CSE 332 Autumn 2024 Lecture 3: Algorithm Analysis pt.2

Nathan Brunelle

http://www.cs.uw.edu/332

Running Time Analysis

- Units of "time"
 - Operations
 - Whichever operations we pick
- How do we express running time?
 - Function
 - Domain (input): size of the input
 - Range: count of operations

Worst Case Running Time Analysis

- If an algorithm has a worst case **running time** of f(n)
 - Among all possible size-n inputs, the "worst" one will do f(n) "operations"
 - f(n) gives the maximum count of **operations** needed from among all inputs of size n

Analysis Process From 123/143

- Count the number of "primitive chosen operations"
 - +, -, compare, arr[i], arr.length, etc.
 - Select the operation(s) which:
 - Is/are done the most
 - Is/are the most "expensive"
 - Is/are the most "important"
- Write that count as an expression using n (the input size)
- Put that expression into a "bucket" by ignoring constants and "non-dominant" terms, then put a O() around it.
 - $4n^2 + 8n 10$ ends up as $O(n^2)$
 - $\frac{1}{2}n + 80$ ends up as O(n)

Worst Case Running Time – General Guide

- Add together the time of consecutive statements
- Loops: Sum up the time required through each iteration of the loop
 - If each takes the same time, then [time per loop × number of iterations]
- Conditionals: Sum together the time to check the condition and time of the slowest branch
- Function Calls: Time of the function's body
- Recursion: Solve a recurrence relation

Defining your running time function

- Worst-case complexity:
 - max number of steps algorithm takes on "most challenging" input
- Best-case complexity:
 - min number of steps algorithm takes on "easiest" input
- Average/expected complexity:
 - avg number of steps algorithm takes on random inputs (context-dependent)
- Amortized complexity:
 - max total number of steps algorithm takes on M "most challenging" consecutive inputs, divided by M (i.e., divide the max total sum by M).

Amortized Complexity Example - ArrayList

```
public void add(T value){
    if(data.length == size)
        resize();
    data[size] = value;
    size++;
private void resize(){
    T[] oldData = data;
    data = (T[]) new Object[data.length*2];
    for(int i = 0; i < oldData.length; i++)</pre>
        data[i] = oldData[i];
```

- What is the worst case running time of add?
 - Input size: size of "this"
 - Operations counted: indexing
 - O(n)

Amortized Complexity Example - ArrayList

```
public void add(T value){
    if(data.length == size)
        resize();
                             Every time we resize, we earn
    data[size] = value;
                             data.length more adds
    size++;
                             guaranteed to not resize!
private void resize(){
    T[] oldData = data;
    data = (T[]) new Object[data.length*2];
    for(int i = 0; i < oldData.length; i++)</pre>
        data[i] = oldData[i];
```

- Amortized Analysis Idea:
 - Suppose we have a program that in total does n adds.
 - How much time was spent "on average" across all n?
- Let c be the initial size of data
 - The first c adds take: c + c = 2c
 - The next 2c adds: 2c + 2c = 4c
 - The next 4c adds: 4c + 4c = 8c
 - Overall: $\frac{14c}{7c} = 2c$

Searching in a Sorted List

```
    5
    8
    13
    42
    75
    79
    88
    90
    95
    99

    0
    1
    2
    3
    4
    5
    6
    7
    8
    9
```

```
public static boolean contains(List<Integer> a, int k){
    for(int i=0; i< a.size(); i++){
        if (a.get(i) == k)
            return true;
    }
    return false;
}</pre>
```

Faster way?

Can you think of a faster algorithm to solve this problem?

Binary Search

```
public static boolean contains(List<Integer> a, int k){
    int start = 0;
    int end = a.size();
    while(start < end){</pre>
        int mid = start + (end-start)/2;
        if(a.get(mid) == k)
            return true;
        else if(a.get(mid) < k)</pre>
            start = mid+1;
        else
            end = mid;
    return false;
```

5	8	13	42	75	79	88	90	95	99
0	1	2	3	4	5	6	7	8	9

Why is this $\log_2 n$?

- In the beginning: end-start=n
- After 1 iteration: end-start= $\frac{n}{2}$
 - mid-start = (start+(end-start)/2)-start
 - end-mid = end-(start+(end-start)/2)
- Each iteration cuts the "gap" in half!
- We stop when the gap is 1

Comparing

Comparing Running Times

- Suppose I have these algorithms, all of which have the same input/output behavior:
 - Algorithm A's worst case running time is 10n + 900
 - Algorithm B's worst case running time is 100n 50
 - Algorithm C's worst case running time is $\frac{n^2}{100}$
- Which algorithm is best?

Asymptotic Notation

- O(g(n))
 - The **set of functions** with asymptotic behavior less than or equal to g(n)
 - Upper-bounded by a constant times g for large enough values n
 - $f \in O(g(n)) \equiv \exists c > 0. \exists n_0 > 0. \forall n \ge n_0. f(n) \le c \cdot g(n)$
- $\Omega(g(n))$
 - the set of functions with asymptotic behavior greater than or equal to g(n)
 - Lower-bounded by a constant times g for large enough values n
 - $f \in \Omega(g(n)) \equiv \exists c > 0. \exists n_0 > 0. \forall n \ge n_0. f(n) \ge c \cdot g(n)$
- $\Theta(g(n))$
 - "Tightly" within constant of g for large n
 - $\Omega(g(n)) \cap O(g(n))$

Idea of Θ

• x = y• $x \le y \land x \ge y$

- Show: $10n + 100 \in O(n^2)$
 - **Technique:** find values c>0 and $n_0>0$ such that $\forall n>n_0$. $10n+100\leq c\cdot n^2$
 - Proof:

- Show: $10n + 100 \in O(n^2)$
 - **Technique:** find values c>0 and $n_0>0$ such that $\forall n\geq n_0.$ $10n+100\leq c\cdot n^2$
 - **Proof:** Let c=10 and $n_0=6$. Show $\forall n \geq 6.10n+100 \leq 10n^2$ $10n+100 \leq 10n^2$
 - $\equiv n + 10 \le n^2$
 - $\equiv 10 \le n^2 n$
 - $\equiv 10 \le n(n-1)$

This is True because n(n-1) is strictly increasing and 6(6-1) > 10

- Show: $13n^2 50n \in \Omega(n^2)$
 - **Technique:** find values c>0 and $n_0>0$ such that $\forall n\geq n_0$. $13n^2-50n\geq c\cdot n^2$
 - Proof:
 - c =
 - $n_0 =$

- Show: $13n^2 50n \in \Omega(n^2)$
 - **Technique:** find values c>0 and $n_0>0$ such that $\forall n\geq n_0.$ $13n^2-50n\geq c\cdot n^2$
 - **Proof:** let c = 12 and $n_0 = 50$. Show $\forall n \ge 50.13n^2 50n \ge 12n^2$ $13n^2 50n \ge 12n^2$ $\equiv n^2 50n \ge 0$ $\equiv n^2 \ge 50n$ $\equiv n \ge 50$

This is certainly true $\forall n \geq 50$.

- Show: $n^2 \notin O(n)$
- Want to show that there does not exist a pair of c and n_0 such that $\forall n_0 > n$. $n^2 \le c \cdot n$

• To Show: $n^2 \notin O(n)$

Proof by Contradiction!

- Technique: Contradiction
- **Proof:** Assume $n^2 \in O(n)$. Then $\exists c, n_0 > 0$ s. t. $\forall n > n_0, n^2 \le cn$ Let us derive constant c. For all $n > n_0 > 0$, we know: $cn \ge n^2$, $c \ge n$.

Since c is lower bounded by n, c cannot be a constant and make this True.

Contradiction. Therefore $n^2 \notin O(n)$.

Gaining Intuition

- When doing asymptotic analysis of functions:
 - If multiple expressions are added together, ignore all but the "biggest"
 - If f(n) grows asymptotically faster than g(n), then $f(n) + g(n) \in \Theta(f(n))$
 - Ignore all multiplicative constants
 - $f(n) + c \in \Theta(f(n))$ for any constant $c \in \mathbb{R}$
 - Ignore bases of logarithms
 - Do NOT ignore:
 - Non-multiplicative and non-additive constants (e.g. in exponents, bases of exponents)
 - Logarithms themselves
- Examples:
 - 4n + 5
 - $0.5n\log n + 2n + 7$
 - $n^3 + 2^n + 3n$
 - $n\log(10n^2)$

More Examples

- Is each of the following True or False?
 - $4 + 3n \in O(n)$
 - $n + 2 \log n \in O(\log n)$
 - $\log n + 2 \in O(1)$
 - $n^{50} \in O(1.1^n)$
 - $3^n \in \Theta(2^n)$

Common Categories

- O(1) "constant"
- $O(\log n)$ "logarithmic"
- O(n) "linear"
- $O(n \log n)$ "log-linear"
- $O(n^2)$ "quadratic"
- $O(n^3)$ "cubic"
- $O(n^k)$ "polynomial"
- $O(k^n)$ "exponential"

Defining your running time function

- Worst-case complexity:
 - max number of steps algorithm takes on "most challenging" input
- Best-case complexity:
 - min number of steps algorithm takes on "easiest" input
- Average/expected complexity:
 - avg number of steps algorithm takes on random inputs (context-dependent)
- Amortized complexity:
 - max total number of steps algorithm takes on M "most challenging" consecutive inputs, divided by M (i.e., divide the max total sum by M).

Beware!

- Worst case, Best case, amortized are ways to select a function
- O, Ω , Θ are ways to compare functions
- You can mix and match!
- The following statements totally make sense!
 - The worst case running time of my algorithm is $\Omega(n^3)$
 - The best case running time of my algorithm is O(n)
 - The best case running time of my algorithm is $\Theta(2^n)$