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Memory Sharing With ForkJoin

• Idea of ForkJoin:
• Reduce span by having many parallel tasks

• Each task is responsible for its own portion of the input/output

• If one task needs another’s result, use join() to ensure it uses the final answer

• This does not help when:
• Memory accessed by threads is overlapping or unpredictable 

• Threads are doing independent tasks using same resources (rather than 
implementing the same algorithm)



Example: Shared Queue

enqueue(x){
if ( back == null ){

back = new Node(x); 
front = back;

}
else { 

back.next = new Node(x); 
back = back.next; 

}
}

Imagine two threads are both using the 
same linked list based queue.

What could go wrong?



Concurrent Programming

• Concurrency: 
• Correctly and efficiently managing access to shared resources across multiple 

possibly-simultaneous tasks

• Requires synchronization to avoid incorrect simultaneous access
• Use some way of “blocking” other tasks from using a resource when another 

modifies it or makes decisions based on its state
• That blocking task will free up the resource when it’s done

• Warning:
• Because we have no control over when threads are scheduled by the OS, even 

correct implementations are highly non-deterministic
• Errors are hard to reproduce, which complicates debugging



Bank Account Example
• The following code implements a bank account object correctly for a synchronized situation

• Assume the initial balance is 150

class BankAccount { 

 private int balance = 0; 

 int getBalance() { return balance; } 

 void setBalance(int x) { balance = x; } 

 void withdraw(int amount) { 

  int b = getBalance(); 

  if (amount > b) 

   throw new WithdrawTooLargeException(); 

  setBalance(b – amount); } 

 // other operations like deposit, etc. 

} 

withdraw(100);
withdraw(75)

What Happens here?



Bank Account Example - Parallel
• Assume the initial balance is 150

class BankAccount { 
 private int balance = 0; 
 int getBalance() { return balance; } 
 void setBalance(int x) { balance = x; } 
 void withdraw(int amount) { 
  int b = getBalance(); 
  if (amount > b) 
   throw new WithdrawTooLargeException(); 
  setBalance(b – amount); } 
 // other operations like deposit, etc. 
} 

withdraw(100);

Thread 1:

withdraw(75);

Thread 2:



Interleaving

• Due to time slicing, a thread can be interrupted at any time
• Between any two lines of code

• Within a single line of code

• The sequence that operations occur across two threads is called an 
interleaving

• Without doing anything else, we have no control over how different 
threads might be interleaved



A “Good” Interleaving
• Assume the initial balance is 150

withdraw(100);

Thread 1:

withdraw(75);

Thread 2:

int b = getBalance(); 
if (amount > b) 
 throw new Exception(); 
setBalance(b – amount);

int b = getBalance(); 
if (amount > b) 
 throw new Exception(); 
setBalance(b – amount);



A “Bad” Interleaving
• Assume the initial balance is 150

withdraw(100);

Thread 1:

withdraw(75);

Thread 2:

int b = getBalance(); 

if (amount > b) 
 throw new Exception(); 
setBalance(b – amount);

int b = getBalance(); 
if (amount > b) 
 throw new Exception(); 
setBalance(b – amount);



A Bad Fix
• Assume the initial balance is 150

class BankAccount { 

 private int balance = 0; 

 int getBalance() { return balance; } 

 void setBalance(int x) { balance = x; } 

 void withdraw(int amount) { 

  if (amount > getBalance()) 

   throw new WithdrawTooLargeException(); 

  setBalance(getBalance() – amount); } 

 // other operations like deposit, etc. 

} 



A still “Bad” Interleaving
• Assume the initial balance is 150

withdraw(100);

Thread 1:

withdraw(75);

Thread 2:

if (amount > getBalance()) 
 throw new Exception(); 
setBalance(getBalance() – amount);

setBalance(getBalance() – amount);

if (amount > getBalance()) 
 throw new Exception(); 

setBalance(getBalance() – amount);



What we want – Mutual Exclusion

• While one thread is withdrawing from the account, we want to 
exclude all other threads from also withdrawing

• Called mutual exclusion: 
• One thread using a resource (here: a bank account) means another thread 

must wait 

• We call the area of code that we want to have mutual exclusion (only one 
thread can be there at a time) a critical section.

• The programmer must implement critical sections!
• It requires programming language primitives to do correctly



A Bad attempt at Mutual Exclusion
class BankAccount { 

 private int balance = 0; 

 private Boolean busy = false;

 int getBalance() { return balance; } 

 void setBalance(int x) { balance = x; } 

 void withdraw(int amount) { 

  while (busy) { /* wait until not busy */ }

  busy = true;

  int b = getBalance();

  if (amount > b) 

   throw new WithdrawTooLargeException(); 

  setBalance(b – amount); 

  busy = false;} 

 // other operations like deposit, etc. 

} 



A still “Bad” Interleaving
• Assume the initial balance is 150

withdraw(100);

Thread 1:

withdraw(75);

Thread 2:

while (busy) { /* wait until not busy */ }

busy = true;

int b = getBalance();

if (amount > b) 
 throw new Exception(); 
setBalance(b – amount); 
busy = false; 

while (busy) { /* wait until not busy */ }

busy = true;

int b = getBalance();
if (amount > b) 
 throw new Exception(); 
setBalance(b – amount); 
busy = false; 



Solution

• We need a construct from Java to do this

• One Solution – A Mutual Exclusion Lock (called a Mutex or Lock)

• We define a Lock to be a ADT with operations:
• New: 

• make a new lock, initially “not held”

• Acquire:
• If lock is not held, mark it as “held”

• These two steps always done together in a way that cannot be interrupted!

• If lock is held, pause until it is marked as “not held”

• Release:
• Mark the lock as “not held”



Almost Correct Bank Account Example
class BankAccount { 

 private int balance = 0; 

 private Lock lck = new Lock();

 int getBalance() { return balance; } 

 void setBalance(int x) { balance = x; } 

 void withdraw(int amount) { 

  lk.acquire(); 

  int b = getBalance();

  if (amount > b) 

   throw new WithdrawTooLargeException(); 

  setBalance(b – amount); 

  lk.release();} 

 // other operations like deposit, etc. 

} 

Questions:
1. What is the critical section?
2. What is the Error?



Try…Finally

• Try Block:
• Body of code that will be run

• Finally Block:
• Always runs once the program exits try block (whether due to a return, 

exception, anything!)



Correct (but not Java) Bank Account Example
class BankAccount { 

 private int balance = 0; 

 private Lock lck = new Lock();

 int getBalance() { return balance; } 

 void setBalance(int x) { balance = x; } 

 void withdraw(int amount) { 

  try{

   lk.acquire(); 

   int b = getBalance();

   if (amount > b) 

    throw new WithdrawTooLargeException(); 

   setBalance(b – amount); }

  finally { lk.release(); } } 

 // other operations like deposit, etc. 

} 

Questions:
1. Should deposit have its own 

lock object, or the same one?
2. What about getBalance?
3. What about setBalance?



A still “Bad” Interleaving
• Assume the initial balance is 150

withdraw(100);

Thread 1:

if(getBalance()<75)
 setBalance(75);

Thread 2:

try{
 lk.acquire(); 
 int b = getBalance();
 if (amount > b) 
  throw new Exception();
 

 setBalance(b – amount); }
finally { lk.release(); }

if(getBalance() < 75)
 setBalance(75);



What’s wrong here…
class BankAccount { 

 private int balance = 0; 

 private Lock lck = new Lock();

 int setBalance(int x) { 

  try{

   lk.acquire();

   balance = x; }

  finally{ lk.release(); } } 

 void withdraw(int amount) { 

  try{

   lk.acquire(); 

   int b = getBalance();

   if (amount > b) 

    throw new WithdrawTooLargeException(); 

   setBalance(b – amount); }

  finally { lk.release(); } }} 

Withdraw calls setBalance!

Withdraw can never finish because in 
setBalance the lock will always be held! 



Re-entrant Lock (Recursive Lock)

• Idea:
• Once a thread has acquired a lock, future calls to acquire on the same lock 

will not block progress

• If the lock used in the previous slide is re-entrant, then it will work!



Re-entrant Lock Details

• A re-entrant lock (a.k.a. recursive lock)

• “Remembers” 
• the thread (if any) that currently holds it 
• a count of “layers” that the thread holds it

• When the lock goes from not-held to held, the count is set to 0 

• If (code running in) the current holder calls acquire: 
• it does not block 
• it increments the count 

• On release: 
• if the count is > 0, the count is decremented 
• if the count is 0, the lock becomes not-held



Java’s Re-entrant Lock Class

• java.util.concurrent.locks.ReentrantLock 

• Has methods lock() and unlock() 

• Important to guarantee that lock is always released!!! 

• Recommend something like this: 
myLock.lock(); 

try { // method body }

finally { myLock.unlock(); } 



How this looks in Java
java.util.concurrent.locks.ReentrantLock; 

class BankAccount { 

 private int balance = 0; 

 private ReentrantLock lck = new ReentrantLock();

 int setBalance(int x) { 

  try{

   lk.lock();

   balance = x; }

  finally{ lk.unlock(); } } 

 void withdraw(int amount) { 

  try{

   lk.lock(); 

   int b = getBalance();

   if (amount > b) 

    throw new WithdrawTooLargeException(); 

   setBalance(b – amount); }

  finally { lk.unlock(); } }} 



Java Synchronized Keyword

• Syntactic sugar for re-entrant locks

• You can use the synchronized statement as an alternative to declaring a 
ReentrantLock

• Syntax:

• Any Object can serve as a “lock”
• Primitive types (e.g. int) cannot serve as a lock

• Acquires a lock and blocks if necessary
• Once you get past the “{“, you have the lock

• Released the lock when you pass “}”
• Even in the cases of returning, exceptions, anything!
• Impossible to forget to release the lock

synchronized( /* expression returning an Object */ ) {statements}



Back Account Using Synchronize (Attempt 1)
class BankAccount { 

 private int balance = 0; 

 private Object lk = new Object(); 

 int getBalance() { 

  synchronized (lk) { return balance; } 

 } 

 void setBalance(int x) { 

  synchronized (lk) { balance = x; } 

 } 

 void withdraw(int amount) { 

  synchronized (lk) { 

   int b = getBalance(); 

   if (amount > b) 

    throw new Exception(); 

   setBalance(b – amount); } } // deposit would also use synchronized(lk) 

}



Back Account Using Synchronize (Attempt 2)
class BankAccount { 

 private int balance = 0; 

 int getBalance() { 

  synchronized (this) { return balance; } 

 } 

 void setBalance(int x) { 

  synchronized (this) { balance = x; } 

 } 

 void withdraw(int amount) { 

  synchronized (this) { 

   int b = getBalance(); 

   if (amount > b) 

    throw new Exception(); 

   setBalance(b – amount); } } // deposit would also use synchronized(lk) 

}

Since we have one lock per account regardless 
of operation, it’s more intuitive to use the 
account object itself as the lock!



More Syntactic Sugar!

• Using the object itself as a lock is common enough that Java has 
convenient syntax for that as well!

• Declaring a method as “synchronized” puts its body into a 
synchronized block with “this” as the lock



Back Account Using Synchronize (Final)
class BankAccount { 

 private int balance = 0; 

 synchronized int getBalance() { return balance; } 

 synchronized void setBalance(int x) { balance = x; } 

 synchronized void withdraw(int amount) { 

  int b = getBalance(); 

  if (amount > b) 

   throw new WithdrawTooLargeException(); 

  setBalance(b – amount); } 

 // other operations like deposit (which would use synchronized) 

} 



Race Condition

• Occurs when the computation result depends on scheduling (how threads are 
interleaved) 
• We, as programmers can’t influence scheduling of threads
• We need to write programs that work independent of scheduling
• E.g.: if two threads are withdrawing, different schedules could cause different threads to see the 

WithdrawTooLargeException

• Data Race: 
• When there is the potential for two threads to be writing a variable in parallel
• When there is the potential for one thread to be reading a variable while another writes to it
• E.g.: Two threads insert the same into a hash table. The second thread in the schedule will 

overwrite the insert from the first.

• Bad Interleaving:
• A race condition other than a data race
• Usually it looks like exposing a “bad” intermediate state
• E.g.: Two threads insert into a hash table. We compute the index for each key, then one thread 

resizes the table, now the other index might be incorrect. 



Example: Shared Stack (no problems so far)
class Stack { 

 private E[] array = (E[])new Object[SIZE]; 

 private int index = -1; 

 synchronized boolean isEmpty() { 

  return index==-1; 

 } 

 synchronized void push(E val) { 

  array[++index] = val; 

 } 

 synchronized E pop() { 

  if(isEmpty()) 

   throw new StackEmptyException(); 

  return array[index--]; 

 } } 

Critical sections of this code?



Race Condition, but no Data Race
class Stack { 

 private E[] array = (E[])new Object[SIZE]; 

 private int index = -1; 

 synchronized boolean isEmpty() { … } 

 synchronized void push(E val) { … } 

 synchronized E pop() { … } 

 E peek(){

  E ans = pop(); 

push(ans); 

return ans; 

 }

} 

Critical sections of this code?



Race Condition, including a Data Race
class Stack { 
 private E[] array = (E[])new Object[SIZE]; 
 private int index = -1; 
 synchronized boolean isEmpty() { … } 
 synchronized void push(E val) { … } 
 synchronized E pop() { … } 
 E peek(){
  System.out.println(index);
  E ans = pop(); 

push(ans); 
return ans; 

 }
} 



Peek and isEmpty

peek();

Thread 1:

push(x);
boolean b = isEmpty();

Thread 2:

E ans = pop();

push(ans); 
return ans; 

push(x);

boolean b = isEmpty();

Expected Behavior:
Thread 2 should not see an empty stack if 
there is a push but no pop.



Peek and Push

peek();

Thread 1:
push(x);
push(y);
System.out.println(pop()); 
System.out.println(pop());

Thread 2:

E ans = pop();
push(ans); 
return ans; 

push(x);
push(y);
System.out.println(pop()); 
System.out.println(pop());

Expected Behavior:
Thread 2 items from a stack are popped in 
LIFO order



Peek and Push

peek();

Thread 1:
push(x);
push(y);
System.out.println(pop()); 
System.out.println(pop());

Thread 2:

E ans = pop();

push(ans); 
return ans; 

push(x);

push(y);

System.out.println(pop()); 
System.out.println(pop());

Expected Behavior:
Thread 2 items from a stack are popped in 
LIFO order



How to fix this?

class Stack { 

 private E[] array = (E[])new Object[SIZE]; 

 private int index = -1; 

 synchronized boolean isEmpty() { … } 

 synchronized void push(E val) { … } 

 synchronized E pop() { … } 

 E peek(){

  E ans = pop(); 

push(ans); 

return ans; 

 }

} 

Make a bigger critical section



How to fix this?

class Stack { 

 private E[] array = (E[])new Object[SIZE]; 

 private int index = -1; 

 synchronized boolean isEmpty() { … } 

 synchronized void push(E val) { … } 

 synchronized E pop() { … } 

 synchronized E peek(){

  E ans = pop(); 

push(ans); 

return ans; 

 }

} 

Make a bigger critical section



Did this fix it?

class Stack { 

 private E[] array = (E[])new Object[SIZE]; 

 private int index = -1; 

 synchronized boolean isEmpty() { … } 

 synchronized void push(E val) { … } 

 synchronized E pop() { … } 

 E peek(){

  return array[index];

 }

} 

No! Now it has a data race!



Parallel Code Conventional Wisdom



Memory Categories

All memory must fit one of three categories:

1. Thread Local: Each thread has its own copy

2. Shared and Immutable: There is just one copy, but nothing will ever 
write to it

3. Shared and Mutable: There is just one copy, it may change
• Requires Synchronization!



Thread Local Memory

• Whenever possible, avoid sharing resources

• Dodges all race conditions, since no other threads can touch it!
• No synchronization necessary! (Remember Ahmdal’s law)

• Use whenever threads do not need to communicate using the 
resource
• E.g., each thread should have its on Random object

• In most cases, most objects should be in this category



Immutable Objects

• Whenever possible, avoid changing objects
• Make new objects instead

• Parallel reads are not data races
• If an object is never written to, no synchronization necessary!

• Many programmers over-use mutation, minimize it



Shared and Mutable Objects

• For everything else, use locks

• Avoid all data races
• Every read and write should be projected with a lock, even if it “seems safe”

• Almost every Java/C program with a data race is wrong

• Even without data races, it still may be incorrect
• Watch for bad interleavings as well!



Consistent Locking

• For each location needing synchronization, have a lock that is always 
held when reading or writing the location

• The same lock can (and often should) “guard” multiple fields/objects
• Clearly document what each lock guards!

• In Java, the lock should usually be the object itself (i.e. “this”)

• Have a mapping between memory locations and lock objects and 
stick to it!



Lock Granularity

• Coarse Grained: Fewer locks guarding more things each
• One lock for an entire data structure

• One lock shared by multiple objects (e.g. one lock for all bank accounts)

• Fine Grained: More locks guarding fewer things each
• One lock per data structure location (e.g. array index)

• One lock per object or per field in one object (e.g. one lock for each account)

• Note: there’s really a continuum between them…



Example: Separate Chaining Hashtable

• Coarse-grained: One lock for the entire hashtable 

• Fine-grained: One lock for each bucket 

• Which supports more parallelism in insert and find?

• Which makes rehashing easier?

• What happens if you want to have a size field?



Tradeoffs

• Coarse-Grained Locking:
• Simpler to implement and avoid race conditions

• Faster/easier to implement operations that access multiple locations (because all 
guarded by the same lock) 

• Much easier for operations that modify data-structure shape

• Fine-Grained Locking:
• More simultaneous access (performance when coarse grained would lead to 

unnecessary blocking) 

• Can make multi-location operations more difficult: say, rotations in an AVL tree

• Guideline:
• Start with coarse-grained, make finer only as necessary to improve performance



Similar But Separate Issue: Critical Section 
Granularity
• Coarse-grained

• For every method that needs a lock, put the entire method body in a lock

• Fine-grained
• Keep the lock only for the sections of code where it’s necessary

• Guideline:
• Try to structure code so that expensive operations (like I/O) can be done 

outside of your critical section

• E.g., if you’re trying to print all the values in a tree, maybe copy items into an 
array inside your critical section, then print the array’s contents outside.



Atomicity

• Atomic: indivisible

• Atomic operation: one that should be thought of as a single step

• Some sequences of operations should behave as if they are one unit
• Between two operations you may need to avoid exposing an intermediate 

state

• Usually ADT operations should be atomic 
• You don’t want another thread trying to do an insert while another thread is rotating the 

AVL tree

• Think first in terms of what operations need to be atomic
• Design critical sections and locking granularity based on these decisions



Use Pre-Tested Code

• Whenever possible, use built-in libraries!

• Other people have already invested tons of effort into making things 
both efficient and correct, use their work when you can!
• Especially true for concurrent data structures

• Use thread-safe data structures when available
• E.g. Java as ConcurrentHashMap



Deadlock

• Occurs when two or more threads are mutually blocking each other

• T1 is blocked by T2, which is blocked by T3, …, Tn is blocked by T1
• A cycle of blocking



Bank Account

class BankAccount { 

 … 

 synchronized void withdraw(int amt) {…} 

 synchronized void deposit(int amt) {…} 

 synchronized void transferTo(int amt, BankAccount a) {

   this.withdraw(amt); 

  a.deposit(amt); 

 } 

} 



The Deadlock

x.transferTo(1,y);

Thread 1:

y.transferTo(1,x);

Thread 2:

acquire lock for account x b/c transferTo is synchronized
acquire lock for account y b/c deposit is synchronized
release lock for account y after depost
release lock for account x at end of transferTo

Expected Behavior:
Thread 2 items from a stack are popped in 
LIFO order

acquire lock for account y b/c transferTo is synchronized
acquire lock for account x b/c deposit is synchronized
release lock for account x after deposit
release lock for account y at end of transferTo



The Deadlock

x.transferTo(1,y);

Thread 1:

y.transferTo(1,x);

Thread 2:

acquire lock for account x b/c transferTo is synchronized

acquire lock for account y b/c deposit is synchronized

release lock for account y after depost

release lock for account x at end of transferTo

Expected Behavior:
Thread 2 items from a stack are popped in 
LIFO order

acquire lock for account y b/c transferTo is synchronized

acquire lock for account x b/c deposit is synchronized

release lock for account x after deposit

release lock for account y at end of transferTo



Resolving Deadlocks

• Deadlocks occur when there are multiple locks necessary to complete a 
task and different threads may obtain them in a different order

• Option 1:
• Have a coarser lock granularity
• E.g. one lock for ALL bank accounts

• Option 2:
• Have a finer critical section so that only one lock is needed at a time
• E.g. instead of a synchronized transferTo, have the withdraw and deposit steps locked 

separately

• Option 3:
• Force the threads to always acquire the locks in the same order
• E.g. make transferTo acquire both locks before doing either the withdraw or deposit, 

make sure both threads agree on the order to aquire



Option 1: Coarser Locking

static final Object BANK = new Object();

class BankAccount { 

 … 

 synchronized void withdraw(int amt) {…} 

 synchronized void deposit(int amt) {…} 

 void transferTo(int amt, BankAccount a) {

  synchronized(BANK){

   this.withdraw(amt); 

   a.deposit(amt);

  } 

 } 

} 



Option 2: Finer Critical Section

class BankAccount { 

 … 

 synchronized void withdraw(int amt) {…} 

 synchronized void deposit(int amt) {…} 

 void transferTo(int amt, BankAccount a) {

  synchronized(this){

   this.withdraw(amt); 

  }

  synchronized(a){

   a.deposit(amt);

  } 

 } 

} 



Option 3: First Get All Locks In A Fixed Order
class BankAccount { 

 … 

 synchronized void withdraw(int amt) {…} 

 synchronized void deposit(int amt) {…} 

 void transferTo(int amt, BankAccount a) {

  if (this.acctNum < a.acctNum){

   synchronized(this){

    synchronized(a){ 

     this.withdraw(amt); 

     a.deposit(amt);

  } } }

  else {

   synchronized(a){

    synchronized(this){ 

     this.withdraw(amt); 

     a.deposit(amt);

  } } }  

 } 

} 
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