CSE 332 Autumn 2024 Lecture 26: Minimum Spanning Trees

Nathan Brunelle

<http://www.cs.uw.edu/332>

Definition: Tree

A connected graph with no cycles

Note: A tree does not need a root, but they often do!

Definition: Tree

A connected graph with no cycles

Definition: Spanning Tree A Tree $\mathbf{T} = (V_T, E_T)$ which connects ("spans") all the nodes in a graph $G = (V, E)$

root node and

rearrange tree

How many edges does *have?*

Any set of V-1 edges in the graph that doesn't have any cycles is guaranteed to be a spanning tree!

4 Any set of V-1 edges that connects all the nodes in the graph is guaranteed to be a spanning tree!

Definition: Minimum Spanning Tree

A Tree $\mathbf{T} = (V_T, E_T)$ which connects ("spans") all the nodes in a graph $G = (V, E)$, that has minimal cost

$$
Cost(T) = \sum_{e \in E_T} w(e)
$$

Dijkstra's Algorithm

```
int dijkstras(graph, start, end){
   PQ = new minheap();PQ.insert(0, start); // priority=0, value=start
   start.distance = 0;
   while (!PQ.isEmpty){
            current = PQ.extractmin();
            if (current.known){ continue;}
            current.known = true;
            for (neighbor : current.neighbors){
                     if (!neighbor.known){
                              new_dist = current.distance + weight(current,neighbor);
                              if(neighbor.dist != \infty){ PQ.insert(new_dist, neighbor);}
                              else if (new_dist < neighbor. distance){
                                       neighbor. distance = new_dist;
                                       PQ.decreaseKey(new_dist,neighbor); }
                     }
            }
   }
   return end.distance;
                                                                   12
                                                                  0
                                                                        2
```


Prim's Algorithm

```
int prims(graph, start, end){
   PQ = new minheap();PQ.insert(0, start); // priority=0, value=start
   start.distance = 0;
   while (!PQ.isEmpty){
            current = PQ.extractmin();
            if (current.known){ continue;}
            current.known = true;
            for (neighbor : current.neighbors){
                     if (!neighbor.known){
                              new_dist = weight(current,neighbor);
                              if(neighbor.dist != \infty){ PQ.insert(new_dist, neighbor);}
                              else if (new_dist < neighbor. distance){
                                       neighbor. distance = new_dist;
                                       PQ.decreaseKey(new_dist,neighbor); }
                     }
            }
   }
   return end.distance;
                                                                   12
                                                                           9
                                                                  0
                                                                        2
```


Dijkstra's Algorithm

```
int dijkstras(graph, start, end){
   PQ = new minheap();PQ.insert(0, start); // priority=0, value=start
   start.distance = 0;
   while (!PQ.isEmpty){
            current = PQ.extractmin();
            if (current.known){ continue;}
            current.known = true;
            for (neighbor : current.neighbors){
                     if (!neighbor.known){
                              new_dist = current.distance + weight(current,neighbor);
                              if(neighbor.dist != \infty){ PQ.insert(new_dist, neighbor);}
                              else if (new_dist < neighbor. distance){
                                       neighbor. distance = new_dist;
                                       PQ.decreaseKey(new_dist,neighbor); }
                     }
            }
   }
   return end.distance;
```


Prim's Algorithm

```
int prims(graph, start, end){
   PQ = new minheap();PQ.insert(0, start); // priority=0, value=start
   start.distance = 0;
   while (!PQ.isEmpty){
            current = PQ.extractmin();
            if (current.known){ continue;}
            current.known = true;
            for (neighbor : current.neighbors){
                     if (!neighbor.known){
                              new_dist = weight(current,neighbor);
                              if(neighbor.dist != \infty){ PQ.insert(new_dist, neighbor);}
                              else if (new_dist < neighbor. distance){
                                       neighbor. distance = new_dist;
                                       PQ.decreaseKey(new_dist,neighbor); }
                     }
            }
   }
   return end.distance;
```


Why does this work?

- To argue that Prim's produces a minimum spanning tree:
	- First we show that Prim's produces a spanning tree
		- Show two of:
			- Connected
			- Acyclic
			- $V 1$ edges
	- Then we show that it is a minimum spanning tree
		- Show all edges chosen are MST edges
			- Using the "Cut Theorem"

Definition: Cut

A Cut of graph $G = (V, E)$ is a partition of the nodes into two sets, S and $V - S$

Edge $(v_1, v_2) \in E$ crosses a cut if $v_1 \in S$ and $v_2 \in V - S$ (or opposite), e.g. (A, C)

A set of edges R Respects a cut if no edges cross the cut e.g. $R = \{(A, B), (E, G), (F, G)\}\$

16

If a set of edges A is a subset of a minimum spanning tree T, let $(S, V S$) be any cut which A respects. Let e be the least-weight edge which crosses $(S, V - S)$. A \cup {e} is also a subset of a minimum spanning tree.

If a set of edges \overline{A} is a subset of a minimum spanning tree \overline{T} , let $(S, V S$) be any cut which A respects. Let e be the least-weight edge which crosses $(S, V - S)$. A \cup {e} is also a subset of a minimum spanning tree.

If a set of edges A is a subset of a minimum spanning tree T, let $(S, V \overline{S}$) be any cut which \overline{A} respects. Let e be the least-weight edge which crosses $(S, V - S)$. A \cup {e} is also a subset of a minimum spanning tree.

If a set of edges A is a subset of a minimum spanning tree T, let $(S, V S$) be any cut which A respects. Let e be the least-weight edge which crosses $(S, V - S)$. $A \cup \{e\}$ is also a subset of a minimum spanning tree.

If a set of edges A is a subset of a minimum spanning tree T, let $(S, V S$) be any cut which A respects. Let e be the least-weight edge which crosses $(S, V - S)$. A U {e} is also a subset of a minimum spanning tree.

Proof of Prim's Algorithm

Start with an empty tree A

Repeat $V - 1$ times:

Add the min-weight edge that connects to a node not currently in the tree

Proof: By Structural Induction

Suppose we have some arbitrary set of edges \overline{A} that Prims's has already selected to include in the MST. $e = (E, G)$ is the edge Prims's selects to add next

We know that there cannot exist a path from E to G using only edges in A because G has not been removed from the priority queue

We can cut the graph therefore into 2 disjoint sets:

- Nodes that have been removed from the priority queue
- All other nodes

22 e is the minimum cost edge that crosses this cut, so by the Cut Theorem, Prim's only selects MST edges!

General MST Algorithm

Start with an empty tree A Repeat $V - 1$ times: Pick a cut $(S, V - S)$ which A respects (typically implicitly) Add the min-weight edge which crosses $(S, V - S)$


```
Prim's Algorithm
Start with an empty tree ARepeat V - 1 times:
      Pick a cut (S, V - S) which A respects
      Add the min-weight edge which crosses (S, V - S)
```
 \overline{S} is all endpoint of edges in \overline{A}

 e is the min-weight edge that grows the tree

Correctness of Kruskal's Algorithm

- It's sufficient to just show that it follows the template of our "General MST Algorithm"
	- Show that for every edge chosen, it is the least-weight edge which crosses some cut that respects all already-chosen edges.

Proof of Kruskal's Algorithm

Start with an empty tree \vec{A} Repeat $V - 1$ times: Add the min-weight edge that doesn't cause a cycle

Proof: Suppose we have some arbitrary set of edges \vec{A} that Kruskal's has already selected to include in the MST. $e = (F, G)$ is the edge Kruskal's selects to add next

We know that there cannot exist a path from F to G using only edges in \vec{A} because \vec{e} does not cause a cycle

We can cut the graph therefore into 2 disjoint sets:

- nodes reachable from G using edges in \vec{A}
- All other nodes

 e is the minimum cost edge that crosses this cut, so by the Cut Theorem, Kruskal's is optimal!

Kruskal's Algorithm Runtime

Start with an empty tree A

Repeat $V - 1$ times:

Add the min-weight edge that doesn't

cause a cycle

Keep edges in a Disjoint-set data structure (very fancy) $O(E \log V)$

