CSE 332 Autumn 2024
Lecture 25: Concurrency 3 &
Minimum Spanning Trees

Nathan Brunelle
http://www.cs.uw.edu/332

http://www.cs.uw.edu/332

Deadlock

* Occurs when two or more threads are mutually blocking each other

* T1 is blocked by T2, which is blocked by T3, ..., Tn is blocked by T1
* A cycle of blocking

Bank Account

class Ea/nkwjt {

synchronized void withdraw(int amt) {...}
—= synchronized void deposit(int amt) {...}

synchronized void transferTo(int amt, BankAccount a) {

this.withdrawﬁmt);

la.olfeposit(amt); —V K

—_

—_—

The Deadlock

Thread 1:

x.transferTo(1,y);

—

Expected Behavior:
Thread 2 items from a stack are popped in
LIFO order

Thread 2:

y.transferTo(1,x);

acquire lock for account x b/c transferTo is synchronized
acquire lock for account y b/c deposit is synchronized
/"/

release lock for account y after depost

release lock for account x at end of transferTo

acquire lock for account y b/c transferTo is synchronized

—

acquire lock for account x b/c deposit is synchronized

—

release lock for account x after deposit

release lock for account y at end of transferTo

Resolving Deadlocks J v

* Deadlocks occur when there are multiple locks simultaneously needed to
complete a task, and different threads may obtain them in a different order

e Option 1: Address the number of locks i

* Have a coarser lock-granularity
* E.g. one lock for ALL bank accounts

e Option 2: Address simultaneous need
?j * Have a finer critical section so that only one lock is needed at a time
* E.g. instead of a synchronized transferTo, have the withdraw and deposit steps locked
separately —_— —_— —
* Option 3: Address order of acquisition
/‘\ * Force the threads to always acquire the locks in the same order

* E.g. make transferTo acquire both locks before doing either the withdraw or deposit,
make sure bmads agree on the order to aquire

Option 1: Coarser Locking

static final Object BANK = new Object();
class BankAccount {

synchronized void withdraw(int amt) {...}
synchronized void deposit(int amt) {...}
void transferTo(int amt, BankAccount a) {
f\synchronized(BAN K){
this.withdraw(amt);
a.deposit(amt);

Option 2: Finer Critical Section

class BankAccount {

synchronized void withdraw(int amt) {...}
synchronized void deposit(int amt) {...}
void transferTo(int amt, BankAccount a) {
synchronized(this){
this.withdraw(amt);
}
ésynchronized(a){

a.deposit(amt);

} S

Option 3: First Get All Locks In A Fixed Order

class BankAccount {

synchronized void withdraw(int amt) {...}
synchronized void deposit(int amt) {...}

void transferTo(int amt, BankAccount a) {
-—~_——_

iC (this.acctNum < a.acctNum){

syﬂ_éﬁronizeij_(’_c_fj_s:_)_{__
— ,synchronized(aﬁ
this.withdraw(amt);

a.deposit(amt);

138
else {
sync
Qynchronized(iis)j
this.withdraw(amt);
a.deposit(amt);
138

Parallel Code Conventional Wisdom

Memory Categories

All memory must fit one of three categories:
1. Thread Local: Each thread has its own copy

’_\’ . [L] L[]
2. Shared and Immutable: There is just one copy, but nothing will ever
" write to it —

3. Shared and Mutable: There is just one copy, it may change
/7 e Requires Synchronization!

\

Thread Local Memory

* Whenever possible, avoid sharing resources

* Dodges all race conditions, since no other threads can touch it!
drate Lty AL

* No synchronization necessary! (Remember Ahmdal’)

-_—__---——.

* Use whenever threads do not need to communicate using the
resource

* E.g., each thread should have its on Random object

* In most cases, most objects should be in this category
—

lmmutable Objects

* Whenever possible, avoid changing objects

———

 Make new objects instead —

---_-"——_.
e Parallel reads are not data races

~* |f an object is never written to, no synchronization necessary!

* Many programmers over-use mutation, minimize it
//_ ——

Shared and Mutable Objects

* For everything else, use locks

———

* Avoid all data races
* Every read and write should be projected with a lock, even if it “seems safe”
* Almost every Java/C program with a data race is wrong

* Even without data races, it still may be incorrect
 Watch for bad interleavings as well! =

N

W@Cking

* For each_location needing synchronization, have a lock that is always
held When@ing or writing the location -

* The same lock can (and‘often should) “guard” multiple fields/objects

* Clearly document what each lock guards!
-
* In Java, the lock should usually be the object itself (i.e. “this”)

* Have a mapping between memory locations and lock objects and

[HISDAAEE

Lock Granularity

e Coarse Grained: Fewer locks guarding more things each
’_/_’/
* One lock for an entire data structure
* One lock shared by multiple objects (e.g. one lock for all bank accounts)

* Fine Grained: More locks guarding fewer things each

* One lock per data structure location (e.g. array index)
* One lock per object or per field in one object (e.g. one lock for each account)

* Note: there’s really a continuum between them...

-

7

Example: Separate Chaining Hashtable

———_____————

.&%z One lock for the entire hashtable
\
* Fine-grained: One lock for each bucket

* W

. o —
nich supports more parallelism mdnsertm

nich makeere/hashin@easier?

nat happens if you want to have a size field?

y

Tradeoffs

* Coarse-Grained Locking:
» Simpler to implement and avoid race conditions

 Faster/easier to implement operations that access multiple locations (because all
guarded by the same lock)

* Much easier for operations that modify data-structure shape

* Fine-Grained Locking:
* More simultaneous access (performance when coarse grained would lead to
unnecessary blocking)

e Can make multi-location operations more difficult: say, rotations in an AVL tree

* Guideline: —

 Start with coarse-grained, make finer only as necessary to improve performance
/ \/

Similar But Separate Issue: Critical Section
Granularity

e Coarse-grained

* For every method that needs a lock, put the entire method body in a lock
PRS- _______.._________

* Fine-grained
* Keep the lock only for the sections of code where it’s necessary

—

e Guideline:

* Try to stggt_g[g_coile so that exWratiom(like |/0) can be done
outside of your critical section

f—-h._______________——

e E.g., if you're trying to print all the values in a tree, maybe copy items into an

array inside your critical section, then print the array’s contents outside.
e

Atomicity

——

e Atomic: indivisible

:

* Atomic operation; one that should be thought of as a single step

)

* Some sequences of operations should behave as if they are one unit

* Between two operations you may need to avoid exposing an intermediate
state

e Usually ADT operations should be atomic

* You don’t want another thread tryingTo do an insert while another thread is rotating the
AVL tree

* Think first in terms of what operations need to be atomic
* Design critical sections and locking granularity based on these decisions

Use Pre-Tested Code

* Whenever possible, use built-in libraries!

« Other people have already invested tons of effort into making things
both efficient and correct, use their work when you can!
» Especially true for concurrent data structures
* Use thread-safe data structures when available

* E.g.Java as EoncurrentHashI\/Iap J

Definition: Tree

A connected graph with no cycles

Note: A tree does not need
a root, but they often do!

21

Definition: Tree

A connected graph with no cycles

Pick some arbitrary
root node and
rearrange tree

22

Definition: Spanning Tree

A Tree T = (V, Et) which connects (“spans”)
all the nodesina graph ¢ = (V,E)

3 How many edges does T have?
B e .

, 0 V-1 8 _@ s

> 9
12 ; o g G O
e 3 Pick some arbitrary

11 root node and 1 G °
1 G - @ rearrange tree G 3 Q

Any set of V-1 edges in the graph that Any set of V-1 edges that connects all

doesn’t have any cycles is guaranteed the nodes in the graph is guaranteed to
to be a spanning tree! be a spanning tree! 23

Definition: Minimum Spanning Tree

A Tree T = (V, E7) which connects (“spans”)
all the nodes in a graph ¢ = (V, E), that has
minimal cost

10 O——0_,
7 H Cost(T) = Z w(e)

eeEr

24

Prim’s Algorithm
Start with an empty tree A

Pick a start node
Repeat V — 1 times:
Add the min-weight edge which connects to node
in A with a node notin A

10 —0.

25

Prim’s Algorithm
Start with an empty tree A

Pick a start node

Repeat V — 1 times:
Add the min-weight edge which connects to node
in A with a node notin A

26

Prim’s Algorithm
Start with an empty tree A

Pick a start node

Repeat V — 1 times:
Add the min-weight edge which connects to node
in A with a node notin A

27

Prim’s Algorithm
Start with an empty tree A

Pick a start node
Repeat V — 1 times:
Add the min-weight edge which connects to node
in A with a node notin A

\[
e

28

Prim’s Algorithm
Start with an empty tree A ¢ .
eep edges in a Heap

Pick a start node O(E log V)
Repeat V — 1 times:
Add the min-weight edge which connects to node
in A with a node notin A

29

Dijkstra’s Algorithm

int dijkstras(graph, start, end){ 7

PQ = new minheap(); Q 9
(3)

PQ.insert(0, start); // priority=0, value=start

start.distance = 0; 17 3
while (IPQ.isEmpty){ @ 3
current = PQ.extractmin();
if (current.known){ continue;} 1 @

current.known = true;
for (neighbor : current.neighbors){

if ('neighbor.known){
new_dist = current.distance + weight(current,neighbor);

if(neighbor.dist != 00){ PQ.insert(new_dist, neighbor);}
else if (new_dist < neighbor. distance){
neighbor. distance = new_dist;
PQ.decreaseKey(new _dist,neighbor); }

}
}

return end.distance;

Prim’s Algorithm

int dijkstras(graph, start, end){ 7

PQ = new minheap(); Q 9
(3)

PQ.insert(0, start); // priority=0, value=start
start.distance = 0; 17 ;

while (IPQ.isEmpty){ @ 3

current = PQ.extractmin();

if (current.known){ continue;} 1 @

current.known = true;
for (neighbor : current.neighbors){
if ('neighbor.known){
new_dist = weight(current,neighbor);
if(neighbor.dist != 00){ PQ.insert(new_dist, neighbor);}
else if (new_dist < neighbor. distance){
neighbor. distance = new_dist;
PQ.decreaseKey(new _dist,neighbor); }

}
}

return end.distance;

Dijkstra’s Algorithm

int dijkstras(graph, start, end){ 7

PQ = new minheap(); Q 9
(3)

PQ.insert(0, start); // priority=0, value=start

start.distance = 0; 17 3
while (IPQ.isEmpty){ @ 3
current = PQ.extractmin();
if (current.known){ continue;} 1 @

current.known = true;
for (neighbor : current.neighbors){

if ('neighbor.known){
new_dist = current.distance + weight(current,neighbor);

if(neighbor.dist != 00){ PQ.insert(new_dist, neighbor);}
else if (new_dist < neighbor. distance){
neighbor. distance = new_dist;
PQ.decreaseKey(new _dist,neighbor); }

}
}

return end.distance;

32

Prim’s Algorithm

int dijkstras(graph, start, end){ 7

PQ = new minheap(); Q 9
(3)

PQ.insert(0, start); // priority=0, value=start
start.distance = 0; 17
3

while (IPQ.isEmpty){ @ 3

current = PQ.extractmin();

if (current.known){ continue;} 1 @

current.known = true;
for (neighbor : current.neighbors){
if ('neighbor.known){
new_dist = weight(current,neighbor);
if(neighbor.dist != 00){ PQ.insert(new_dist, neighbor);}
else if (new_dist < neighbor. distance){
neighbor. distance = new_dist;
PQ.decreaseKey(new _dist,neighbor); }

}
}

return end.distance;

33

Definition: Cut

A Cut of graph G = (V/, E) is a partition of the
nodes into two sets, Sand V' — S

Edge (v,,v,) € E crosses a A set of edges R Respects a cut
cutifvpeSandv, eV —-3S if no edges cross the cut
(or opposite), e.g. (4, C) eg.R={(4,B),(EG) (F,G)}

Cut Theorem

If a set of edges A is a subset of a minimum spanning tree T', let (5, V —
S) be any cut which A respects. Let ¢ be the least-weight edge which
crosses (S,V —S5). AU is also a subset of a minimum spanning

tree.

Cut Theorem

If a set of edges A is a subset of a minimum spanning tree T', let (S, V —
S) be any cut which A respects. Let e be the least-weight edge which
crosses (S,V —5). AU {e}is also a subset of a minimum spanning

tree.

10 O——0_,
7 H
0 9 Q 5)
S O
12 3
G i e 11
' G 6 36

Cut Theorem

If a set of edges A is a subset of a minimum spanning tree T', let (S,V —
S) be any cut which A respects. Let ¢ be the least-weight edge which
crosses (5,V —S5). AU {e}is also a subset of a minimum spanning

tree.

37

Cut Theorem

If a set of edges A is a subset of a minimum spanning tree T', let (5, V —
S) be any cut which A respects. Let ¢ be the least-weight edge which
crosses (5,V —S5). AU {e}is also a subset of a minimum spanning

tree.

38

Cut Theorem

If a set of edges A is a subset of a minimum spanning tree T', let (5, V —
S) be any cut which A respects. Let ¢ be the least-weight edge which
crosses (5,V —S5). AU {e}is also a subset of a minimum spanning

tree.

39

Proof of Prim’s Algorithm proof: By structurat induction

Suppose we have some arbitrary set of edges A

Start with an empty tree A that Prims’s has already selected to include in
Repeat IV — 1 times: the MST. e = (E, () is the edge Prims’s selects
Add the min-weight edge that connects to add next

to a node not currently in the tree ,
We know that there cannot exist a path from

E to G using only edges in A because G has not
been removed from the priority queue

We can cut the graph therefore into 2 disjoint

) sets:
e Nodes that have been removed from the
“ priority queue

 All other nodes

e is the minimum cost edge that crosses this cut,
so by the Cut Theorem, Prim’s only selects MIST
edges! 40

General MST Algorithm

Start with an empty tree A

Repeat V — 1 times:
Pick a cut (5,V — 5) which A respects (typically implicitly)
Add the min-weight edge which crosses (S,V —)

41

Prim’s Algorithm

Start with an empty tree
Repeat V — 1 times:
Pick a cut (S5,V — §) which 4 respects
Add the min-weight edge which crosses (5,V —)

S is all endpoint of edges in
e is the min-weight edge that grows the

10 0,

42

	Slide 1: CSE 332 Autumn 2024 Lecture 25: Concurrency 3 & Minimum Spanning Trees
	Slide 2: Deadlock
	Slide 3: Bank Account
	Slide 4: The Deadlock
	Slide 5: Resolving Deadlocks
	Slide 6: Option 1: Coarser Locking
	Slide 7: Option 2: Finer Critical Section
	Slide 8: Option 3: First Get All Locks In A Fixed Order
	Slide 9: Parallel Code Conventional Wisdom
	Slide 10: Memory Categories
	Slide 11: Thread Local Memory
	Slide 12: Immutable Objects
	Slide 13: Shared and Mutable Objects
	Slide 14: Consistent Locking
	Slide 15: Lock Granularity
	Slide 16: Example: Separate Chaining Hashtable
	Slide 17: Tradeoffs
	Slide 18: Similar But Separate Issue: Critical Section Granularity
	Slide 19: Atomicity
	Slide 20: Use Pre-Tested Code
	Slide 21: Definition: Tree
	Slide 22: Definition: Tree
	Slide 23: Definition: Spanning Tree
	Slide 24: Definition: Minimum Spanning Tree
	Slide 25: Prim’s Algorithm
	Slide 26: Prim’s Algorithm
	Slide 27: Prim’s Algorithm
	Slide 28: Prim’s Algorithm
	Slide 29: Prim’s Algorithm
	Slide 30: Dijkstra’s Algorithm
	Slide 31: Prim’s Algorithm
	Slide 32: Dijkstra’s Algorithm
	Slide 33: Prim’s Algorithm
	Slide 34: Definition: Cut
	Slide 35: Cut Theorem
	Slide 36: Cut Theorem
	Slide 37: Cut Theorem
	Slide 38: Cut Theorem
	Slide 39: Cut Theorem
	Slide 40: Proof of Prim’s Algorithm
	Slide 41: General MST Algorithm
	Slide 42: Prim’s Algorithm

