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Deadlock

• Occurs when two or more threads are mutually blocking each other

• T1 is blocked by T2, which is blocked by T3, …, Tn is blocked by T1
• A cycle of blocking



Bank Account

class BankAccount { 

… 

synchronized void withdraw(int amt) {…} 

synchronized void deposit(int amt) {…} 

synchronized void transferTo(int amt, BankAccount a) {

this.withdraw(amt); 

a.deposit(amt); 

} 

} 



The Deadlock

x.transferTo(1,y);

Thread 1:

y.transferTo(1,x);

Thread 2:

acquire lock for account x b/c transferTo is synchronized

acquire lock for account y b/c deposit is synchronized

release lock for account y after depost

release lock for account x at end of transferTo

Expected Behavior:
Thread 2 items from a stack are popped in 
LIFO order

acquire lock for account y b/c transferTo is synchronized

acquire lock for account x b/c deposit is synchronized

release lock for account x after deposit

release lock for account y at end of transferTo



Resolving Deadlocks

• Deadlocks occur when there are multiple locks simultaneously needed to 
complete a task, and different threads may obtain them in a different order

• Option 1: Address the number of locks
• Have a coarser lock granularity
• E.g. one lock for ALL bank accounts

• Option 2: Address simultaneous need
• Have a finer critical section so that only one lock is needed at a time
• E.g. instead of a synchronized transferTo, have the withdraw and deposit steps locked 

separately

• Option 3: Address order of acquisition
• Force the threads to always acquire the locks in the same order
• E.g. make transferTo acquire both locks before doing either the withdraw or deposit, 

make sure both threads agree on the order to aquire



Option 1: Coarser Locking

static final Object BANK = new Object();

class BankAccount { 

 … 

 synchronized void withdraw(int amt) {…} 

 synchronized void deposit(int amt) {…} 

 void transferTo(int amt, BankAccount a) {

  synchronized(BANK){

   this.withdraw(amt); 

   a.deposit(amt);

  } 

 } 

} 



Option 2: Finer Critical Section

class BankAccount { 

 … 

 synchronized void withdraw(int amt) {…} 

 synchronized void deposit(int amt) {…} 

 void transferTo(int amt, BankAccount a) {

  synchronized(this){

   this.withdraw(amt); 

  }

  synchronized(a){

   a.deposit(amt);

  } 

 } 

} 



Option 3: First Get All Locks In A Fixed Order
class BankAccount { 

 … 

 synchronized void withdraw(int amt) {…} 

 synchronized void deposit(int amt) {…} 

 void transferTo(int amt, BankAccount a) {

  if (this.acctNum < a.acctNum){

   synchronized(this){

    synchronized(a){ 

     this.withdraw(amt); 

     a.deposit(amt);

  } } }

  else {

   synchronized(a){

    synchronized(this){ 

     this.withdraw(amt); 

     a.deposit(amt);

  } } }  

 } 

} 



Parallel Code Conventional Wisdom



Memory Categories

All memory must fit one of three categories:

1. Thread Local: Each thread has its own copy

2. Shared and Immutable: There is just one copy, but nothing will ever 
write to it

3. Shared and Mutable: There is just one copy, it may change
• Requires Synchronization!



Thread Local Memory

• Whenever possible, avoid sharing resources

• Dodges all race conditions, since no other threads can touch it!
• No synchronization necessary! (Remember Ahmdal’s law)

• Use whenever threads do not need to communicate using the 
resource
• E.g., each thread should have its on Random object

• In most cases, most objects should be in this category



Immutable Objects

• Whenever possible, avoid changing objects
• Make new objects instead

• Parallel reads are not data races
• If an object is never written to, no synchronization necessary!

• Many programmers over-use mutation, minimize it



Shared and Mutable Objects

• For everything else, use locks

• Avoid all data races
• Every read and write should be projected with a lock, even if it “seems safe”

• Almost every Java/C program with a data race is wrong

• Even without data races, it still may be incorrect
• Watch for bad interleavings as well!



Consistent Locking

• For each location needing synchronization, have a lock that is always 
held when reading or writing the location

• The same lock can (and often should) “guard” multiple fields/objects
• Clearly document what each lock guards!

• In Java, the lock should usually be the object itself (i.e. “this”)

• Have a mapping between memory locations and lock objects and 
stick to it!



Lock Granularity

• Coarse Grained: Fewer locks guarding more things each
• One lock for an entire data structure

• One lock shared by multiple objects (e.g. one lock for all bank accounts)

• Fine Grained: More locks guarding fewer things each
• One lock per data structure location (e.g. array index)

• One lock per object or per field in one object (e.g. one lock for each account)

• Note: there’s really a continuum between them…



Example: Separate Chaining Hashtable

• Coarse-grained: One lock for the entire hashtable 

• Fine-grained: One lock for each bucket 

• Which supports more parallelism in insert and find?

• Which makes rehashing easier?

• What happens if you want to have a size field?



Tradeoffs

• Coarse-Grained Locking:
• Simpler to implement and avoid race conditions

• Faster/easier to implement operations that access multiple locations (because all 
guarded by the same lock) 

• Much easier for operations that modify data-structure shape

• Fine-Grained Locking:
• More simultaneous access (performance when coarse grained would lead to 

unnecessary blocking) 

• Can make multi-location operations more difficult: say, rotations in an AVL tree

• Guideline:
• Start with coarse-grained, make finer only as necessary to improve performance



Similar But Separate Issue: Critical Section 
Granularity
• Coarse-grained

• For every method that needs a lock, put the entire method body in a lock

• Fine-grained
• Keep the lock only for the sections of code where it’s necessary

• Guideline:
• Try to structure code so that expensive operations (like I/O) can be done 

outside of your critical section

• E.g., if you’re trying to print all the values in a tree, maybe copy items into an 
array inside your critical section, then print the array’s contents outside.



Atomicity

• Atomic: indivisible

• Atomic operation: one that should be thought of as a single step

• Some sequences of operations should behave as if they are one unit
• Between two operations you may need to avoid exposing an intermediate 

state

• Usually ADT operations should be atomic 
• You don’t want another thread trying to do an insert while another thread is rotating the 

AVL tree

• Think first in terms of what operations need to be atomic
• Design critical sections and locking granularity based on these decisions



Use Pre-Tested Code

• Whenever possible, use built-in libraries!

• Other people have already invested tons of effort into making things 
both efficient and correct, use their work when you can!
• Especially true for concurrent data structures

• Use thread-safe data structures when available
• E.g. Java as ConcurrentHashMap



Definition: Tree
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Note: A tree does not need 
a root, but they often do!



Definition: Tree
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Definition: Spanning Tree
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A Tree 𝑻 = (𝑉𝑇 , 𝐸𝑇) which connects (“spans”) 
all the nodes in a graph 𝐺 = (𝑉, 𝐸)

How many edges does 𝑇 have?

𝑉 − 1

Any set of V-1 edges in the graph that 
doesn’t have any cycles is guaranteed 
to be a spanning tree!

Any set of V-1 edges that connects all 
the nodes in the graph is guaranteed to 
be a spanning tree!
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Definition: Minimum Spanning Tree
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A Tree 𝑻 = (𝑉𝑇 , 𝐸𝑇) which connects (“spans”) 
all the nodes in a graph 𝐺 = (𝑉, 𝐸), that has 
minimal cost

𝐶𝑜𝑠𝑡 𝑇 = ෍

𝑒∈𝐸𝑇
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Prim’s Algorithm
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Start with an empty tree 𝐴
Pick a start node
Repeat 𝑉 − 1 times:
 Add the min-weight edge which connects to node 
  in 𝐴 with a node not in 𝐴
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Prim’s Algorithm

26

Start with an empty tree 𝐴
Pick a start node
Repeat 𝑉 − 1 times:
 Add the min-weight edge which connects to node 
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Prim’s Algorithm
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Start with an empty tree 𝐴
Pick a start node
Repeat 𝑉 − 1 times:
 Add the min-weight edge which connects to node 
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Prim’s Algorithm
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Start with an empty tree 𝐴
Pick a start node
Repeat 𝑉 − 1 times:
 Add the min-weight edge which connects to node 
  in 𝐴 with a node not in 𝐴
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Prim’s Algorithm
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Keep edges in a Heap
𝑂 𝐸 log 𝑉

Start with an empty tree 𝐴
Pick a start node
Repeat 𝑉 − 1 times:
 Add the min-weight edge which connects to node 
  in 𝐴 with a node not in 𝐴
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Dijkstra’s Algorithm

30

int dijkstras(graph, start, end){
 PQ = new minheap();
 PQ.insert(0, start);  // priority=0, value=start
 start.distance = 0;
 while (!PQ.isEmpty){
  current = PQ.extractmin();
  if (current.known){ continue;}
  current.known = true;
  for (neighbor : current.neighbors){
   if (!neighbor.known){
    new_dist = current.distance + weight(current,neighbor);
    if(neighbor.dist != ∞){ PQ.insert(new_dist, neighbor);}
    else if (new_dist < neighbor. distance){
     neighbor. distance = new_dist;
     PQ.decreaseKey(new_dist,neighbor); }
   }
  }
 }
 return end.distance;
}
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Prim’s Algorithm
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int dijkstras(graph, start, end){
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Dijkstra’s Algorithm
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int dijkstras(graph, start, end){
 PQ = new minheap();
 PQ.insert(0, start);  // priority=0, value=start
 start.distance = 0;
 while (!PQ.isEmpty){
  current = PQ.extractmin();
  if (current.known){ continue;}
  current.known = true;
  for (neighbor : current.neighbors){
   if (!neighbor.known){
    new_dist = current.distance + weight(current,neighbor);
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Prim’s Algorithm
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int dijkstras(graph, start, end){
 PQ = new minheap();
 PQ.insert(0, start);  // priority=0, value=start
 start.distance = 0;
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Definition: Cut
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A Cut of graph 𝐺 = (𝑉, 𝐸) is a partition of the 
nodes into two sets,  𝑆 and 𝑉 − 𝑆
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𝑆

Edge 𝑣1, 𝑣2 ∈ 𝐸 crosses a 
cut if 𝑣1 ∈ 𝑆 and 𝑣2 ∈ 𝑉 − 𝑆 
(or opposite), e.g. (𝐴, 𝐶) 

A set of edges 𝑅 Respects a cut 
if no edges cross the cut
e.g. 𝑅 = { 𝐴, 𝐵 , 𝐸, 𝐺 , 𝐹, 𝐺 }



Cut Theorem

If a set of edges 𝐴 is a subset of a minimum spanning tree 𝑇, let (𝑆, 𝑉 −
𝑆) be any cut which 𝐴 respects. Let 𝑒 be the least-weight edge which 
crosses (𝑆, 𝑉 − 𝑆). 𝐴 ∪ {𝑒} is also a subset of a minimum spanning 
tree.
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Cut Theorem

If a set of edges 𝐴 is a subset of a minimum spanning tree 𝑇, let (𝑆, 𝑉 −
𝑆) be any cut which 𝐴 respects. Let 𝑒 be the least-weight edge which 
crosses (𝑆, 𝑉 − 𝑆). 𝐴 ∪ {𝑒} is also a subset of a minimum spanning 
tree.
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Cut Theorem

If a set of edges 𝐴 is a subset of a minimum spanning tree 𝑇, let (𝑆, 𝑉 −
𝑆) be any cut which 𝐴 respects. Let 𝑒 be the least-weight edge which 
crosses (𝑆, 𝑉 − 𝑆). 𝐴 ∪ {𝑒} is also a subset of a minimum spanning 
tree.
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Cut Theorem

If a set of edges 𝐴 is a subset of a minimum spanning tree 𝑇, let (𝑆, 𝑉 −
𝑆) be any cut which 𝐴 respects. Let 𝑒 be the least-weight edge which 
crosses (𝑆, 𝑉 − 𝑆). 𝐴 ∪ {𝑒} is also a subset of a minimum spanning 
tree.
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Cut Theorem

If a set of edges 𝐴 is a subset of a minimum spanning tree 𝑇, let (𝑆, 𝑉 −
𝑆) be any cut which 𝐴 respects. Let 𝑒 be the least-weight edge which 
crosses (𝑆, 𝑉 − 𝑆). 𝐴 ∪ {𝑒} is also a subset of a minimum spanning 
tree.
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Proof of Prim’s Algorithm
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Start with an empty tree 𝐴
Repeat 𝑉 − 1 times:
 Add the min-weight edge that connects 
 to a node not currently in the tree

𝑆

Proof: By Structural Induction
Suppose we have some arbitrary set of edges 𝐴 
that Prims’s has already selected to include in 
the MST. 𝑒 = (𝐸, 𝐺) is the edge Prims’s selects 
to add next

We know that there cannot exist a path from 
𝐸 to G using only edges in 𝐴 because 𝐺 has not 
been removed from the priority queue

We can cut the graph therefore into 2 disjoint 
sets: 
• Nodes that have been removed from the 

priority queue
• All other nodes

𝑒 is the minimum cost edge that crosses this cut, 
so by the Cut Theorem, Prim’s only selects MST 
edges!
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General MST Algorithm
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Start with an empty tree 𝐴
Repeat 𝑉 − 1 times:
 Pick a cut (𝑆, 𝑉 − 𝑆) which 𝐴 respects (typically implicitly)
 Add the min-weight edge which crosses (𝑆, 𝑉 − 𝑆)



Prim’s Algorithm
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Start with an empty tree 𝐴
Repeat 𝑉 − 1 times:
 Pick a cut (𝑆, 𝑉 − 𝑆) which 𝐴 respects
 Add the min-weight edge which crosses (𝑆, 𝑉 − 𝑆)

𝑆 is all endpoint of edges in 𝐴
𝑒 is the min-weight edge that grows the tree


	Slide 1: CSE 332 Autumn 2024 Lecture 25: Concurrency 3 & Minimum Spanning Trees
	Slide 2: Deadlock
	Slide 3: Bank Account
	Slide 4: The Deadlock
	Slide 5: Resolving Deadlocks
	Slide 6: Option 1: Coarser Locking
	Slide 7: Option 2: Finer Critical Section
	Slide 8: Option 3: First Get All Locks In A Fixed Order
	Slide 9: Parallel Code Conventional Wisdom
	Slide 10: Memory Categories
	Slide 11: Thread Local Memory
	Slide 12: Immutable Objects
	Slide 13: Shared and Mutable Objects
	Slide 14: Consistent Locking
	Slide 15: Lock Granularity
	Slide 16: Example: Separate Chaining Hashtable
	Slide 17: Tradeoffs
	Slide 18: Similar But Separate Issue: Critical Section Granularity
	Slide 19: Atomicity
	Slide 20: Use Pre-Tested Code
	Slide 21: Definition: Tree
	Slide 22: Definition: Tree
	Slide 23: Definition: Spanning Tree
	Slide 24: Definition: Minimum Spanning Tree
	Slide 25: Prim’s Algorithm
	Slide 26: Prim’s Algorithm
	Slide 27: Prim’s Algorithm
	Slide 28: Prim’s Algorithm
	Slide 29: Prim’s Algorithm
	Slide 30: Dijkstra’s Algorithm
	Slide 31: Prim’s Algorithm
	Slide 32: Dijkstra’s Algorithm
	Slide 33: Prim’s Algorithm
	Slide 34: Definition: Cut
	Slide 35: Cut Theorem
	Slide 36: Cut Theorem
	Slide 37: Cut Theorem
	Slide 38: Cut Theorem
	Slide 39: Cut Theorem
	Slide 40: Proof of Prim’s Algorithm
	Slide 41: General MST Algorithm
	Slide 42: Prim’s Algorithm

