CSE 332 Summer 2024
Lecture 2: Algorithm Analysis

pt.1

Nathan Brunelle
http://www.cs.uw.edu/332

http://www.cs.uw.edu/332

“Circular” Array — Queue Data Structure

front=0

5|18 |3 |4]7
0 1 2 3 4 5 6 7 8 9 back=5s

* Queue represented as an array of items
e A “front” index to indicate the oldest item in the queue

* A “back” index to indicate the most recent item in the queue
e Actually, the first “open” slot in the array

* enqueue Procedure:
* dequeue Procedure:
* isEmpty Procedure:

“Circular™ Array

* Intuitively, An array of values arranged in a “circle” rather than a line
* If you go beyond the last index, to wrap back around to O

front=0

back=5

“Circular” Array — Queue Data Structure

5 8 3 4

7

0 1 2 3

4 5 6

7 3 9

* Queue represented as an array of items

e A “front” index to indicate the oldest item in the queue
* A “back” index to indicate the most recent item in the queue

* enqueue Procedure:

* dequeue Procedure:

enqueue(x){

queue[back] = x;
back = (back + 1) % queue.length;

size++;

* isEmpty Procedure: isempty(;

}

return size==0;

dequeue(){

}

first = queue|[front];

front = (front + 1) % queue.length;

size--;
return first;

front=0

back=5

What if we run out of space?!

“Circular” Array — Queue Data Structure

front=0

5|18 |3 |4]7
0 1 2 3 4 5 6 7 8 9 back=5s

* Queue represented as an array of items
e A “front” index to indicate the oldest item in the queue

* A “back” index to indicate the most recent item in the queue
enqueue(x){
* enqueue Procedure: if (size == queue.length-1) {resize();}
queue[back] = x;
back = (back + 1) % queue.length;
size++;

d
« dequeue Procedure: } eaueuel)

first = queue|[front];

front = (front + 1) % queue.length;

size--;

. return first;

* isEmpty Procedure: isempty(;)
return size==0;

}

- s _‘.'.' \/
~,

RN/

< .
7

S
- 4.
~

Y

|
N

Warm up:
have a pile of string
have one end of the string in-hand
need to find the other end in the pile

How can | do this efficiently?

Algorithm ldeas

* |deas:

Algorithm Running Times

* How do we express running time?
* “linear” meaning the time matched the length of the yarn

e Units of “time”
* inches

* How to express efficiency?
* Function, lineart(n) = n

My Apnroach

End-of-Yarn Finding

1. Set aside the already-obtained “beginning”

2. If you see the end of the yarn, you’re done!

Repeat on
pile with end

4. Count the number of strands crossing the piles

5. Ifthe count is even, pile A contains the end, else pile B does

10

Why Do Resource Analysis?

* Allows us to compare algorithms, not implementations
* Using observations necessarily couples the algorithm with its implementation

My implementation on my computer takes more time than your
implementation on your computer. Do you have a better algorithm or
computer?

* We can predict an algorithm’s running time before implementing
* Understand where the bottlenecks are in our algorithm

Goals for Algorithm Analysis

* |dentify a function which maps the algorithm’s input size to a measure
of resources used
* Input of the function: sizes of the input
 Number of characters in a string, number of items in a list, number of pixels in an image

* Output of the function: counts of resources used

* Number of times the algorithm:
e Adds two numbers together
* does a > or < comparison

 Number of bytes of memory needed

* Important note: Make sure you know the “units” of your domain
(input size) and range (resource used)!

Analysis Process From 123/143

e Count the number of “primitive operations”
e +, -, compare, arr[i], arr.length, etc

* Write that count as an expression using n (the input size)

e Put that expression into a “bucket” by ignoring constants and “non-
dominant” terms, then put a O() around it.

* 4n? + 8n — 10 ends up as 0(n?)
. %n + 80 ends up as 0(n)
e n(n + 1) ends up as 0(n?)

Worst Case Analysis (in general)

* If an algorithm has a worst case resource complexity of f(n)
* Among all possible size-n inputs, the “worst” one will use f(n) “resources”
* f(n) gives the maximum count needed from among all inputs of size n

Worst Case Analysis (in general)

* If an algorithm has a worst case resource complexity of f(n)
* Among all possible size-n inputs, the “worst” one will use f(n) “resources”
* f(n) gives the maximum count needed from among all inputs of size n

Worst Case Running Time Analysis

* If an algorithm has a worst case running time of f(n)
* Among all possible size-n inputs, the “worst” one will do f(n) “operations”

* f(n) gives the maximum count of operations needed from among all inputs
of sizen

Worst Case Space Analysis

* If an algorithm has a worst case space complexity of f(n)

* Among all possible size-n inputs, the “worst” one will need f(n) “memory units”
(usually bits)

* f(n) gives the maximum number of bits needed from among all inputs of size n

myfunctionistny VWorst Case Running Time - Example

b=55+5;//1

c=b/3; //1 Questions to ask:
b=c+100; //1 What are the units of the input size?
for (i=0; i < n.size(); i++) {// 1, n times e # of items in the list
b++; // 1 What are the operations we’re counting?
} * Arithmetic ops (+-*/)
if(b%2==0){//1 For each line:
c++; // 1 * How many times will it run?
} * How long does it take to run?
else { * Does this change with different inputs?
for (i=0; i< n.size(); i++) {// 1, n times e Answer:
c++; /11 e 34+2n+1+4+2n=4n+4
} * 0(n)
}
return c;

}

Worst Case Running Time — Example 2
beAnnoying(List n){

Questions to ask:
List m = []; What are the units of the input size?
for (i=0; i < n.size(); i++){ // n times © #items
_ What are the operations we’re counting?

m.add(nli]); e Adding or printing
for (j=0; j< n.size(); j++){ // n times * Printing: 0(n?)
e For each line:

* How many times will it run?

} How long does it take to run?

} * Does this change with the input size?

print (“Hi, I'm annoying”); // 1

return;

Worst Case Running Time — General Guide

* Add together the time of consecutive statements

e Loops: Sum up the time required through each iteration of the loop
* If each takes the same time, then [time per loop X number of iterations]

* Conditionals: Sum together the time to check the condition and time
of the slowest branch

* Function Calls: Time of the function’s body
* Recursion: Solve a recurrence relation

Defining your running time function

* Worst-case complexity:
* max number of steps algorithm takes on “most challenging” input

* Best-case complexity:
* min number of steps algorithm takes on “easiest” input

* Average/expected complexity:
* avg number of steps algorithm takes on random inputs (context-dependent)

* Amortized complexity:

* max total number of steps algorithm takes on M “most challenging”
consecutive inputs, divided by M (i.e., divide the max total sum by M).

Amortized Complexity Example - ArrayList

public void add(T value){ What is the worst case running

if(data.length == size) time of add?
resize(); .) _ o
data[size] = value; * Input 5|.ze. size of thI'S |
size++; * Operations counted: indexing
} * 0(n)

private void resize(){
T[] oldData = data;
data = (T[]) new Object[data.length*2];
for(int i = 0; i < oldData.length; i++)
data[i] = oldData[i];

Amortized Complexity Example - ArrayList

public void add(T value){ e Amortized Analysis Idea:

if(data.length == si
if(data.leng size) * Suppose we have a program that

resize(); . . in total does n adds.
data[size] = value; Every time we resize, we earn . .,
cizett: data.length more adds e How much time was spent “on
’ guaranteed to not resize! average” across all n?
}
private void resize(){ * Let ¢ be the initial size of data
T[] oldbata = data; * The first ¢ adds take: ¢ + ¢ = 2c¢
data = (T[]) new Object[data.length*2]; e The next 2¢ adds: 2¢ + 2¢ = 4c

for(int i = 0; i < oldData.length; i++) e The next 4c adds: 4c + 4c = 8¢
data[i] = oldData[i]; 14c |

} e Qverall:— = 2c
7¢

	Slide 1: CSE 332 Summer 2024 Lecture 2: Algorithm Analysis pt.1
	Slide 2: “Circular” Array – Queue Data Structure
	Slide 3: “Circular” Array
	Slide 4: “Circular” Array – Queue Data Structure
	Slide 5: “Circular” Array – Queue Data Structure
	Slide 6
	Slide 7: Algorithm Ideas
	Slide 8: Algorithm Running Times
	Slide 9: My Approach
	Slide 10: End-of-Yarn Finding
	Slide 11: Why Do Resource Analysis?
	Slide 12: Goals for Algorithm Analysis
	Slide 13: Analysis Process From 123/143
	Slide 14: Worst Case Analysis (in general)
	Slide 15: Worst Case Analysis (in general)
	Slide 16: Worst Case Running Time Analysis
	Slide 17: Worst Case Space Analysis
	Slide 18: Worst Case Running Time - Example
	Slide 19: Worst Case Running Time – Example 2
	Slide 20: Worst Case Running Time – General Guide
	Slide 21: Defining your running time function
	Slide 22: Amortized Complexity Example - ArrayList
	Slide 23: Amortized Complexity Example - ArrayList

