
CSE 332 Autumn 2024
Lecture 3: Algorithm Analysis

pt.2
Nathan Brunelle

http://www.cs.uw.edu/332

http://www.cs.uw.edu/332

Running Time Analysis

• Units of “time”
• Operations

• Whichever operations we pick

• How do we express running time?
• Function

• Domain (input): size of the input

• Range: count of operations

2

Worst Case Running Time Analysis

• If an algorithm has a worst case running time of 𝑓(𝑛)
• Among all possible size-𝑛 inputs, the “worst” one will do 𝑓(𝑛) “operations”

• 𝑓(𝑛) gives the maximum count of operations needed from among all inputs
of size 𝑛

Analysis Process From 123/143

• Count the number of “primitive chosen operations”
• +, -, compare, arr[i], arr.length, etc.
• Select the operation(s) which:

• Is/are done the most
• Is/are the most “expensive”
• Is/are the most “important”

• Write that count as an expression using 𝑛 (the input size)

• Put that expression into a “bucket” by ignoring constants and “non-
dominant” terms, then put a 𝑂() around it.
• 4𝑛2 + 8𝑛 − 10 ends up as 𝑂 𝑛2

•
1

2
𝑛 + 80 ends up as 𝑂 𝑛

Worst Case Running Time – General Guide

• Add together the time of consecutive statements

• Loops: Sum up the time required through each iteration of the loop
• If each takes the same time, then [time per loop × number of iterations]

• Conditionals: Sum together the time to check the condition and time
of the slowest branch

• Function Calls: Time of the function’s body

• Recursion: Solve a recurrence relation

Defining your running time function

• Worst-case complexity:
• max number of steps algorithm takes on “most challenging” input

• Best-case complexity:
• min number of steps algorithm takes on “easiest” input

• Average/expected complexity:
• avg number of steps algorithm takes on random inputs (context-dependent)

• Amortized complexity:
• max total number of steps algorithm takes on M “most challenging”

consecutive inputs, divided by M (i.e., divide the max total sum by M).

Amortized Complexity Example - ArrayList

• What is the worst case running
time of add?
• Input size: size of “this”

• Operations counted: indexing

• 𝑂 𝑛

public void add(T value){

if(data.length == size)

resize();

data[size] = value;

size++;

}

private void resize(){

 T[] oldData = data;

 data = (T[]) new Object[data.length*2];

 for(int i = 0; i < oldData.length; i++)

 data[i] = oldData[i];

}

public void add(T value){

if(data.length == size)

resize();

data[size] = value;

size++;

}

private void resize(){

 T[] oldData = data;

 data = (T[]) new Object[data.length*2];

 for(int i = 0; i < oldData.length; i++)

 data[i] = oldData[i];

}

Amortized Complexity Example - ArrayList

• Amortized Analysis Idea:
• Suppose we have a program that

in total does 𝑛 adds.

• How much time was spent “on
average” across all 𝑛?

• Let 𝑐 be the initial size of data
• The first 𝑐 adds take: 𝑐 + 𝑐 = 2𝑐

• The next 2𝑐 adds: 2𝑐 + 2𝑐 = 4𝑐

• The next 4𝑐 adds: 4𝑐 + 4𝑐 = 8𝑐

• Overall:
14𝑐

7𝑐
= 2𝑐

Every time we resize, we earn
data.length more adds
guaranteed to not resize!

Searching in a Sorted List

public static boolean contains(List<Integer> a, int k){

for(int i=0; i< a.size(); i++){

if (a.get(i) == k)

return true;

}

return false;

}

4 5 6 7321 80 9

75 79 88 9042138 955 99

Faster way?

Can you think of a faster algorithm to solve this problem?
4 5 6 7321 80 9

75 79 88 9042138 955 99

Binary Search

public static boolean contains(List<Integer> a, int k){

int start = 0;

int end = a.size();

while(start < end){

int mid = start + (end-start)/2;

if(a.get(mid) == k)

return true;

else if(a.get(mid) < k)

start = mid+1;

else

end = mid;

}

return false;

}

4 5 6 7321 80 9

75 79 88 9042138 955 99

Why is this log2 𝑛?

• In the beginning: end-start=𝑛

• After 1 iteration: end-start=
𝑛

2
• mid-start = (start+(end-start)/2)-start

• end-mid = end-(start+(end-start)/2)

• Each iteration cuts the “gap” in half!

• We stop when the gap is 1

Comparing

Comparing Running Times

• Suppose I have these algorithms, all of which have the same
input/output behavior:
• Algorithm A’s worst case running time is 10𝑛 + 900

• Algorithm B’s worst case running time is 100𝑛 − 50

• Algorithm C’s worst case running time is
𝑛2

100

• Which algorithm is best?

𝑓(𝑛) = 𝑂(𝑔 𝑛)

𝑓(𝑛) = Θ(𝑔 𝑛)

𝑓(𝑛) = Ω(𝑔 𝑛)

Asymptotic Notation

• 𝑂 𝑔 𝑛
• The set of functions with asymptotic behavior less than or equal to 𝑔 𝑛
• Upper-bounded by a constant times 𝑔 for large enough values 𝑛

• 𝑓 ∈ 𝑂 𝑔 𝑛 ≡ ∃𝑐 > 0. ∃𝑛0 > 0. ∀𝑛 ≥ 𝑛0. 𝑓 𝑛 ≤ 𝑐 ⋅ 𝑔 𝑛

• Ω(𝑔 𝑛)
• the set of functions with asymptotic behavior greater than or equal to 𝑔 𝑛
• Lower-bounded by a constant times 𝑔 for large enough values 𝑛

• 𝑓 ∈ Ω 𝑔 𝑛 ≡ ∃𝑐 > 0. ∃𝑛0 > 0. ∀𝑛 ≥ 𝑛0. 𝑓 𝑛 ≥ 𝑐 ⋅ 𝑔 𝑛

• Θ 𝑔 𝑛
• “Tightly” within constant of 𝑔 for large 𝑛

• Ω 𝑔 𝑛 ∩ 𝑂(𝑔 𝑛)

Idea of Θ

• 𝑥 = 𝑦
• 𝑥 ≤ 𝑦 ∧ 𝑥 ≥ 𝑦

Asymptotic Notation Example

• Show: 10𝑛 + 100 ∈ 𝑂 𝑛2

• Technique: find values 𝑐 > 0 and 𝑛0 > 0 such that ∀𝑛 > 𝑛0. 10𝑛 + 100 ≤ 𝑐 ⋅ 𝑛2

• Proof:

Asymptotic Notation Example

• Show: 10𝑛 + 100 ∈ 𝑂 𝑛2

• Technique: find values 𝑐 > 0 and 𝑛0 > 0 such that ∀𝑛 ≥ 𝑛0. 10𝑛 + 100 ≤ 𝑐 ⋅ 𝑛2

• Proof: Let 𝑐 = 10 and 𝑛0 = 6. Show ∀𝑛 ≥ 6.10𝑛 + 100 ≤ 10𝑛2

 10𝑛 + 100 ≤ 10𝑛2

 ≡ 𝑛 + 10 ≤ 𝑛2

 ≡ 10 ≤ 𝑛2 − 𝑛

 ≡ 10 ≤ 𝑛 𝑛 − 1

 This is True because 𝑛(𝑛 − 1) is strictly increasing and 6 6 − 1 > 10

Asymptotic Notation Example

• Show: 13n2 − 50n ∈ Ω 𝑛2

• Technique: find values 𝑐 > 0 and 𝑛0 > 0 such that ∀𝑛 ≥ 𝑛0. 13𝑛2 − 50𝑛 ≥ 𝑐 ⋅ 𝑛2

• Proof:

• 𝑐 =

• 𝑛0 =

Asymptotic Notation Example

• Show: 13n2 − 50n ∈ Ω 𝑛2

• Technique: find values 𝑐 > 0 and 𝑛0 > 0 such that ∀𝑛 ≥ 𝑛0. 13𝑛2 − 50𝑛 ≥ 𝑐 ⋅ 𝑛2

• Proof: let 𝑐 = 12 and 𝑛0 = 50. Show ∀𝑛 ≥ 50. 13𝑛2 − 50𝑛 ≥ 12𝑛2

 13𝑛2 − 50𝑛 ≥ 12𝑛2

 ≡ 𝑛2 − 50𝑛 ≥ 0

 ≡ 𝑛2 ≥ 50𝑛

 ≡ 𝑛 ≥ 50

 This is certainly true ∀𝑛 ≥ 50.

Asymptotic Notation Example

• Show: 𝑛2 ∉ 𝑂 𝑛

• Want to show that there does not exist a pair of 𝑐 and 𝑛0 such that
∀𝑛0 > 𝑛. 𝑛2 ≤ 𝑐 ⋅ 𝑛

Asymptotic Notation Example

• To Show: 𝑛2 ∉ 𝑂 𝑛
• Technique: Contradiction

• Proof: Assume 𝑛2 ∈ 𝑂 𝑛 . Then ∃𝑐, 𝑛0 > 0 s. t. ∀𝑛 > 𝑛0, 𝑛2 ≤ 𝑐𝑛
 Let us derive constant 𝑐. For all 𝑛 > 𝑛0 > 0, we know:
 𝑐𝑛 ≥ 𝑛2,
 𝑐 ≥ 𝑛.

 Since 𝑐 is lower bounded by 𝑛, 𝑐 cannot be a constant and make this

 True.
 Contradiction. Therefore 𝑛2 ∉ 𝑂 𝑛 .

Proof by
Contradiction!

Gaining Intuition

• When doing asymptotic analysis of functions:
• If multiple expressions are added together, ignore all but the “biggest”

• If 𝑓(𝑛) grows asymptotically faster than 𝑔(𝑛), then 𝑓 𝑛 + 𝑔 𝑛 ∈ Θ 𝑓 𝑛

• Ignore all multiplicative constants
• 𝑓 𝑛 + 𝑐 ∈ Θ 𝑓 𝑛 for any constant 𝑐 ∈ ℝ

• Ignore bases of logarithms
• Do NOT ignore:

• Non-multiplicative and non-additive constants (e.g. in exponents, bases of exponents)
• Logarithms themselves

• Examples:
• 4𝑛 + 5

• 0.5𝑛log 𝑛 + 2𝑛 + 7
• 𝑛3 + 2𝑛 + 3𝑛
• 𝑛log(10𝑛2)

More Examples

• Is each of the following True or False?
• 4 + 3𝑛 ∈ 𝑂(𝑛)

• 𝑛 + 2 log 𝑛 ∈ 𝑂(log 𝑛)

• log 𝑛 + 2 ∈ 𝑂(1)

• 𝑛50 ∈ 𝑂(1.1𝑛)

• 3𝑛 ∈ Θ(2𝑛)

Common Categories

• 𝑂(1) “constant”

• 𝑂 log 𝑛 “logarithmic”

• 𝑂 𝑛 “linear”

• 𝑂 𝑛 log 𝑛 “log-linear”

• 𝑂 𝑛2 “quadratic”

• 𝑂 𝑛3 “cubic”

• 𝑂 𝑛𝑘 “polynomial”

• 𝑂 𝑘𝑛 “exponential”

Defining your running time function

• Worst-case complexity:
• max number of steps algorithm takes on “most challenging” input

• Best-case complexity:
• min number of steps algorithm takes on “easiest” input

• Average/expected complexity:
• avg number of steps algorithm takes on random inputs (context-dependent)

• Amortized complexity:
• max total number of steps algorithm takes on M “most challenging”

consecutive inputs, divided by M (i.e., divide the max total sum by M).

Beware!

• Worst case, Best case, amortized are ways to select a function

• 𝑂, Ω, Θ are ways to compare functions

• You can mix and match!

• The following statements totally make sense!
• The worst case running time of my algorithm is Ω 𝑛3

• The best case running time of my algorithm is 𝑂 𝑛

• The best case running time of my algorithm is Θ 2𝑛

	Slide 1: CSE 332 Autumn 2024 Lecture 3: Algorithm Analysis pt.2
	Slide 2: Running Time Analysis
	Slide 3: Worst Case Running Time Analysis
	Slide 4: Analysis Process From 123/143
	Slide 5: Worst Case Running Time – General Guide
	Slide 6: Defining your running time function
	Slide 7: Amortized Complexity Example - ArrayList
	Slide 8: Amortized Complexity Example - ArrayList
	Slide 9: Searching in a Sorted List
	Slide 10: Faster way?
	Slide 11: Binary Search
	Slide 12: Why is this log sub 2 of n ?
	Slide 13: Comparing
	Slide 14: Comparing Running Times
	Slide 15
	Slide 16: Asymptotic Notation
	Slide 17: Idea of cap theta
	Slide 18: Asymptotic Notation Example
	Slide 19: Asymptotic Notation Example
	Slide 20: Asymptotic Notation Example
	Slide 21: Asymptotic Notation Example
	Slide 22: Asymptotic Notation Example
	Slide 23: Asymptotic Notation Example
	Slide 24: Gaining Intuition
	Slide 25: More Examples
	Slide 26: Common Categories
	Slide 27: Defining your running time function
	Slide 28: Beware!

