
CSE 332 Summer 2024
Lecture 2: Algorithm Analysis

pt.1
Nathan Brunelle

http://www.cs.uw.edu/332

http://www.cs.uw.edu/332

4 5 6 7321 80 9

“Circular” Array – Queue Data Structure

• Queue represented as an array of items
• A “front” index to indicate the oldest item in the queue

• A “back” index to indicate the most recent item in the queue
• Actually, the first “open” slot in the array

• enqueue Procedure:

• dequeue Procedure:

• isEmpty Procedure:

74385
front=0

back=5

“Circular” Array

• Intuitively, An array of values arranged in a “circle” rather than a line
• If you go beyond the last index, to wrap back around to 0

4 5 6 7321 80 9

74385

0

1

2

3

45

6

7

8

9

5

8

3

4

7

front=0

back=5

…

…

…

…

…

4 5 6 7321 80 9

“Circular” Array – Queue Data Structure

• Queue represented as an array of items
• A “front” index to indicate the oldest item in the queue

• A “back” index to indicate the most recent item in the queue

• enqueue Procedure:

• dequeue Procedure:

• isEmpty Procedure:

74385
front=0

back=5

enqueue(x){
 queue[back] = x;
 back = (back + 1) % queue.length;
 size++;
} dequeue(){

 first = queue[front];
 front = (front + 1) % queue.length;
 size--;
 return first;
}

isEmpty(){
 return size== 0;
}

What if we run out of space?!

4 5 6 7321 80 9

“Circular” Array – Queue Data Structure

• Queue represented as an array of items
• A “front” index to indicate the oldest item in the queue

• A “back” index to indicate the most recent item in the queue

• enqueue Procedure:

• dequeue Procedure:

• isEmpty Procedure:

74385
front=0

back=5

enqueue(x){
 if (size == queue.length-1) {resize();}
 queue[back] = x;
 back = (back + 1) % queue.length;
 size++;
}

dequeue(){
 first = queue[front];
 front = (front + 1) % queue.length;
 size--;
 return first;
}isEmpty(){

 return size== 0;
}

Warm up:
• I have a pile of string
• I have one end of the string in-hand
• I need to find the other end in the pile
• How can I do this efficiently?

Algorithm Ideas

7

• Ideas:

Algorithm Running Times

• How do we express running time?
• “linear” meaning the time matched the length of the yarn

• Units of “time”
• inches

• How to express efficiency?
• Function, linear 𝑡 𝑛 = 𝑛

8

My Approach

9

End-of-Yarn Finding

1. Set aside the already-obtained “beginning”

2. If you see the end of the yarn, you’re done!

3. Separate the pile of yarn into 2 piles, note which connects to
the beginning (call it pile A, the other pile B)

4. Count the number of strands crossing the piles

5. If the count is even, pile A contains the end, else pile B does

Repeat on
pile with end

A
B

10

Why Do Resource Analysis?

• Allows us to compare algorithms, not implementations
• Using observations necessarily couples the algorithm with its implementation

• My implementation on my computer takes more time than your
implementation on your computer. Do you have a better algorithm or
computer?

• We can predict an algorithm’s running time before implementing

• Understand where the bottlenecks are in our algorithm

Goals for Algorithm Analysis

• Identify a function which maps the algorithm’s input size to a measure
of resources used
• Input of the function: sizes of the input

• Number of characters in a string, number of items in a list, number of pixels in an image

• Output of the function: counts of resources used
• Number of times the algorithm:

• Adds two numbers together

• does a > or < comparison

• Number of bytes of memory needed

• Important note: Make sure you know the “units” of your domain
(input size) and range (resource used)!

Analysis Process From 123/143

• Count the number of “primitive operations”
• +, -, compare, arr[i], arr.length, etc

• Write that count as an expression using 𝑛 (the input size)

• Put that expression into a “bucket” by ignoring constants and “non-
dominant” terms, then put a 𝑂() around it.
• 4𝑛2 + 8𝑛 − 10 ends up as 𝑂 𝑛2

•
1

2
𝑛 + 80 ends up as 𝑂 𝑛

• 𝑛(𝑛 + 1) ends up as 𝑂 𝑛2

Worst Case Analysis (in general)

• If an algorithm has a worst case resource complexity of 𝑓(𝑛)
• Among all possible size-𝑛 inputs, the “worst” one will use 𝑓(𝑛) “resources”

• 𝑓(𝑛) gives the maximum count needed from among all inputs of size 𝑛

Worst Case Analysis (in general)

• If an algorithm has a worst case resource complexity of 𝑓(𝑛)
• Among all possible size-𝑛 inputs, the “worst” one will use 𝑓(𝑛) “resources”

• 𝑓(𝑛) gives the maximum count needed from among all inputs of size 𝑛

Worst Case Running Time Analysis

• If an algorithm has a worst case running time of 𝑓(𝑛)
• Among all possible size-𝑛 inputs, the “worst” one will do 𝑓(𝑛) “operations”

• 𝑓(𝑛) gives the maximum count of operations needed from among all inputs
of size 𝑛

Worst Case Space Analysis

• If an algorithm has a worst case space complexity of 𝑓(𝑛)
• Among all possible size-𝑛 inputs, the “worst” one will need 𝑓(𝑛) “memory units”

(usually bits)

• 𝑓(𝑛) gives the maximum number of bits needed from among all inputs of size 𝑛

Worst Case Running Time - ExamplemyFunction(List n){

 b = 55 + 5; // 1

 c = b / 3; // 1

 b = c + 100; // 1

 for (i = 0; i < n.size(); i++) { // 1, n times

 b++; // 1

 }

 if (b % 2 == 0) { // 1

 c++; // 1

 }

 else {

 for (i = 0; i < n.size(); i++) { // 1, n times

 c++; // 1

 }

 }

 return c;

}

Questions to ask:
• What are the units of the input size?

• # of items in the list
• What are the operations we’re counting?

• Arithmetic ops (+-*/)
• For each line:

• How many times will it run?
• How long does it take to run?
• Does this change with different inputs?

• Answer:
• 3 + 2𝑛 + 1 + 2𝑛 = 4𝑛 + 4
• 𝑂(𝑛)

Worst Case Running Time – Example 2
beAnnoying(List n){

 List m = [];

 for (i=0; i < n.size(); i++){ // n times

 m.add(n[i]);

 for (j=0; j< n.size(); j++){ // n times

 print (“Hi, I’m annoying”); // 1

 }

 }

 return;

}

Questions to ask:
• What are the units of the input size?

• # items
• What are the operations we’re counting?

• Adding or printing
• Printing: 𝑂 𝑛2

• For each line:
• How many times will it run?
• How long does it take to run?
• Does this change with the input size?

Worst Case Running Time – General Guide

• Add together the time of consecutive statements

• Loops: Sum up the time required through each iteration of the loop
• If each takes the same time, then [time per loop × number of iterations]

• Conditionals: Sum together the time to check the condition and time
of the slowest branch

• Function Calls: Time of the function’s body

• Recursion: Solve a recurrence relation

Defining your running time function

• Worst-case complexity:
• max number of steps algorithm takes on “most challenging” input

• Best-case complexity:
• min number of steps algorithm takes on “easiest” input

• Average/expected complexity:
• avg number of steps algorithm takes on random inputs (context-dependent)

• Amortized complexity:
• max total number of steps algorithm takes on M “most challenging”

consecutive inputs, divided by M (i.e., divide the max total sum by M).

Amortized Complexity Example - ArrayList

• What is the worst case running
time of add?
• Input size: size of “this”

• Operations counted: indexing

• 𝑂 𝑛

public void add(T value){

if(data.length == size)

resize();

data[size] = value;

size++;

}

private void resize(){

 T[] oldData = data;

 data = (T[]) new Object[data.length*2];

 for(int i = 0; i < oldData.length; i++)

 data[i] = oldData[i];

}

public void add(T value){

if(data.length == size)

resize();

data[size] = value;

size++;

}

private void resize(){

 T[] oldData = data;

 data = (T[]) new Object[data.length*2];

 for(int i = 0; i < oldData.length; i++)

 data[i] = oldData[i];

}

Amortized Complexity Example - ArrayList

• Amortized Analysis Idea:
• Suppose we have a program that

in total does 𝑛 adds.

• How much time was spent “on
average” across all 𝑛?

• Let 𝑐 be the initial size of data
• The first 𝑐 adds take: 𝑐 + 𝑐 = 2𝑐

• The next 2𝑐 adds: 2𝑐 + 2𝑐 = 4𝑐

• The next 4𝑐 adds: 4𝑐 + 4𝑐 = 8𝑐

• Overall:
14𝑐

7𝑐
= 2𝑐

Every time we resize, we earn
data.length more adds
guaranteed to not resize!

	Slide 1: CSE 332 Summer 2024 Lecture 2: Algorithm Analysis pt.1
	Slide 2: “Circular” Array – Queue Data Structure
	Slide 3: “Circular” Array
	Slide 4: “Circular” Array – Queue Data Structure
	Slide 5: “Circular” Array – Queue Data Structure
	Slide 6
	Slide 7: Algorithm Ideas
	Slide 8: Algorithm Running Times
	Slide 9: My Approach
	Slide 10: End-of-Yarn Finding
	Slide 11: Why Do Resource Analysis?
	Slide 12: Goals for Algorithm Analysis
	Slide 13: Analysis Process From 123/143
	Slide 14: Worst Case Analysis (in general)
	Slide 15: Worst Case Analysis (in general)
	Slide 16: Worst Case Running Time Analysis
	Slide 17: Worst Case Space Analysis
	Slide 18: Worst Case Running Time - Example
	Slide 19: Worst Case Running Time – Example 2
	Slide 20: Worst Case Running Time – General Guide
	Slide 21: Defining your running time function
	Slide 22: Amortized Complexity Example - ArrayList
	Slide 23: Amortized Complexity Example - ArrayList

