CSE 332 Autumn 2024 Lecture 26: Minimum Spanning Trees

Nathan Brunelle

http://www.cs.uw.edu/332

Definition: Tree

A connected graph with no cycles

Note: A tree does not need a root, but they often do!

Definition: Tree

A connected graph with no cycles

Definition: Spanning Tree

A Tree $T = (V_T, E_T)$ which connects ("spans") all the nodes in a graph G = (V, E)

Any set of V-1 edges in the graph that doesn't have any cycles is guaranteed to be a spanning tree!

Any set of V-1 edges that connects all the nodes in the graph is guaranteed to be a spanning tree!

Definition: Minimum Spanning Tree

A Tree $T = (V_T, E_T)$ which connects ("spans") all the nodes in a graph G = (V, E), that has minimal cost

$$Cost(T) = \sum_{e \in E_T} w(e)$$

Pick a start node

Repeat V-1 times:

Prim's Algorithm

Start with an empty tree A

Pick a start node

Repeat V-1 times:

Keep edges in a Heap $O(E \log V)$

Dijkstra's Algorithm

```
int dijkstras(graph, start, end){
PQ = new minheap();
PQ.insert(0, start); // priority=0, value=start
start.distance = 0;
while (!PQ.isEmpty){
         current = PQ.extractmin();
         if (current.known){ continue;}
         current.known = true;
         for (neighbor : current.neighbors){
                  if (!neighbor.known){
                           new_dist = current.distance + weight(current,neighbor);
                           if(neighbor.dist != \infty){ PQ.insert(new_dist, neighbor);}
                           else if (new_dist < neighbor. distance){</pre>
                                    neighbor. distance = new_dist;
                                    PQ.decreaseKey(new_dist,neighbor); }
return end.distance;
```


Prim's Algorithm

```
int prims(graph, start, end){
PQ = new minheap();
PQ.insert(0, start); // priority=0, value=start
start.distance = 0;
while (!PQ.isEmpty){
         current = PQ.extractmin();
         if (current.known){ continue;}
         current.known = true;
         for (neighbor : current.neighbors){
                  if (!neighbor.known){
                           new_dist = weight(current,neighbor);
                           if(neighbor.dist != \infty){ PQ.insert(new_dist, neighbor);}
                           else if (new_dist < neighbor. distance){</pre>
                                    neighbor. distance = new_dist;
                                    PQ.decreaseKey(new_dist,neighbor); }
return end.distance;
```


Dijkstra's Algorithm

```
int dijkstras(graph, start, end){
PQ = new minheap();
PQ.insert(0, start); // priority=0, value=start
start.distance = 0;
while (!PQ.isEmpty){
         current = PQ.extractmin();
         if (current.known){ continue;}
         current.known = true;
         for (neighbor : current.neighbors){
                  if (!neighbor.known){
                           new dist = current.distance + weight(current,neighbor);
                           if(neighbor.dist != \infty){ PQ.insert(new_dist, neighbor);}
                           else if (new_dist < neighbor. distance){</pre>
                                    neighbor. distance = new_dist;
                                    PQ.decreaseKey(new_dist,neighbor); }
return end.distance;
```

Prim's Algorithm

```
int prims(graph, start, end){
PQ = new minheap();
PQ.insert(0, start); // priority=0, value=start
start.distance = 0;
while (!PQ.isEmpty){
         current = PQ.extractmin();
         if (current.known){ continue;}
         current.known = true;
         for (neighbor : current.neighbors){
                  if (!neighbor.known){
                           new_dist = weight(current,neighbor);
                           if(neighbor.dist != \infty){ PQ.insert(new_dist, neighbor);}
                           else if (new_dist < neighbor. distance){</pre>
                                    neighbor. distance = new_dist;
                                    PQ.decreaseKey(new_dist,neighbor); }
return end.distance;
```


Why does this work?

- To argue that Prim's produces a minimum spanning tree:
 - First we show that Prim's produces a spanning tree
 - Show two of:
 - Connected
 - Acyclic
 - V-1 edges
 - Then we show that it is a minimum spanning tree
 - Show all edges chosen are MST edges
 - Using the "Cut Theorem"

Definition: Cut

A Cut of graph G = (V, E) is a partition of the nodes into two sets, S and V - S

Edge $(v_1, v_2) \in E$ crosses a cut if $v_1 \in S$ and $v_2 \in V - S$ (or opposite), e.g. (A, C)

A set of edges R Respects a cut if no edges cross the cut e.g. $R = \{(A, B), (E, G), (F, G)\}$

Proof of Prim's Algorithm

Start with an empty tree ARepeat V-1 times:

Add the min-weight edge that connects to a node not currently in the tree

Proof: By Structural Induction

Suppose we have some arbitrary set of edges A that Prims's has already selected to include in the MST. e = (E, G) is the edge Prims's selects to add next

We know that there cannot exist a path from E to G using only edges in A because G has not been removed from the priority queue

We can cut the graph therefore into 2 disjoint sets:

- Nodes that have been removed from the priority queue
- All other nodes

e is the minimum cost edge that crosses this cut,so by the Cut Theorem, Prim's only selects MST edges!

General MST Algorithm

Start with an empty tree ARepeat V-1 times:

> Pick a cut (S, V - S) which A respects (typically implicitly) Add the min-weight edge which crosses (S, V - S)

Prim's Algorithm

Start with an empty tree A

Repeat V-1 times:

Pick a cut (S, V - S) which A respects

Add the min-weight edge which crosses (S, V - S)

- S is all endpoint of edges in A
- e is the min-weight edge that grows the tree

Correctness of Kruskal's Algorithm

- It's sufficient to just show that it follows the template of our "General MST Algorithm"
 - Show that for every edge chosen, it is the least-weight edge which crosses some cut that respects all already-chosen edges.

Proof of Kruskal's Algorithm

Start with an empty tree A Repeat V-1 times:

Add the min-weight edge that doesn't cause a cycle

Proof: Suppose we have some arbitrary set of edges A that Kruskal's has already selected to include in the MST. e = (F, G) is the edge Kruskal's selects to add next

We know that there cannot exist a path from F to G using only edges in A because e does not cause a cycle

We can cut the graph therefore into 2 disjoint sets:

- nodes reachable from G using edges in A
- All other nodes

e is the minimum cost edge that crosses this cut, so by the Cut Theorem, Kruskal's is optimal!

Kruskal's Algorithm Runtime

Start with an empty tree ARepeat V-1 times:

Add the min-weight edge that doesn't cause a cycle

Keep edges in a Disjoint-set data structure (very fancy) $O(E \log V)$