
CSE 332 Autumn 2024
Lecture 25: Concurrency 3 &

Minimum Spanning Trees
Nathan Brunelle

http://www.cs.uw.edu/332

http://www.cs.uw.edu/332

Deadlock

• Occurs when two or more threads are mutually blocking each other

• T1 is blocked by T2, which is blocked by T3, …, Tn is blocked by T1
• A cycle of blocking

Bank Account

class BankAccount {

…

synchronized void withdraw(int amt) {…}

synchronized void deposit(int amt) {…}

synchronized void transferTo(int amt, BankAccount a) {

this.withdraw(amt);

a.deposit(amt);

}

}

The Deadlock

x.transferTo(1,y);

Thread 1:

y.transferTo(1,x);

Thread 2:

acquire lock for account x b/c transferTo is synchronized

acquire lock for account y b/c deposit is synchronized

release lock for account y after depost

release lock for account x at end of transferTo

Expected Behavior:
Thread 2 items from a stack are popped in
LIFO order

acquire lock for account y b/c transferTo is synchronized

acquire lock for account x b/c deposit is synchronized

release lock for account x after deposit

release lock for account y at end of transferTo

Resolving Deadlocks

• Deadlocks occur when there are multiple locks simultaneously needed to
complete a task, and different threads may obtain them in a different order

• Option 1: Address the number of locks
• Have a coarser lock granularity
• E.g. one lock for ALL bank accounts

• Option 2: Address simultaneous need
• Have a finer critical section so that only one lock is needed at a time
• E.g. instead of a synchronized transferTo, have the withdraw and deposit steps locked

separately

• Option 3: Address order of acquisition
• Force the threads to always acquire the locks in the same order
• E.g. make transferTo acquire both locks before doing either the withdraw or deposit,

make sure both threads agree on the order to aquire

Option 1: Coarser Locking

static final Object BANK = new Object();

class BankAccount {

 …

 synchronized void withdraw(int amt) {…}

 synchronized void deposit(int amt) {…}

 void transferTo(int amt, BankAccount a) {

 synchronized(BANK){

 this.withdraw(amt);

 a.deposit(amt);

 }

 }

}

Option 2: Finer Critical Section

class BankAccount {

 …

 synchronized void withdraw(int amt) {…}

 synchronized void deposit(int amt) {…}

 void transferTo(int amt, BankAccount a) {

 synchronized(this){

 this.withdraw(amt);

 }

 synchronized(a){

 a.deposit(amt);

 }

 }

}

Option 3: First Get All Locks In A Fixed Order
class BankAccount {

 …

 synchronized void withdraw(int amt) {…}

 synchronized void deposit(int amt) {…}

 void transferTo(int amt, BankAccount a) {

 if (this.acctNum < a.acctNum){

 synchronized(this){

 synchronized(a){

 this.withdraw(amt);

 a.deposit(amt);

 } } }

 else {

 synchronized(a){

 synchronized(this){

 this.withdraw(amt);

 a.deposit(amt);

 } } }

 }

}

Parallel Code Conventional Wisdom

Memory Categories

All memory must fit one of three categories:

1. Thread Local: Each thread has its own copy

2. Shared and Immutable: There is just one copy, but nothing will ever
write to it

3. Shared and Mutable: There is just one copy, it may change
• Requires Synchronization!

Thread Local Memory

• Whenever possible, avoid sharing resources

• Dodges all race conditions, since no other threads can touch it!
• No synchronization necessary! (Remember Ahmdal’s law)

• Use whenever threads do not need to communicate using the
resource
• E.g., each thread should have its on Random object

• In most cases, most objects should be in this category

Immutable Objects

• Whenever possible, avoid changing objects
• Make new objects instead

• Parallel reads are not data races
• If an object is never written to, no synchronization necessary!

• Many programmers over-use mutation, minimize it

Shared and Mutable Objects

• For everything else, use locks

• Avoid all data races
• Every read and write should be projected with a lock, even if it “seems safe”

• Almost every Java/C program with a data race is wrong

• Even without data races, it still may be incorrect
• Watch for bad interleavings as well!

Consistent Locking

• For each location needing synchronization, have a lock that is always
held when reading or writing the location

• The same lock can (and often should) “guard” multiple fields/objects
• Clearly document what each lock guards!

• In Java, the lock should usually be the object itself (i.e. “this”)

• Have a mapping between memory locations and lock objects and
stick to it!

Lock Granularity

• Coarse Grained: Fewer locks guarding more things each
• One lock for an entire data structure

• One lock shared by multiple objects (e.g. one lock for all bank accounts)

• Fine Grained: More locks guarding fewer things each
• One lock per data structure location (e.g. array index)

• One lock per object or per field in one object (e.g. one lock for each account)

• Note: there’s really a continuum between them…

Example: Separate Chaining Hashtable

• Coarse-grained: One lock for the entire hashtable

• Fine-grained: One lock for each bucket

• Which supports more parallelism in insert and find?

• Which makes rehashing easier?

• What happens if you want to have a size field?

Tradeoffs

• Coarse-Grained Locking:
• Simpler to implement and avoid race conditions

• Faster/easier to implement operations that access multiple locations (because all
guarded by the same lock)

• Much easier for operations that modify data-structure shape

• Fine-Grained Locking:
• More simultaneous access (performance when coarse grained would lead to

unnecessary blocking)

• Can make multi-location operations more difficult: say, rotations in an AVL tree

• Guideline:
• Start with coarse-grained, make finer only as necessary to improve performance

Similar But Separate Issue: Critical Section
Granularity
• Coarse-grained

• For every method that needs a lock, put the entire method body in a lock

• Fine-grained
• Keep the lock only for the sections of code where it’s necessary

• Guideline:
• Try to structure code so that expensive operations (like I/O) can be done

outside of your critical section

• E.g., if you’re trying to print all the values in a tree, maybe copy items into an
array inside your critical section, then print the array’s contents outside.

Atomicity

• Atomic: indivisible

• Atomic operation: one that should be thought of as a single step

• Some sequences of operations should behave as if they are one unit
• Between two operations you may need to avoid exposing an intermediate

state

• Usually ADT operations should be atomic
• You don’t want another thread trying to do an insert while another thread is rotating the

AVL tree

• Think first in terms of what operations need to be atomic
• Design critical sections and locking granularity based on these decisions

Use Pre-Tested Code

• Whenever possible, use built-in libraries!

• Other people have already invested tons of effort into making things
both efficient and correct, use their work when you can!
• Especially true for concurrent data structures

• Use thread-safe data structures when available
• E.g. Java as ConcurrentHashMap

Definition: Tree

21

A connected graph with no cycles

10

11

95

3

7

312

A

B

C

D

E

F
G

I

H

Note: A tree does not need
a root, but they often do!

Definition: Tree

22

A connected graph with no cycles

10

11

95

3

7

312

A

B

C

D

E

F
G

I

H

Pick some arbitrary
root node and
rearrange tree 10

11

9

5

3

73

12

A

B

C

D

EF

G

IH

Definition: Spanning Tree

23

10

2

6

11

95

8

3

7

3

1

8

12

9A

B

C

D

E

F
G

I

H

A Tree 𝑻 = (𝑉𝑇 , 𝐸𝑇) which connects (“spans”)
all the nodes in a graph 𝐺 = (𝑉, 𝐸)

How many edges does 𝑇 have?

𝑉 − 1

Any set of V-1 edges in the graph that
doesn’t have any cycles is guaranteed
to be a spanning tree!

Any set of V-1 edges that connects all
the nodes in the graph is guaranteed to
be a spanning tree!

10
2

6

5

8

3

1

8

A

B

C D

E

F

G I

H

Pick some arbitrary
root node and
rearrange tree

Definition: Minimum Spanning Tree

24

A Tree 𝑻 = (𝑉𝑇 , 𝐸𝑇) which connects (“spans”)
all the nodes in a graph 𝐺 = (𝑉, 𝐸), that has
minimal cost

𝐶𝑜𝑠𝑡 𝑇 =

𝑒∈𝐸𝑇

𝑤(𝑒)

10

2

6

11

95

8

3

7

3

1

8

12

9A

B

C

D

E

F
G

I

H

Prim’s Algorithm

25

Start with an empty tree 𝐴
Pick a start node
Repeat 𝑉 − 1 times:
 Add the min-weight edge which connects to node
 in 𝐴 with a node not in 𝐴

10

2

7

11

95

6

3

7

3

1

8

12

9A

B

C

D

E

F
G

I

H

Prim’s Algorithm

26

Start with an empty tree 𝐴
Pick a start node
Repeat 𝑉 − 1 times:
 Add the min-weight edge which connects to node
 in 𝐴 with a node not in 𝐴

10

2

7

11

95

6

3

7

3

1

8

12

9A

B

C

D

E

F
G

I

H

Prim’s Algorithm

27

Start with an empty tree 𝐴
Pick a start node
Repeat 𝑉 − 1 times:
 Add the min-weight edge which connects to node
 in 𝐴 with a node not in 𝐴

10

2

7

11

95

6

3

7

3

1

8

12

9A

B

C

D

E

F
G

I

H

Prim’s Algorithm

28

Start with an empty tree 𝐴
Pick a start node
Repeat 𝑉 − 1 times:
 Add the min-weight edge which connects to node
 in 𝐴 with a node not in 𝐴

10

2

7

11

95

6

3

7

3

1

8

12

9A

B

C

D

E

F
G

I

H

Prim’s Algorithm

29

Keep edges in a Heap
𝑂 𝐸 log 𝑉

Start with an empty tree 𝐴
Pick a start node
Repeat 𝑉 − 1 times:
 Add the min-weight edge which connects to node
 in 𝐴 with a node not in 𝐴

10

2

7

11

95

6

3

7

3

1

8

12

9A

B

C

D

E

F
G

I

H

Dijkstra’s Algorithm

30

int dijkstras(graph, start, end){
 PQ = new minheap();
 PQ.insert(0, start); // priority=0, value=start
 start.distance = 0;
 while (!PQ.isEmpty){
 current = PQ.extractmin();
 if (current.known){ continue;}
 current.known = true;
 for (neighbor : current.neighbors){
 if (!neighbor.known){
 new_dist = current.distance + weight(current,neighbor);
 if(neighbor.dist != ∞){ PQ.insert(new_dist, neighbor);}
 else if (new_dist < neighbor. distance){
 neighbor. distance = new_dist;
 PQ.decreaseKey(new_dist,neighbor); }
 }
 }
 }
 return end.distance;
}

10

2

7

11

95

6

3

7

3

1

8

12

90

1

2

3

4

5
6

8

7

Prim’s Algorithm

31

int dijkstras(graph, start, end){
 PQ = new minheap();
 PQ.insert(0, start); // priority=0, value=start
 start.distance = 0;
 while (!PQ.isEmpty){
 current = PQ.extractmin();
 if (current.known){ continue;}
 current.known = true;
 for (neighbor : current.neighbors){
 if (!neighbor.known){
 new_dist = weight(current,neighbor);
 if(neighbor.dist != ∞){ PQ.insert(new_dist, neighbor);}
 else if (new_dist < neighbor. distance){
 neighbor. distance = new_dist;
 PQ.decreaseKey(new_dist,neighbor); }
 }
 }
 }
 return end.distance;
}

10

2

7

11

95

6

3

7

3

1

8

12

90

1

2

3

4

5
6

8

7

Dijkstra’s Algorithm

32

int dijkstras(graph, start, end){
 PQ = new minheap();
 PQ.insert(0, start); // priority=0, value=start
 start.distance = 0;
 while (!PQ.isEmpty){
 current = PQ.extractmin();
 if (current.known){ continue;}
 current.known = true;
 for (neighbor : current.neighbors){
 if (!neighbor.known){
 new_dist = current.distance + weight(current,neighbor);
 if(neighbor.dist != ∞){ PQ.insert(new_dist, neighbor);}
 else if (new_dist < neighbor. distance){
 neighbor. distance = new_dist;
 PQ.decreaseKey(new_dist,neighbor); }
 }
 }
 }
 return end.distance;
}

10

2

7

11

95

6

3

7

3

1

8

12

90

1

2

3

4

5
6

8

7

Prim’s Algorithm

33

int dijkstras(graph, start, end){
 PQ = new minheap();
 PQ.insert(0, start); // priority=0, value=start
 start.distance = 0;
 while (!PQ.isEmpty){
 current = PQ.extractmin();
 if (current.known){ continue;}
 current.known = true;
 for (neighbor : current.neighbors){
 if (!neighbor.known){
 new_dist = weight(current,neighbor);
 if(neighbor.dist != ∞){ PQ.insert(new_dist, neighbor);}
 else if (new_dist < neighbor. distance){
 neighbor. distance = new_dist;
 PQ.decreaseKey(new_dist,neighbor); }
 }
 }
 }
 return end.distance;
}

10

2

7

11

95

6

3

7

3

1

8

12

90

1

2

3

4

5
6

8

7

Definition: Cut

34

A Cut of graph 𝐺 = (𝑉, 𝐸) is a partition of the
nodes into two sets, 𝑆 and 𝑉 − 𝑆

10

2

6

11

95

8

3

7

3

1

8

12

9A

B

C

D

E

F
G

I

H

𝑆

Edge 𝑣1, 𝑣2 ∈ 𝐸 crosses a
cut if 𝑣1 ∈ 𝑆 and 𝑣2 ∈ 𝑉 − 𝑆
(or opposite), e.g. (𝐴, 𝐶)

A set of edges 𝑅 Respects a cut
if no edges cross the cut
e.g. 𝑅 = { 𝐴, 𝐵 , 𝐸, 𝐺 , 𝐹, 𝐺 }

Cut Theorem

If a set of edges 𝐴 is a subset of a minimum spanning tree 𝑇, let (𝑆, 𝑉 −
𝑆) be any cut which 𝐴 respects. Let 𝑒 be the least-weight edge which
crosses (𝑆, 𝑉 − 𝑆). 𝐴 ∪ {𝑒} is also a subset of a minimum spanning
tree.

35

Cut Theorem

If a set of edges 𝐴 is a subset of a minimum spanning tree 𝑇, let (𝑆, 𝑉 −
𝑆) be any cut which 𝐴 respects. Let 𝑒 be the least-weight edge which
crosses (𝑆, 𝑉 − 𝑆). 𝐴 ∪ {𝑒} is also a subset of a minimum spanning
tree.

36

10

2

6

11

95

8

3

7

3

1

8

12

9A

B

C

D

E

F
G

I

H

Cut Theorem

If a set of edges 𝐴 is a subset of a minimum spanning tree 𝑇, let (𝑆, 𝑉 −
𝑆) be any cut which 𝐴 respects. Let 𝑒 be the least-weight edge which
crosses (𝑆, 𝑉 − 𝑆). 𝐴 ∪ {𝑒} is also a subset of a minimum spanning
tree.

37

10

2

6

11

95

8

3

7

3

1

8

12

9A

B

C

D

E

F
G

I

H

Cut Theorem

If a set of edges 𝐴 is a subset of a minimum spanning tree 𝑇, let (𝑆, 𝑉 −
𝑆) be any cut which 𝐴 respects. Let 𝑒 be the least-weight edge which
crosses (𝑆, 𝑉 − 𝑆). 𝐴 ∪ {𝑒} is also a subset of a minimum spanning
tree.

38

10

2

6

11

95

8

3

7

3

1

8

12

9A

B

C

D

E

F
G

I

H

Cut Theorem

If a set of edges 𝐴 is a subset of a minimum spanning tree 𝑇, let (𝑆, 𝑉 −
𝑆) be any cut which 𝐴 respects. Let 𝑒 be the least-weight edge which
crosses (𝑆, 𝑉 − 𝑆). 𝐴 ∪ {𝑒} is also a subset of a minimum spanning
tree.

39

10

2

6

11

95

8

3

7

3

1

8

12

9A

B

C

D

E

F
G

I

H

Proof of Prim’s Algorithm

40

Start with an empty tree 𝐴
Repeat 𝑉 − 1 times:
 Add the min-weight edge that connects
 to a node not currently in the tree

𝑆

Proof: By Structural Induction
Suppose we have some arbitrary set of edges 𝐴
that Prims’s has already selected to include in
the MST. 𝑒 = (𝐸, 𝐺) is the edge Prims’s selects
to add next

We know that there cannot exist a path from
𝐸 to G using only edges in 𝐴 because 𝐺 has not
been removed from the priority queue

We can cut the graph therefore into 2 disjoint
sets:
• Nodes that have been removed from the

priority queue
• All other nodes

𝑒 is the minimum cost edge that crosses this cut,
so by the Cut Theorem, Prim’s only selects MST
edges!

10

2

7

11

95

6

3

7

3

1

8

12

9A

B

C

D

E

F
G

I

H

𝑒

General MST Algorithm

41

10

2

6

11

95

8

3

7

3

1

8

12

9A

B

C

D

E

F
G

I

H

Start with an empty tree 𝐴
Repeat 𝑉 − 1 times:
 Pick a cut (𝑆, 𝑉 − 𝑆) which 𝐴 respects (typically implicitly)
 Add the min-weight edge which crosses (𝑆, 𝑉 − 𝑆)

Prim’s Algorithm

42

10

2

7

11

95

6

3

7

3

1

8

12

9A

B

C

D

E

F
G

I

H

Start with an empty tree 𝐴
Repeat 𝑉 − 1 times:
 Pick a cut (𝑆, 𝑉 − 𝑆) which 𝐴 respects
 Add the min-weight edge which crosses (𝑆, 𝑉 − 𝑆)

𝑆 is all endpoint of edges in 𝐴
𝑒 is the min-weight edge that grows the tree

	Slide 1: CSE 332 Autumn 2024 Lecture 25: Concurrency 3 & Minimum Spanning Trees
	Slide 2: Deadlock
	Slide 3: Bank Account
	Slide 4: The Deadlock
	Slide 5: Resolving Deadlocks
	Slide 6: Option 1: Coarser Locking
	Slide 7: Option 2: Finer Critical Section
	Slide 8: Option 3: First Get All Locks In A Fixed Order
	Slide 9: Parallel Code Conventional Wisdom
	Slide 10: Memory Categories
	Slide 11: Thread Local Memory
	Slide 12: Immutable Objects
	Slide 13: Shared and Mutable Objects
	Slide 14: Consistent Locking
	Slide 15: Lock Granularity
	Slide 16: Example: Separate Chaining Hashtable
	Slide 17: Tradeoffs
	Slide 18: Similar But Separate Issue: Critical Section Granularity
	Slide 19: Atomicity
	Slide 20: Use Pre-Tested Code
	Slide 21: Definition: Tree
	Slide 22: Definition: Tree
	Slide 23: Definition: Spanning Tree
	Slide 24: Definition: Minimum Spanning Tree
	Slide 25: Prim’s Algorithm
	Slide 26: Prim’s Algorithm
	Slide 27: Prim’s Algorithm
	Slide 28: Prim’s Algorithm
	Slide 29: Prim’s Algorithm
	Slide 30: Dijkstra’s Algorithm
	Slide 31: Prim’s Algorithm
	Slide 32: Dijkstra’s Algorithm
	Slide 33: Prim’s Algorithm
	Slide 34: Definition: Cut
	Slide 35: Cut Theorem
	Slide 36: Cut Theorem
	Slide 37: Cut Theorem
	Slide 38: Cut Theorem
	Slide 39: Cut Theorem
	Slide 40: Proof of Prim’s Algorithm
	Slide 41: General MST Algorithm
	Slide 42: Prim’s Algorithm

