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Definition: Tree
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A connected graph with no cycles
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Note: A tree does not need 
a root, but they often do!



Definition: Tree
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Pick some arbitrary 
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Definition: Spanning Tree
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A Tree 𝑻 = (𝑉𝑇 , 𝐸𝑇) which connects (“spans”) 
all the nodes in a graph 𝐺 = (𝑉, 𝐸)

How many edges does 𝑇 have?

𝑉 − 1

Any set of V-1 edges in the graph that 
doesn’t have any cycles is guaranteed 
to be a spanning tree!

Any set of V-1 edges that connects all 
the nodes in the graph is guaranteed to 
be a spanning tree!
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root node and 
rearrange tree



Definition: Minimum Spanning Tree
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A Tree 𝑻 = (𝑉𝑇 , 𝐸𝑇) which connects (“spans”) 
all the nodes in a graph 𝐺 = (𝑉, 𝐸), that has 
minimal cost

𝐶𝑜𝑠𝑡 𝑇 = ෍

𝑒∈𝐸𝑇

𝑤(𝑒)
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Prim’s Algorithm
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Start with an empty tree 𝐴
Pick a start node
Repeat 𝑉 − 1 times:
 Add the min-weight edge which connects to node 
  in 𝐴 with a node not in 𝐴
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Prim’s Algorithm
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Start with an empty tree 𝐴
Pick a start node
Repeat 𝑉 − 1 times:
 Add the min-weight edge which connects to node 
  in 𝐴 with a node not in 𝐴
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Prim’s Algorithm
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Start with an empty tree 𝐴
Pick a start node
Repeat 𝑉 − 1 times:
 Add the min-weight edge which connects to node 
  in 𝐴 with a node not in 𝐴
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Prim’s Algorithm
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Start with an empty tree 𝐴
Pick a start node
Repeat 𝑉 − 1 times:
 Add the min-weight edge which connects to node 
  in 𝐴 with a node not in 𝐴
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Prim’s Algorithm
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Keep edges in a Heap
𝑂 𝐸 log 𝑉

Start with an empty tree 𝐴
Pick a start node
Repeat 𝑉 − 1 times:
 Add the min-weight edge which connects to node 
  in 𝐴 with a node not in 𝐴
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Dijkstra’s Algorithm
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int dijkstras(graph, start, end){
 PQ = new minheap();
 PQ.insert(0, start);  // priority=0, value=start
 start.distance = 0;
 while (!PQ.isEmpty){
  current = PQ.extractmin();
  if (current.known){ continue;}
  current.known = true;
  for (neighbor : current.neighbors){
   if (!neighbor.known){
    new_dist = current.distance + weight(current,neighbor);
    if(neighbor.dist != ∞){ PQ.insert(new_dist, neighbor);}
    else if (new_dist < neighbor. distance){
     neighbor. distance = new_dist;
     PQ.decreaseKey(new_dist,neighbor); }
   }
  }
 }
 return end.distance;
}
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Prim’s Algorithm
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int prims(graph, start, end){
 PQ = new minheap();
 PQ.insert(0, start);  // priority=0, value=start
 start.distance = 0;
 while (!PQ.isEmpty){
  current = PQ.extractmin();
  if (current.known){ continue;}
  current.known = true;
  for (neighbor : current.neighbors){
   if (!neighbor.known){
    new_dist = weight(current,neighbor);
    if(neighbor.dist != ∞){ PQ.insert(new_dist, neighbor);}
    else if (new_dist < neighbor. distance){
     neighbor. distance = new_dist;
     PQ.decreaseKey(new_dist,neighbor); }
   }
  }
 }
 return end.distance;
}
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Dijkstra’s Algorithm
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int dijkstras(graph, start, end){
 PQ = new minheap();
 PQ.insert(0, start);  // priority=0, value=start
 start.distance = 0;
 while (!PQ.isEmpty){
  current = PQ.extractmin();
  if (current.known){ continue;}
  current.known = true;
  for (neighbor : current.neighbors){
   if (!neighbor.known){
    new_dist = current.distance + weight(current,neighbor);
    if(neighbor.dist != ∞){ PQ.insert(new_dist, neighbor);}
    else if (new_dist < neighbor. distance){
     neighbor. distance = new_dist;
     PQ.decreaseKey(new_dist,neighbor); }
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  }
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 return end.distance;
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Prim’s Algorithm
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int prims(graph, start, end){
 PQ = new minheap();
 PQ.insert(0, start);  // priority=0, value=start
 start.distance = 0;
 while (!PQ.isEmpty){
  current = PQ.extractmin();
  if (current.known){ continue;}
  current.known = true;
  for (neighbor : current.neighbors){
   if (!neighbor.known){
    new_dist = weight(current,neighbor);
    if(neighbor.dist != ∞){ PQ.insert(new_dist, neighbor);}
    else if (new_dist < neighbor. distance){
     neighbor. distance = new_dist;
     PQ.decreaseKey(new_dist,neighbor); }
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  }
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Why does this work?

• To argue that Prim’s produces a minimum spanning tree:
• First we show that Prim’s produces a spanning tree

• Show two of:
• Connected

• Acyclic

• 𝑉 − 1 edges

• Then we show that it is a minimum spanning tree
• Show all edges chosen are MST edges

• Using the “Cut Theorem”



Definition: Cut
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A Cut of graph 𝐺 = (𝑉, 𝐸) is a partition of the 
nodes into two sets,  𝑆 and 𝑉 − 𝑆
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𝑆

Edge 𝑣1, 𝑣2 ∈ 𝐸 crosses a 
cut if 𝑣1 ∈ 𝑆 and 𝑣2 ∈ 𝑉 − 𝑆 
(or opposite), e.g. (𝐴, 𝐶) 

A set of edges 𝑅 Respects a cut 
if no edges cross the cut
e.g. 𝑅 = { 𝐴, 𝐵 , 𝐸, 𝐺 , 𝐹, 𝐺 }



Cut Theorem

If a set of edges 𝐴 is a subset of a minimum spanning tree 𝑇, let (𝑆, 𝑉 −
𝑆) be any cut which 𝐴 respects. Let 𝑒 be the least-weight edge which 
crosses (𝑆, 𝑉 − 𝑆). 𝐴 ∪ {𝑒} is also a subset of a minimum spanning 
tree.
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Cut Theorem

If a set of edges 𝐴 is a subset of a minimum spanning tree 𝑇, let (𝑆, 𝑉 −
𝑆) be any cut which 𝐴 respects. Let 𝑒 be the least-weight edge which 
crosses (𝑆, 𝑉 − 𝑆). 𝐴 ∪ {𝑒} is also a subset of a minimum spanning 
tree.
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Cut Theorem

If a set of edges 𝐴 is a subset of a minimum spanning tree 𝑇, let (𝑆, 𝑉 −
𝑆) be any cut which 𝐴 respects. Let 𝑒 be the least-weight edge which 
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Cut Theorem

If a set of edges 𝐴 is a subset of a minimum spanning tree 𝑇, let (𝑆, 𝑉 −
𝑆) be any cut which 𝐴 respects. Let 𝑒 be the least-weight edge which 
crosses (𝑆, 𝑉 − 𝑆). 𝐴 ∪ {𝑒} is also a subset of a minimum spanning 
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Cut Theorem

If a set of edges 𝐴 is a subset of a minimum spanning tree 𝑇, let (𝑆, 𝑉 −
𝑆) be any cut which 𝐴 respects. Let 𝑒 be the least-weight edge which 
crosses (𝑆, 𝑉 − 𝑆). 𝐴 ∪ {𝑒} is also a subset of a minimum spanning 
tree.
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Proof of Prim’s Algorithm

22

Start with an empty tree 𝐴
Repeat 𝑉 − 1 times:
 Add the min-weight edge that connects 
 to a node not currently in the tree

𝑆

Proof: By Structural Induction
Suppose we have some arbitrary set of edges 𝐴 
that Prims’s has already selected to include in 
the MST. 𝑒 = (𝐸, 𝐺) is the edge Prims’s selects 
to add next

We know that there cannot exist a path from 
𝐸 to G using only edges in 𝐴 because 𝐺 has not 
been removed from the priority queue

We can cut the graph therefore into 2 disjoint 
sets: 
• Nodes that have been removed from the 

priority queue
• All other nodes

𝑒 is the minimum cost edge that crosses this cut, 
so by the Cut Theorem, Prim’s only selects MST 
edges!
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General MST Algorithm
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Start with an empty tree 𝐴
Repeat 𝑉 − 1 times:
 Pick a cut (𝑆, 𝑉 − 𝑆) which 𝐴 respects (typically implicitly)
 Add the min-weight edge which crosses (𝑆, 𝑉 − 𝑆)



Prim’s Algorithm
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Start with an empty tree 𝐴
Repeat 𝑉 − 1 times:
 Pick a cut (𝑆, 𝑉 − 𝑆) which 𝐴 respects
 Add the min-weight edge which crosses (𝑆, 𝑉 − 𝑆)

𝑆 is all endpoint of edges in 𝐴
𝑒 is the min-weight edge that grows the tree



Kruskal’s Algorithm
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Start with an empty tree 𝐴
Add to 𝐴 the lowest-weight edge that does not 
create a cycle
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Kruskal’s Algorithm
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Start with an empty tree 𝐴
Add to 𝐴 the lowest-weight edge that does not 
create a cycle
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Kruskal’s Algorithm
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Start with an empty tree 𝐴
Add to 𝐴 the lowest-weight edge that does not 
create a cycle
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Kruskal’s Algorithm
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Start with an empty tree 𝐴
Add to 𝐴 the lowest-weight edge that does not 
create a cycle
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Kruskal’s Algorithm
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Start with an empty tree 𝐴
Add to 𝐴 the lowest-weight edge that does not 
create a cycle
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Kruskal’s Algorithm
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Start with an empty tree 𝐴
Add to 𝐴 the lowest-weight edge that does not 
create a cycle
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Correctness of Kruskal’s Algorithm

• It’s sufficient to just show that it follows the template of our “General 
MST Algorithm”
• Show that for every edge chosen, it is the least-weight edge which crosses 

some cut that respects all already-chosen edges.



Proof of Kruskal’s Algorithm
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Start with an empty tree 𝐴
Repeat 𝑉 − 1 times:
 Add the min-weight edge that doesn’t 
 cause a cycle

𝑆

𝑒

Proof: Suppose we have some arbitrary set of 
edges 𝐴 that Kruskal’s has already selected to 
include in the MST. 𝑒 = (𝐹, 𝐺) is the edge 
Kruskal’s selects to add next

We know that there cannot exist a path from 
𝐹 to G using only edges in 𝐴 because 𝑒 does not 
cause a cycle

We can cut the graph therefore into 2 disjoint 
sets: 
• nodes reachable from G using edges in 𝐴
• All other nodes

𝑒 is the minimum cost edge that crosses this cut, 
so by the Cut Theorem, Kruskal’s is optimal!



Kruskal’s Algorithm Runtime

33

Start with an empty tree 𝐴
Repeat 𝑉 − 1 times:
 Add the min-weight edge that doesn’t 

 cause a cycle

𝑆

𝑒

Keep edges in a Disjoint-set 
data structure (very fancy)

𝑂 𝐸 log 𝑉
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