 ∉ 𝑂 𝑛 .

Proof by
Contradiction!

One More

Show 𝑛2 + 3𝑛 belongs to 𝑂 4𝑛3

Gaining Intuition

• When doing asymptotic analysis of functions:
• If multiple expressions are added together, ignore all but the “biggest”

• If 𝑓(𝑛) grows asymptotically faster than 𝑔(𝑛), then 𝑓 𝑛 + 𝑔 𝑛 ∈ Θ 𝑓 𝑛

• Ignore all multiplicative constants
• 𝑓 𝑛 + 𝑐 ∈ Θ 𝑓 𝑛 for any constant 𝑐 ∈ ℝ

• Ignore bases of logarithms
• Do NOT ignore:

• Non-multiplicative and non-additive constants (e.g. in exponents, bases of exponents)
• Logarithms themselves

• Examples:
• 4𝑛 + 5

• 0.5𝑛log 𝑛 + 2𝑛 + 7
• 𝑛3 + 2𝑛 + 3𝑛
• 𝑛log(10𝑛2)

Using This Intuition

• Is each of the following True or False?
• 4 + 3𝑛 ∈ 𝑂(𝑛)

• 𝑛 + 2 log 𝑛 ∈ 𝑂(log 𝑛)

• log 𝑛 + 2 ∈ 𝑂(1)

• 𝑛50 ∈ 𝑂(1.1𝑛)

• 3𝑛 ∈ Θ(2𝑛)

Common Categories

• 𝑂(1) “constant”
• 𝑂 log 𝑛 “logarithmic”
• 𝑂 𝑛 “linear”
• 𝑂 𝑛 log 𝑛 “log-linear”
• 𝑂 𝑛2 “quadratic”
• 𝑂 𝑛3 “cubic”

• 𝑂 𝑛𝑘 “polynomial”
• 𝑂 𝑘𝑛 “exponential”

Defining your running time function

• Worst-case complexity:
• max number of steps algorithm takes on “most challenging” input

• Best-case complexity:
• min number of steps algorithm takes on “easiest” input

• Average/expected complexity:
• avg number of steps algorithm takes on random inputs (context-

dependent)

• Amortized complexity:
• max total number of steps algorithm takes on M “most challenging”

consecutive inputs, divided by M (i.e., divide the max total sum by M).

Beware!

• Worst case, Best case, amortized are ways to select a function
• 𝑂, Ω, Θ are ways to compare functions
• You can mix and match!
• The following statements totally make sense!

• The worst case running time of my algorithm is Ω 𝑛3

• The best case running time of my algorithm is 𝑂 𝑛

• The best case running time of my algorithm is Θ 2𝑛

Recursive Binary Search

public static boolean binarySearch(List<Integer> lst, int k){

return binarySearch(lst, k, 0, lst.size());

}

private static boolean binarySearch(List<Integer> lst, int k, int start, int end){

if(start == end)

return false;

int mid = start + (end-start)/2;

if(lst.get(mid) == k){

return true;

} else if(lst.get(mid) > k){

return binarySearch(lst, k, start, mid);

} else{

return binarySearch(lst, k, mid+1, end);

}

}

4 5 6 7321 80 9

75 79 88 9042138 955 99

Analysis of Recursive Algorithms
• Overall structure of recursion:

• Do some non-recursive “work”
• Do one or more recursive calls on some portion of your input
• Do some more non-recursive “work”
• Repeat until you reach a base case

• Running time: 𝑇 𝑛 = 𝑇 𝑝1 + 𝑇 𝑝2 + ⋯ + 𝑇 𝑝𝑥 + 𝑓(𝑛)
• The time it takes to run the algorithm on an input of size 𝑛 is:
• The sum of how long it takes to run the same algorithm on each smaller input
• Plus the total amount of non-recursive work done at that step

• Usually:

• 𝑇 𝑛 = 𝑎 ⋅ 𝑇
𝑛

𝑏
+ 𝑓 𝑛

• Called “divide and conquer”

• 𝑇 𝑛 = 𝑇 𝑛 − 𝑐 + 𝑓 𝑛
• Called “chip and conquer”

How Efficient Is It?

• 𝑇 𝑛 = 1 + 𝑇
𝑛

2

• Base case: 𝑇 1 = 1

𝑇 𝑛 = “cost” of running the entire
algorithm on an array of length 𝑛

21

Let’s Solve the Recurrence!

𝑇 𝑛 = 1 + 𝑇(ൗ𝑛
2)

𝑇 1 = 1

1 + 𝑇(ൗ𝑛
4)

1 + 𝑇(ൗ𝑛
8)

1

Substitute until 𝑇(1)
So log2 𝑛 steps

𝑇 𝑛 = ෍

𝑖=1

log2𝑛

1 = log2 𝑛 𝑇 𝑛 ∈ Θ log 𝑛

22

Make our method “prettier”

• Draw a picture of the recursion

• Identify the work done per stack frame

• Add up all the work!
• Sum is the answer!

• In this case Θ(log2 𝑛)

𝑛

𝑛/2

𝑇 𝑛 = 𝑇
𝑛

2
+ 1

𝑛/4

𝑛/8

1

…

1

1

1

1

1

log2 𝑛 levels
of recursion

The “Tree Method”

Recursive Linear Search

public static boolean linearSearch(List<Integer> lst, int k){

return linearSearch(lst, k, 0, lst.size());

}

private static boolean linearSearch(List<Integer> lst, int k, int start, int end){

if(start == end){

return false;

} else if(lst.get(start) == k){

return true;

} else{

return linearSearch(lst, k, start+1, end);

}

}

4 5 6 7321 80 9

75 79 88 9042138 955 99

Make our method “prettier”

• Draw a picture of the recursion

• Identify the work done per stack frame

• Add up all the work!

𝑛

𝑛 − 1

𝑇 𝑛 = 𝑇 𝑛 − 1 + 1

𝑛 − 2

𝑛 − 3

1

…

1

1

1

1

1

𝑛 levels
of recursion

Running time: Θ(𝑛)

Recursive List Summation

sum(list){

 return sum_helper(list, 0, list.size);

}

sum_helper(list, low, high){

 if (low == high){ return 0; }

 if (low == high-1){ return list[low]; }

 middle = (high+low)/2;

 return sum_helper(list, low, middle) + sum_helper(list, middle, high);

}

Tree Method

 2𝑖 ⋅ 𝑐 work per level

log2 𝑛 levels
of recursion

𝑛

𝑇 𝑛 = 2𝑇
𝑛

2
 + 𝑐

𝑇 𝑛 = ෍

𝑖=1

log2 𝑛

2𝑖 ⋅ 𝑐

Τ𝑛 2 Τ𝑛 2

Τ𝑛 4 Τ𝑛 4 Τ𝑛 4 Τ𝑛 4

… … … …

1 1 1 … 1 1 1

𝑐

𝑐 𝑐

𝑐 𝑐 𝑐 𝑐

1 1 1 1 1 1

Red box represents a
problem instance

Blue value represents
time spent at that level of

recursion

Recursive List Summation

𝑇 𝑛 = ෍

𝑖=1

log2 𝑛

2𝑖 ⋅ 𝑐

= 𝑐 ⋅ ෍

𝑖=1

log2 𝑛

2𝑖

= 𝑐
1 − 2log2 𝑛

1 − 2

Let’s do some more!

• For each, assume the base case is 𝑛 = 1 and 𝑇 1 = 1

• 𝑇 𝑛 = 2𝑇
𝑛

2
+ 𝑛

• 𝑇 𝑛 = 2𝑇
𝑛

2
+ 𝑛2

• 𝑇 𝑛 = 2𝑇
𝑛

8
+ 1

Tree Method

 𝑛 work per level

log2 𝑛 levels
of recursion

𝑛

𝑇 𝑛 = 2𝑇
𝑛

2
 + 𝑛

𝑇 𝑛 = ෍

𝑖=1

log2 𝑛

𝑛

Τ𝑛 2 Τ𝑛 2

Τ𝑛 4 Τ𝑛 4 Τ𝑛 4 Τ𝑛 4

… … … …

1 1 1 … 1 1 1

𝑛

𝑛

2

𝑛

2

𝑛

4

𝑛

4

𝑛

4

𝑛

4

1 1 1 1 1 1

Red box represents a
problem instance

Blue value represents
time spent at that level of

recursion

Tree Method

 ? ? work per level

log2 𝑛 levels
of recursion

𝑛

𝑇 𝑛 = 2𝑇
𝑛

2
 + 𝑛2

𝑇 𝑛 = ෍

𝑖=1

log2 𝑛

? ?

Τ𝑛 2 Τ𝑛 2

Τ𝑛 4 Τ𝑛 4 Τ𝑛 4 Τ𝑛 4

… … … …

1 1 1 … 1 1 1

𝑛2

𝑛2

4

𝑛2

4

𝑛2

16

𝑛2

16

𝑛2

16

𝑛2

16

1 1 1 1 1 1

Red box represents a
problem instance

Blue value represents
time spent at that level of

recursion

Recursive List Summation

𝑇 𝑛 = ෍

𝑖=1

log2 𝑛
𝑛2

2𝑖

= 𝑛2 ⋅ ෍

𝑖=1

log2 𝑛
1

2

𝑖

Tree Method

 2𝑖 work per level

log8 𝑛 levels
of recursion

𝑛

𝑇 𝑛 = 2𝑇
𝑛

8
 + 1

𝑇 𝑛 = ෍

𝑖=1

log8 𝑛

2𝑖

Τ𝑛 8 Τ𝑛 8

Τ𝑛 64 Τ𝑛 64 Τ𝑛 64 Τ𝑛 64

… … … …

1 1 1 … 1 1 1

1

1 1

1 1 1 1

1 1 1 1 1 1

Red box represents a
problem instance

Blue value represents
time spent at that level of

recursion

Recursive List Summation

𝑇 𝑛 = ෍

𝑖=1

log8 𝑛

2𝑖

=
1 − 2log8 𝑛

1 − 2

= 2log8 𝑛 − 1

= 𝑛log8 2 = 𝑛
1
3

Finite Geometric Series

35

= −−

If 𝑎 > 1

The series
multiplied by 𝑎

The series The first term

1 + 𝑎 + 𝑎2 + ⋯ + 𝑎𝐿 𝑎 1 + 𝑎 + 𝑎2 + ⋯ + 𝑎𝐿 1 𝑎𝐿+1 1

The next term
in the series

෍

𝑖=0

𝐿

𝑎𝑖

Finite Geometric Series

36

The series
multiplied by 𝑎

The series The first term

= −−

1 + 𝑎 + 𝑎2 + ⋯ + 𝑎𝐿 𝑎 1 + 𝑎 + 𝑎2 + ⋯ + 𝑎𝐿 1 𝑎𝐿+1 1

The next term
in the series

If 𝑎 < 1

෍

𝑖=0

𝐿

𝑎𝑖

Solve for the series

	Slide 1: CSE 332 Autumn 2024 Lecture 4: Analysis 3
	Slide 2: Comparing
	Slide 3: Comparing Functions
	Slide 4
	Slide 5: Asymptotic Notation
	Slide 6: Asymptotic Notation Example
	Slide 7: Asymptotic Notation Example
	Slide 8: Asymptotic Notation Example
	Slide 9: Asymptotic Notation Example
	Slide 10: Asymptotic Notation Example
	Slide 11: Asymptotic Notation Example
	Slide 12: One More
	Slide 13: Gaining Intuition
	Slide 14: Using This Intuition
	Slide 15: Common Categories
	Slide 16: Defining your running time function
	Slide 17: Beware!
	Slide 18
	Slide 19: Recursive Binary Search
	Slide 20: Analysis of Recursive Algorithms
	Slide 21: How Efficient Is It?
	Slide 22: Let’s Solve the Recurrence!
	Slide 23: Make our method “prettier”
	Slide 24: Recursive Linear Search
	Slide 25: Make our method “prettier”
	Slide 26: Recursive List Summation
	Slide 27: Tree Method
	Slide 28: Recursive List Summation
	Slide 29: Let’s do some more!
	Slide 30: Tree Method
	Slide 31: Tree Method
	Slide 32: Recursive List Summation
	Slide 33: Tree Method
	Slide 34: Recursive List Summation
	Slide 35: Finite Geometric Series
	Slide 36: Finite Geometric Series

