CSE 332 Autumn 2024

Lecture 3: Algorithm Analysis
pt.2

Nathan Brunelle
http://www.cs.uw.edu/332

http://www.cs.uw.edu/332

Running Time Analysis

e Units of “time”
* Operations
* Whichever operations we pick
* How do we express running time?

* Function
 Domain (input): size of the input
e Range: count of operations

Worst Case Running Time Analysis

* If an algorithm has a worst case running time of f(n)
* Among all possible size-n inputs, the “worst” one will do f(n) “operations”

* f(n) gives the maximum count of operations needed from among all inputs
of sizen

Analysis Process From 123/143

e Count the number of “primitive chosen operations”
* +, -, compare, arrl[i], arr.length, etc.
* Select the operation(s) which:
* |s/are done the most

* |s/are the most “expensive”
* |s/are the most “important”

* Write that count as an expression using n (the input size)

e Put that expression into a “bucket” by ignoring constants and “non-
dominant” terms, then put a O() around it.

* 4n? + 8n — 10 ends up as 0(n?)
. %n + 80 ends up as 0(n)

Worst Case Running Time — General Guide

* Add together the time of consecutive statements

e Loops: Sum up the time required through each iteration of the loop
* If each takes the same time, then [time per loop X number of iterations]

* Conditionals: Sum together the time to check the condition and time
of the slowest branch

* Function Calls: Time of the function’s body
* Recursion: Solve a recurrence relation

Defining your running time function

* Worst-case complexity:
* max number of steps algorithm takes on “most challenging” input

* Best-case complexity:
* min number of steps algorithm takes on “easiest” input

* Average/expected complexity:
* avg number of steps algorithm takes on random inputs (context-dependent)

* Amortized complexity:

* max total number of steps algorithm takes on M “most challenging”
consecutive inputs, divided by M (i.e., divide the max total sum by M).

Amortized Complexity Example - ArrayList

public void add(T value){ What is the worst case running

if(data.length == size) time of add?
resize(); .) _ o
data[size] = value; * Input 5|.ze. size of thI'S |
size++; * Operations counted: indexing
} * 0(n)

private void resize(){
T[] oldData = data;
data = (T[]) new Object[data.length*2];
for(int i = 0; i < oldData.length; i++)
data[i] = oldData[i];

Amortized Complexity Example - ArrayList

public void add(T value){ e Amortized Analysis Idea:

if(data.length == si
if(data.leng size) * Suppose we have a program that

resize(); . . in total does n adds.
data[size] = value; Every time we resize, we earn . .,
cizett: data.length more adds e How much time was spent “on
’ guaranteed to not resize! average” across all n?
}
private void resize(){ * Let ¢ be the initial size of data
T[] oldbata = data; * The first ¢ adds take: ¢ + ¢ = 2c¢
data = (T[]) new Object[data.length*2]; e The next 2¢ adds: 2¢ + 2¢ = 4c

for(int i = 0; i < oldData.length; i++) e The next 4c adds: 4c + 4c = 8¢
data[i] = oldData[i]; 14c |

} e Qverall:— = 2c
7¢

Searching in a Sorted List

public static boolean contains(List<Integer> a, int k){

for(int i=0; i< a.size(); i++){
if (a.get(i) == k)
return true;

¥

return false;

5

8

13

42

75

79

88

90

95

99

0

1

2

3

4

5

6

7

8

9

Faster way?

5

8

13

42

75

79

88

90

95

99

0

Can you think of a faster algorithm to solve this prob

1

2

em?

Binary Search

public static boolean contains(List<Integer> a, int k){
9;
int end = a.size();
while(start < end){
int mid = start + (end-start)/2;
if(a.get(mid) == k)
return true;
else if(a.get(mid) < k)
start = mid+1;

int start

else
end = mid;

}

return false;

13

42

75

79

88

90

95

99

Why is this log, n?

* In the beginning: end-start=n

e After 1 iteration: end—star‘t=§

* mid-start = (start+(end-start)/2)-start
* end-mid = end-(start+(end-start)/2)

e Each iteration cuts the “gap” in half!
* We stop when the gapis 1

e 5
S g
{4

~ 0006¥
0009t
000tV
0000Y
000LE
0oore
000TE
0008¢
000s¢
000zt
0oo6T
00091
000¢€T
0oooT
0004

000v

0001

90

80
70
60
50
40
30
20
10

0

Comparing

—4—bhinary
== |ircar

12

Comparing Running Times

e Suppose | have these algorithms, all of which have the same
input/output behavior:
e Algorithm A’s worst case running time is 10n 4+ 900

e Algorithm B’s worst case running time is 100n — 50
2
e Algorithm C’s worst case running time is L.

100
* Which algorithm is best?

c2g(n)
f(n)

c1g(n

Tig

f(m) =0(g(n))
f(n) =06(gn))
f(n) = Q(g(n))

Asymptotic Notation

» 0(g())

* The set of functions with asymptotic behavior less than or equal to g(n)
* Upper-bounded by a constant times g for large enough values n

* f€0(g(n)) =3c>0.3ny > 0.Yn =ny.f(n) < c-g(n)

* Q(g(n))
* the set of functions with asymptotic behavior greater than or equal to g(n)
* Lower-bounded by a constant times g for large enough values n

« fE€Q(g(n)) =3c>0.3n5 > 0.Vn = ngy. f(n) = c- g(n)

» 0(g(n))

e “Tightly” within constant of g for large n

- Q(g(m)) n0(g(n)

Asymptotic Notation Example

* Show: 10 + 100 € 0(n?)
e Technique: find values ¢ > 0 and ny > 0 such that Vn > n,.10n + 100 < ¢ - n?
* Proof:

Asymptotic Notation Example

* Show: 10n + 100 € 0(n?)
e Technique: find values ¢ > 0 and ny, > 0 such that Vn > n,.10n + 100 < ¢ - n*
* Proof: Letc = 10andny = 6.Show Vn > 6.10n + 100 < 10n*
10n + 100 < 10n?
=n+ 10 < n?
=10<n?—-n
=10 <nn-1)
This is True because n(n — 1) is strictly increasing and 6(6 — 1) > 10

Asymptotic Notation Example

 Show: 13n? — 50n € Q(n?%)
e Technique: find values ¢ > 0 and n, > 0 such that Vn > n,.13n% — 50n > ¢ - n?
* Proof:
R
. ny =

Asymptotic Notation Example

 Show: 13n? — 50n € Q(n?%)
e Technique: find values ¢ > 0 and n, > 0 such that Vn > n,.13n% — 50n > ¢ - n?
* Proof: letc =12 andny = 50.Show Vn > 50.13n% — 50n > 12n*

13n% — 50n > 12n?

n? —50n >0

n‘ > 50n

n =50

This is certainly true Yn = 50.

Asymptotic Notation Example

 Show: n? & 0(n)

* Want to show that there does not exist a pair of ¢ and n, such that
Vng>nn?<c-n

Asymptotic Notation Example

Proof by

[) * 2
To Show: n“ ¢ 0(n) Contradiction!

* Technique: Contradiction

e Proof: Assumen? € O(n). Then3c,ng > 0s.t.Vn > ny,n? < cn
Let us derive constant c. Foralln > ny > 0, we know:
cn > n?,
c = n.

Since c is lower bounded by n, ¢ cannot be a constant and make this
True.
Contradiction. Therefore n? & 0(n).

Galning Intuition

 When doing asymptotic analysis of functions:
* If multiple expressions are added together, ignore all but the “biggest”
* If f(n) grows asymptotically faster than g(n), then f(n) + g(n) € @(f(n))
* Ignore all multiplicative constants
e f(n)+ce @(f(n)) for any constantc € R
* Ignore bases of logarithms

* Do NOT ignore:
* Non-multiplicative and non-additive constants (e.g. in exponents, bases of exponents)
* Logarithms themselves

* Examples:
*4n + 5
* 0.5nlogn + 2n + 7
« n®+ 2"+ 3n
 nlog(10n?)

More Examples

* |s each of the following True or False?
*4+3n€ 0(n)
*n+ 2logn € 0(logn)
*logn+2¢€ 0(1)
- n°Y € 0(1.1M)
« 3" e 02"

Common Categories

*0(1) “constant”

* O(logn) “logarithmic”
* 0(n) “linear”

* O(nlogn) “log-linear”

« 0(n?) “quadratic”

« 0(n3) “cubic”

» 0(n*) “polynomial”
e O(k™) “exponential”

Defining your running time function

* Worst-case complexity:
* max number of steps algorithm takes on “most challenging” input

* Best-case complexity:
* min number of steps algorithm takes on “easiest” input

* Average/expected complexity:
* avg number of steps algorithm takes on random inputs (context-dependent)

* Amortized complexity:

* max total number of steps algorithm takes on M “most challenging”
consecutive inputs, divided by M (i.e., divide the max total sum by M).

Beware!

* Worst case, Best case, amortized are ways to select a function
e 0,), ® are ways to compare functions
* You can mix and match!

* The following statements totally make sense!
* The worst case running time of my algorithm is Q(n3)
* The best case running time of my algorithm is O(n)
* The best case running time of my algorithm is ©(2")

	Slide 1: CSE 332 Autumn 2024 Lecture 3: Algorithm Analysis pt.2
	Slide 2: Running Time Analysis
	Slide 3: Worst Case Running Time Analysis
	Slide 4: Analysis Process From 123/143
	Slide 5: Worst Case Running Time – General Guide
	Slide 6: Defining your running time function
	Slide 7: Amortized Complexity Example - ArrayList
	Slide 8: Amortized Complexity Example - ArrayList
	Slide 9: Searching in a Sorted List
	Slide 10: Faster way?
	Slide 11: Binary Search
	Slide 12: Why is this log sub 2 of n ?
	Slide 13: Comparing
	Slide 14: Comparing Running Times
	Slide 15
	Slide 16: Asymptotic Notation
	Slide 17: Idea of cap theta
	Slide 18: Asymptotic Notation Example
	Slide 19: Asymptotic Notation Example
	Slide 20: Asymptotic Notation Example
	Slide 21: Asymptotic Notation Example
	Slide 22: Asymptotic Notation Example
	Slide 23: Asymptotic Notation Example
	Slide 24: Gaining Intuition
	Slide 25: More Examples
	Slide 26: Common Categories
	Slide 27: Defining your running time function
	Slide 28: Beware!

