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Running Time Analysis

• Units of “time”
• Operations

• Whichever operations we pick

• How do we express running time?
• Function

• Domain (input): size of the input

• Range: count of operations

2



Worst Case Running Time Analysis

• If an algorithm has a worst case running time of 𝑓(𝑛)
• Among all possible size-𝑛 inputs, the “worst” one will do 𝑓(𝑛) “operations”

• 𝑓(𝑛) gives the maximum count of operations needed from among all inputs 
of size 𝑛



Analysis Process From 123/143

• Count the number of “primitive chosen operations”
• +, -, compare, arr[i], arr.length, etc.
• Select the operation(s) which:

• Is/are done the most
• Is/are the most “expensive” 
• Is/are the most “important”

• Write that count as an expression using 𝑛 (the input size)

• Put that expression into a “bucket” by ignoring constants and “non-
dominant” terms, then put a 𝑂( ) around it.
• 4𝑛2 + 8𝑛 − 10 ends up as 𝑂 𝑛2

•
1

2
𝑛 + 80 ends up as 𝑂 𝑛



Worst Case Running Time – General Guide

• Add together the time of consecutive statements

• Loops: Sum up the time required through each iteration of the loop
• If each takes the same time, then [time per loop × number of iterations]

• Conditionals: Sum together the time to check the condition and time 
of the slowest branch

• Function Calls: Time of the function’s body

• Recursion: Solve a recurrence relation



Defining your running time function

• Worst-case complexity: 
• max number of steps algorithm takes on “most challenging” input 

• Best-case complexity: 
• min number of steps algorithm takes on “easiest” input 

• Average/expected complexity: 
• avg number of steps algorithm takes on random inputs (context-dependent) 

• Amortized complexity: 
• max total number of steps algorithm takes on M “most challenging” 

consecutive inputs, divided by M (i.e., divide the max total sum by M).



Amortized Complexity Example - ArrayList

• What is the worst case running 
time of add?
• Input size: size of “this”

• Operations counted: indexing

• 𝑂 𝑛

public void add(T value){

if(data.length == size)

resize();

data[size] = value;

size++;

}

private void resize(){

  T[] oldData = data;

  data = (T[]) new Object[data.length*2];

  for(int i = 0; i < oldData.length; i++)

    data[i] = oldData[i];

}



public void add(T value){

if(data.length == size)

resize();

data[size] = value;

size++;

}

private void resize(){

  T[] oldData = data;

  data = (T[]) new Object[data.length*2];

  for(int i = 0; i < oldData.length; i++)

    data[i] = oldData[i];

}

Amortized Complexity Example - ArrayList

• Amortized Analysis Idea:
• Suppose we have a program that 

in total does 𝑛 adds.

• How much time was spent “on 
average” across all 𝑛?

• Let 𝑐 be the initial size of data
• The first 𝑐 adds take: 𝑐 + 𝑐 = 2𝑐

• The next 2𝑐 adds: 2𝑐 + 2𝑐 = 4𝑐

• The next 4𝑐 adds: 4𝑐 + 4𝑐 = 8𝑐

• Overall: 
14𝑐

7𝑐
= 2𝑐

Every time we resize, we earn 
data.length more adds 
guaranteed to not resize!



Searching in a Sorted List

public static boolean contains(List<Integer> a, int k){

for(int i=0; i< a.size(); i++){

if (a.get(i) == k)

return true;

}

return false;

}

4 5 6 7321 80 9

75 79 88 9042138 955 99



Faster way?

Can you think of a faster algorithm to solve this problem?
4 5 6 7321 80 9

75 79 88 9042138 955 99



Binary Search

public static boolean contains(List<Integer> a, int k){

int start = 0;

int end = a.size();

while(start < end){

int mid = start + (end-start)/2;

if(a.get(mid) == k)

return true;

else if(a.get(mid) < k)

start = mid+1;

else

end = mid;

}

return false;

}

4 5 6 7321 80 9

75 79 88 9042138 955 99



Why is this log2 𝑛?

• In the beginning: end-start=𝑛

• After 1 iteration: end-start=
𝑛

2
• mid-start = (start+(end-start)/2)-start

• end-mid = end-(start+(end-start)/2)

• Each iteration cuts the “gap” in half!

• We stop when the gap is 1



Comparing



Comparing Running Times

• Suppose I have these algorithms, all of which have the same 
input/output behavior:
• Algorithm A’s worst case running time is 10𝑛 + 900

• Algorithm B’s worst case running time is 100𝑛 − 50

• Algorithm C’s worst case running time is 
𝑛2

100

• Which algorithm is best?



𝑓(𝑛) = 𝑂(𝑔 𝑛 )

𝑓(𝑛) = Θ(𝑔 𝑛 )

𝑓(𝑛) = Ω(𝑔 𝑛 )



Asymptotic Notation

• 𝑂 𝑔 𝑛
• The set of functions with asymptotic behavior less than or equal to 𝑔 𝑛
• Upper-bounded by a constant times 𝑔 for large enough values 𝑛

• 𝑓 ∈ 𝑂 𝑔 𝑛 ≡ ∃𝑐 > 0. ∃𝑛0 > 0. ∀𝑛 ≥ 𝑛0. 𝑓 𝑛 ≤ 𝑐 ⋅ 𝑔 𝑛

• Ω(𝑔 𝑛 )
• the set of functions with asymptotic behavior greater than or equal to 𝑔 𝑛
• Lower-bounded by a constant times 𝑔 for large enough values 𝑛

• 𝑓 ∈ Ω 𝑔 𝑛 ≡ ∃𝑐 > 0. ∃𝑛0 > 0. ∀𝑛 ≥ 𝑛0. 𝑓 𝑛 ≥ 𝑐 ⋅ 𝑔 𝑛

• Θ 𝑔 𝑛
• “Tightly” within constant of 𝑔 for large 𝑛

• Ω 𝑔 𝑛 ∩ 𝑂(𝑔 𝑛 )



Idea of Θ

• 𝑥 = 𝑦
• 𝑥 ≤ 𝑦 ∧ 𝑥 ≥ 𝑦



Asymptotic Notation Example

• Show: 10𝑛 + 100 ∈ 𝑂 𝑛2

• Technique: find values 𝑐 > 0 and 𝑛0 > 0 such that ∀𝑛 > 𝑛0. 10𝑛 + 100 ≤ 𝑐 ⋅ 𝑛2

• Proof: 



Asymptotic Notation Example

• Show: 10𝑛 + 100 ∈ 𝑂 𝑛2

• Technique: find values 𝑐 > 0 and 𝑛0 > 0 such that ∀𝑛 ≥ 𝑛0. 10𝑛 + 100 ≤ 𝑐 ⋅ 𝑛2

• Proof: Let 𝑐 = 10 and 𝑛0 = 6. Show ∀𝑛 ≥ 6.10𝑛 + 100 ≤ 10𝑛2

                    10𝑛 + 100 ≤ 10𝑛2

                ≡ 𝑛 + 10 ≤ 𝑛2

                ≡ 10 ≤ 𝑛2 − 𝑛

                ≡ 10 ≤ 𝑛 𝑛 − 1

  This is True because 𝑛(𝑛 − 1) is strictly increasing and 6 6 − 1 > 10



Asymptotic Notation Example

• Show: 13n2 − 50n ∈ Ω 𝑛2

• Technique: find values 𝑐 > 0 and 𝑛0 > 0 such that ∀𝑛 ≥ 𝑛0. 13𝑛2 − 50𝑛 ≥ 𝑐 ⋅ 𝑛2

• Proof: 

• 𝑐 =

• 𝑛0 =



Asymptotic Notation Example

• Show: 13n2 − 50n ∈ Ω 𝑛2

• Technique: find values 𝑐 > 0 and 𝑛0 > 0 such that ∀𝑛 ≥ 𝑛0. 13𝑛2 − 50𝑛 ≥ 𝑐 ⋅ 𝑛2

• Proof: let 𝑐 = 12 and 𝑛0 = 50. Show ∀𝑛 ≥ 50. 13𝑛2 − 50𝑛 ≥ 12𝑛2

                    13𝑛2 − 50𝑛 ≥ 12𝑛2

                ≡ 𝑛2 − 50𝑛 ≥ 0

                ≡ 𝑛2 ≥ 50𝑛

                ≡ 𝑛 ≥ 50 

                This is certainly true ∀𝑛 ≥ 50.

                     



Asymptotic Notation Example

• Show: 𝑛2 ∉ 𝑂 𝑛

• Want to show that there does not exist a pair of 𝑐 and 𝑛0 such that 
∀𝑛0 > 𝑛. 𝑛2 ≤ 𝑐 ⋅ 𝑛



Asymptotic Notation Example

• To Show: 𝑛2 ∉ 𝑂 𝑛
• Technique: Contradiction

• Proof: Assume 𝑛2 ∈ 𝑂 𝑛 .  Then ∃𝑐, 𝑛0 > 0 s. t. ∀𝑛 > 𝑛0, 𝑛2 ≤ 𝑐𝑛
  Let us derive constant 𝑐.  For all 𝑛 > 𝑛0 > 0, we know: 
  𝑐𝑛 ≥ 𝑛2, 
  𝑐 ≥ 𝑛.
  
  Since 𝑐 is lower bounded by 𝑛, 𝑐 cannot be a constant and make this        

 True.
  Contradiction.  Therefore 𝑛2 ∉ 𝑂 𝑛 .

Proof by 
Contradiction!



Gaining Intuition

• When doing asymptotic analysis of functions:
• If multiple expressions are added together, ignore all but the “biggest”

• If 𝑓(𝑛) grows asymptotically faster than 𝑔(𝑛), then 𝑓 𝑛 + 𝑔 𝑛 ∈ Θ 𝑓 𝑛

• Ignore all multiplicative constants
• 𝑓 𝑛 + 𝑐 ∈ Θ 𝑓 𝑛  for any constant 𝑐 ∈ ℝ

• Ignore bases of logarithms
• Do NOT ignore:

• Non-multiplicative and non-additive constants (e.g. in exponents, bases of exponents)
• Logarithms themselves

• Examples:
• 4𝑛 + 5

• 0.5𝑛log 𝑛 + 2𝑛 + 7
• 𝑛3 + 2𝑛 + 3𝑛
• 𝑛log(10𝑛2)



More Examples

• Is each of the following True or False?
• 4 + 3𝑛 ∈ 𝑂(𝑛)

• 𝑛 + 2 log 𝑛 ∈ 𝑂(log 𝑛)

• log 𝑛 + 2 ∈ 𝑂(1)

• 𝑛50 ∈ 𝑂(1.1𝑛)

• 3𝑛 ∈ Θ(2𝑛)



Common Categories

• 𝑂(1) “constant”

• 𝑂 log 𝑛  “logarithmic”

• 𝑂 𝑛  “linear”

• 𝑂 𝑛 log 𝑛  “log-linear”

• 𝑂 𝑛2  “quadratic”

• 𝑂 𝑛3  “cubic”

• 𝑂 𝑛𝑘  “polynomial”

• 𝑂 𝑘𝑛  “exponential”



Defining your running time function

• Worst-case complexity: 
• max number of steps algorithm takes on “most challenging” input 

• Best-case complexity: 
• min number of steps algorithm takes on “easiest” input 

• Average/expected complexity: 
• avg number of steps algorithm takes on random inputs (context-dependent) 

• Amortized complexity: 
• max total number of steps algorithm takes on M “most challenging” 

consecutive inputs, divided by M (i.e., divide the max total sum by M).



Beware!

• Worst case, Best case, amortized are ways to select a function 

• 𝑂, Ω, Θ are ways to compare functions

• You can mix and match!

• The following statements totally make sense!
• The worst case running time of my algorithm is Ω 𝑛3

• The best case running time of my algorithm is 𝑂 𝑛

• The best case running time of my algorithm is Θ 2𝑛
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