
CSE 332 Autumn 2024
Lecture 23: Concurrency

Nathan Brunelle

http://www.cs.uw.edu/332

http://www.cs.uw.edu/332

Memory Sharing With ForkJoin

• Idea of ForkJoin:
• Reduce span by having many parallel tasks

• Each task is responsible for its own portion of the input/output

• If one task needs another’s result, use join() to ensure it uses the final answer

• This does not help when:
• Memory accessed by threads is overlapping or unpredictable

• Threads are doing independent tasks using same resources (rather than
implementing the same algorithm)

Example: Shared Queue

enqueue(x){
if (back == null){

back = new Node(x);
front = back;

}
else {

back.next = new Node(x);
back = back.next;

}
}

Imagine two threads are both using the
same linked list based queue.

What could go wrong?

Concurrent Programming

• Concurrency:
• Correctly and efficiently managing access to shared resources across multiple

possibly-simultaneous tasks

• Requires synchronization to avoid incorrect simultaneous access
• Use some way of “blocking” other tasks from using a resource when another

modifies it or makes decisions based on its state
• That blocking task will free up the resource when it’s done

• Warning:
• Because we have no control over when threads are scheduled by the OS, even

correct implementations are highly non-deterministic
• Errors are hard to reproduce, which complicates debugging

Bank Account Example
• The following code implements a bank account object correctly for a synchronized situation

• Assume the initial balance is 150

class BankAccount {

 private int balance = 0;

 int getBalance() { return balance; }

 void setBalance(int x) { balance = x; }

 void withdraw(int amount) {

 int b = getBalance();

 if (amount > b)

 throw new WithdrawTooLargeException();

 setBalance(b – amount); }

 // other operations like deposit, etc.

}

withdraw(100);
withdraw(75)

What Happens here?

Bank Account Example - Parallel
• Assume the initial balance is 150

class BankAccount {
 private int balance = 0;
 int getBalance() { return balance; }
 void setBalance(int x) { balance = x; }
 void withdraw(int amount) {
 int b = getBalance();
 if (amount > b)
 throw new WithdrawTooLargeException();
 setBalance(b – amount); }
 // other operations like deposit, etc.
}

withdraw(100);

Thread 1:

withdraw(75);

Thread 2:

Interleaving

• Due to time slicing, a thread can be interrupted at any time
• Between any two lines of code

• Within a single line of code

• The sequence that operations occur across two threads is called an
interleaving

• Without doing anything else, we have no control over how different
threads might be interleaved

A “Good” Interleaving
• Assume the initial balance is 150

withdraw(100);

Thread 1:

withdraw(75);

Thread 2:

int b = getBalance();
if (amount > b)
 throw new Exception();
setBalance(b – amount);

int b = getBalance();
if (amount > b)
 throw new Exception();
setBalance(b – amount);

A “Bad” Interleaving
• Assume the initial balance is 150

withdraw(100);

Thread 1:

withdraw(75);

Thread 2:

int b = getBalance();

if (amount > b)
 throw new Exception();
setBalance(b – amount);

int b = getBalance();
if (amount > b)
 throw new Exception();
setBalance(b – amount);

A Bad Fix
• Assume the initial balance is 150

class BankAccount {

 private int balance = 0;

 int getBalance() { return balance; }

 void setBalance(int x) { balance = x; }

 void withdraw(int amount) {

 if (amount > getBalance())

 throw new WithdrawTooLargeException();

 setBalance(getBalance() – amount); }

 // other operations like deposit, etc.

}

A still “Bad” Interleaving
• Assume the initial balance is 150

withdraw(100);

Thread 1:

withdraw(75);

Thread 2:

if (amount > getBalance())
 throw new Exception();
setBalance(getBalance() – amount);

setBalance(getBalance() – amount);

if (amount > getBalance())
 throw new Exception();

setBalance(getBalance() – amount);

What we want – Mutual Exclusion

• While one thread is withdrawing from the account, we want to
exclude all other threads from also withdrawing

• Called mutual exclusion:
• One thread using a resource (here: a bank account) means another thread

must wait

• We call the area of code that we want to have mutual exclusion (only one
thread can be there at a time) a critical section.

• The programmer must implement critical sections!
• It requires programming language primitives to do correctly

A Bad attempt at Mutual Exclusion
class BankAccount {

 private int balance = 0;

 private Boolean busy = false;

 int getBalance() { return balance; }

 void setBalance(int x) { balance = x; }

 void withdraw(int amount) {

 while (busy) { /* wait until not busy */ }

 busy = true;

 int b = getBalance();

 if (amount > b)

 throw new WithdrawTooLargeException();

 setBalance(b – amount);

 busy = false;}

 // other operations like deposit, etc.

}

A still “Bad” Interleaving
• Assume the initial balance is 150

withdraw(100);

Thread 1:

withdraw(75);

Thread 2:

while (busy) { /* wait until not busy */ }

busy = true;

int b = getBalance();

if (amount > b)
 throw new Exception();
setBalance(b – amount);
busy = false;

while (busy) { /* wait until not busy */ }

busy = true;

int b = getBalance();
if (amount > b)
 throw new Exception();
setBalance(b – amount);
busy = false;

Solution

• We need a construct from Java to do this

• One Solution – A Mutual Exclusion Lock (called a Mutex or Lock)

• We define a Lock to be a ADT with operations:
• New:

• make a new lock, initially “not held”

• Acquire:
• If lock is not held, mark it as “held”

• These two steps always done together in a way that cannot be interrupted!

• If lock is held, pause until it is marked as “not held”

• Release:
• Mark the lock as “not held”

Almost Correct Bank Account Example
class BankAccount {

 private int balance = 0;

 private Lock lck = new Lock();

 int getBalance() { return balance; }

 void setBalance(int x) { balance = x; }

 void withdraw(int amount) {

 lk.acquire();

 int b = getBalance();

 if (amount > b)

 throw new WithdrawTooLargeException();

 setBalance(b – amount);

 lk.release();}

 // other operations like deposit, etc.

}

Questions:
1. What is the critical section?
2. What is the Error?

Try…Finally

• Try Block:
• Body of code that will be run

• Finally Block:
• Always runs once the program exits try block (whether due to a return,

exception, anything!)

Correct (but not Java) Bank Account Example
class BankAccount {

 private int balance = 0;

 private Lock lck = new Lock();

 int getBalance() { return balance; }

 void setBalance(int x) { balance = x; }

 void withdraw(int amount) {

 try{

 lk.acquire();

 int b = getBalance();

 if (amount > b)

 throw new WithdrawTooLargeException();

 setBalance(b – amount); }

 finally { lk.release(); } }

 // other operations like deposit, etc.

}

Questions:
1. Should deposit have its own

lock object, or the same one?
2. What about getBalance?
3. What about setBalance?

A still “Bad” Interleaving
• Assume the initial balance is 150

withdraw(100);

Thread 1:

if(getBalance()<75)
 setBalance(75);

Thread 2:

try{
 lk.acquire();
 int b = getBalance();
 if (amount > b)
 throw new Exception();

 setBalance(b – amount); }
finally { lk.release(); }

if(getBalance() < 75)
 setBalance(75);

What’s wrong here…
class BankAccount {

 private int balance = 0;

 private Lock lck = new Lock();

 int setBalance(int x) {

 try{

 lk.acquire();

 balance = x; }

 finally{ lk.release(); } }

 void withdraw(int amount) {

 try{

 lk.acquire();

 int b = getBalance();

 if (amount > b)

 throw new WithdrawTooLargeException();

 setBalance(b – amount); }

 finally { lk.release(); } }}

Withdraw calls setBalance!

Withdraw can never finish because in
setBalance the lock will always be held!

Re-entrant Lock (Recursive Lock)

• Idea:
• Once a thread has acquired a lock, future calls to acquire on the same lock

will not block progress

• If the lock used in the previous slide is re-entrant, then it will work!

Re-entrant Lock Details

• A re-entrant lock (a.k.a. recursive lock)

• “Remembers”
• the thread (if any) that currently holds it
• a count of “layers” that the thread holds it

• When the lock goes from not-held to held, the count is set to 0

• If (code running in) the current holder calls acquire:
• it does not block
• it increments the count

• On release:
• if the count is > 0, the count is decremented
• if the count is 0, the lock becomes not-held

Java’s Re-entrant Lock Class

• java.util.concurrent.locks.ReentrantLock

• Has methods lock() and unlock()

• Important to guarantee that lock is always released!!!

• Recommend something like this:
myLock.lock();

try { // method body }

finally { myLock.unlock(); }

How this looks in Java
java.util.concurrent.locks.ReentrantLock;

class BankAccount {

 private int balance = 0;

 private ReentrantLock lck = new ReentrantLock();

 int setBalance(int x) {

 try{

 lk.lock();

 balance = x; }

 finally{ lk.unlock(); } }

 void withdraw(int amount) {

 try{

 lk.lock();

 int b = getBalance();

 if (amount > b)

 throw new WithdrawTooLargeException();

 setBalance(b – amount); }

 finally { lk.unlock(); } }}

Java Synchronized Keyword

• Syntactic sugar for re-entrant locks

• You can use the synchronized statement as an alternative to declaring a
ReentrantLock

• Syntax:

• Any Object can serve as a “lock”
• Primitive types (e.g. int) cannot serve as a lock

• Acquires a lock and blocks if necessary
• Once you get past the “{“, you have the lock

• Released the lock when you pass “}”
• Even in the cases of returning, exceptions, anything!
• Impossible to forget to release the lock

synchronized(/* expression returning an Object */) {statements}

Back Account Using Synchronize (Attempt 1)
class BankAccount {

 private int balance = 0;

 private Object lk = new Object();

 int getBalance() {

 synchronized (lk) { return balance; }

 }

 void setBalance(int x) {

 synchronized (lk) { balance = x; }

 }

 void withdraw(int amount) {

 synchronized (lk) {

 int b = getBalance();

 if (amount > b)

 throw new Exception();

 setBalance(b – amount); } } // deposit would also use synchronized(lk)

}

Back Account Using Synchronize (Attempt 2)
class BankAccount {

 private int balance = 0;

 int getBalance() {

 synchronized (this) { return balance; }

 }

 void setBalance(int x) {

 synchronized (this) { balance = x; }

 }

 void withdraw(int amount) {

 synchronized (this) {

 int b = getBalance();

 if (amount > b)

 throw new Exception();

 setBalance(b – amount); } } // deposit would also use synchronized(lk)

}

Since we have one lock per account regardless
of operation, it’s more intuitive to use the
account object itself as the lock!

More Syntactic Sugar!

• Using the object itself as a lock is common enough that Java has
convenient syntax for that as well!

• Declaring a method as “synchronized” puts its body into a
synchronized block with “this” as the lock

Back Account Using Synchronize (Final)
class BankAccount {

 private int balance = 0;

 synchronized int getBalance() { return balance; }

 synchronized void setBalance(int x) { balance = x; }

 synchronized void withdraw(int amount) {

 int b = getBalance();

 if (amount > b)

 throw new WithdrawTooLargeException();

 setBalance(b – amount); }

 // other operations like deposit (which would use synchronized)

}

Race Condition

• Occurs when the computation result depends on scheduling (how threads are
interleaved)
• We, as programmers can’t influence scheduling of threads
• We need to write programs that work independent of scheduling
• E.g.: if two threads are withdrawing, different schedules could cause different threads to see the

WithdrawTooLargeException

• Data Race:
• When there is the potential for two threads to be writing a variable in parallel
• When there is the potential for one thread to be reading a variable while another writes to it
• E.g.: Two threads insert the same into a hash table. The second thread in the schedule will

overwrite the insert from the first.

• Bad Interleaving:
• A race condition other than a data race
• Usually it looks like exposing a “bad” intermediate state
• E.g.: Two threads insert into a hash table. We compute the index for each key, then one thread

resizes the table, now the other index might be incorrect.

Example: Shared Stack (no problems so far)
class Stack {

 private E[] array = (E[])new Object[SIZE];

 private int index = -1;

 synchronized boolean isEmpty() {

 return index==-1;

 }

 synchronized void push(E val) {

 array[++index] = val;

 }

 synchronized E pop() {

 if(isEmpty())

 throw new StackEmptyException();

 return array[index--];

 } }

Critical sections of this code?

Race Condition, but no Data Race
class Stack {

 private E[] array = (E[])new Object[SIZE];

 private int index = -1;

 synchronized boolean isEmpty() { … }

 synchronized void push(E val) { … }

 synchronized E pop() { … }

 E peek(){

 E ans = pop();

push(ans);

return ans;

 }

}

Critical sections of this code?

Race Condition, including a Data Race
class Stack {
 private E[] array = (E[])new Object[SIZE];
 private int index = -1;
 synchronized boolean isEmpty() { … }
 synchronized void push(E val) { … }
 synchronized E pop() { … }
 E peek(){
 System.out.println(index);
 E ans = pop();

push(ans);
return ans;

 }
}

Peek and isEmpty

peek();

Thread 1:

push(x);
boolean b = isEmpty();

Thread 2:

E ans = pop();

push(ans);
return ans;

push(x);

boolean b = isEmpty();

Expected Behavior:
Thread 2 should not see an empty stack if
there is a push but no pop.

Peek and Push

peek();

Thread 1:
push(x);
push(y);
System.out.println(pop());
System.out.println(pop());

Thread 2:

E ans = pop();
push(ans);
return ans;

push(x);
push(y);
System.out.println(pop());
System.out.println(pop());

Expected Behavior:
Thread 2 items from a stack are popped in
LIFO order

Peek and Push

peek();

Thread 1:
push(x);
push(y);
System.out.println(pop());
System.out.println(pop());

Thread 2:

E ans = pop();

push(ans);
return ans;

push(x);

push(y);

System.out.println(pop());
System.out.println(pop());

Expected Behavior:
Thread 2 items from a stack are popped in
LIFO order

How to fix this?

class Stack {

 private E[] array = (E[])new Object[SIZE];

 private int index = -1;

 synchronized boolean isEmpty() { … }

 synchronized void push(E val) { … }

 synchronized E pop() { … }

 E peek(){

 E ans = pop();

push(ans);

return ans;

 }

}

Make a bigger critical section

How to fix this?

class Stack {

 private E[] array = (E[])new Object[SIZE];

 private int index = -1;

 synchronized boolean isEmpty() { … }

 synchronized void push(E val) { … }

 synchronized E pop() { … }

 synchronized E peek(){

 E ans = pop();

push(ans);

return ans;

 }

}

Make a bigger critical section

Did this fix it?

class Stack {

 private E[] array = (E[])new Object[SIZE];

 private int index = -1;

 synchronized boolean isEmpty() { … }

 synchronized void push(E val) { … }

 synchronized E pop() { … }

 E peek(){

 return array[index];

 }

}

No! Now it has a data race!

Parallel Code Conventional Wisdom

Memory Categories

All memory must fit one of three categories:

1. Thread Local: Each thread has its own copy

2. Shared and Immutable: There is just one copy, but nothing will ever
write to it

3. Shared and Mutable: There is just one copy, it may change
• Requires Synchronization!

Thread Local Memory

• Whenever possible, avoid sharing resources

• Dodges all race conditions, since no other threads can touch it!
• No synchronization necessary! (Remember Ahmdal’s law)

• Use whenever threads do not need to communicate using the
resource
• E.g., each thread should have its on Random object

• In most cases, most objects should be in this category

Immutable Objects

• Whenever possible, avoid changing objects
• Make new objects instead

• Parallel reads are not data races
• If an object is never written to, no synchronization necessary!

• Many programmers over-use mutation, minimize it

Shared and Mutable Objects

• For everything else, use locks

• Avoid all data races
• Every read and write should be projected with a lock, even if it “seems safe”

• Almost every Java/C program with a data race is wrong

• Even without data races, it still may be incorrect
• Watch for bad interleavings as well!

Consistent Locking

• For each location needing synchronization, have a lock that is always
held when reading or writing the location

• The same lock can (and often should) “guard” multiple fields/objects
• Clearly document what each lock guards!

• In Java, the lock should usually be the object itself (i.e. “this”)

• Have a mapping between memory locations and lock objects and
stick to it!

Lock Granularity

• Coarse Grained: Fewer locks guarding more things each
• One lock for an entire data structure

• One lock shared by multiple objects (e.g. one lock for all bank accounts)

• Fine Grained: More locks guarding fewer things each
• One lock per data structure location (e.g. array index)

• One lock per object or per field in one object (e.g. one lock for each account)

• Note: there’s really a continuum between them…

Example: Separate Chaining Hashtable

• Coarse-grained: One lock for the entire hashtable

• Fine-grained: One lock for each bucket

• Which supports more parallelism in insert and find?

• Which makes rehashing easier?

• What happens if you want to have a size field?

Tradeoffs

• Coarse-Grained Locking:
• Simpler to implement and avoid race conditions

• Faster/easier to implement operations that access multiple locations (because all
guarded by the same lock)

• Much easier for operations that modify data-structure shape

• Fine-Grained Locking:
• More simultaneous access (performance when coarse grained would lead to

unnecessary blocking)

• Can make multi-location operations more difficult: say, rotations in an AVL tree

• Guideline:
• Start with coarse-grained, make finer only as necessary to improve performance

Similar But Separate Issue: Critical Section
Granularity
• Coarse-grained

• For every method that needs a lock, put the entire method body in a lock

• Fine-grained
• Keep the lock only for the sections of code where it’s necessary

• Guideline:
• Try to structure code so that expensive operations (like I/O) can be done

outside of your critical section

• E.g., if you’re trying to print all the values in a tree, maybe copy items into an
array inside your critical section, then print the array’s contents outside.

Atomicity

• Atomic: indivisible

• Atomic operation: one that should be thought of as a single step

• Some sequences of operations should behave as if they are one unit
• Between two operations you may need to avoid exposing an intermediate

state

• Usually ADT operations should be atomic
• You don’t want another thread trying to do an insert while another thread is rotating the

AVL tree

• Think first in terms of what operations need to be atomic
• Design critical sections and locking granularity based on these decisions

Use Pre-Tested Code

• Whenever possible, use built-in libraries!

• Other people have already invested tons of effort into making things
both efficient and correct, use their work when you can!
• Especially true for concurrent data structures

• Use thread-safe data structures when available
• E.g. Java as ConcurrentHashMap

Deadlock

• Occurs when two or more threads are mutually blocking each other

• T1 is blocked by T2, which is blocked by T3, …, Tn is blocked by T1
• A cycle of blocking

Bank Account

class BankAccount {

 …

 synchronized void withdraw(int amt) {…}

 synchronized void deposit(int amt) {…}

 synchronized void transferTo(int amt, BankAccount a) {

 this.withdraw(amt);

 a.deposit(amt);

 }

}

The Deadlock

x.transferTo(1,y);

Thread 1:

y.transferTo(1,x);

Thread 2:

acquire lock for account x b/c transferTo is synchronized
acquire lock for account y b/c deposit is synchronized
release lock for account y after depost
release lock for account x at end of transferTo

Expected Behavior:
Thread 2 items from a stack are popped in
LIFO order

acquire lock for account y b/c transferTo is synchronized
acquire lock for account x b/c deposit is synchronized
release lock for account x after deposit
release lock for account y at end of transferTo

The Deadlock

x.transferTo(1,y);

Thread 1:

y.transferTo(1,x);

Thread 2:

acquire lock for account x b/c transferTo is synchronized

acquire lock for account y b/c deposit is synchronized

release lock for account y after depost

release lock for account x at end of transferTo

Expected Behavior:
Thread 2 items from a stack are popped in
LIFO order

acquire lock for account y b/c transferTo is synchronized

acquire lock for account x b/c deposit is synchronized

release lock for account x after deposit

release lock for account y at end of transferTo

Resolving Deadlocks

• Deadlocks occur when there are multiple locks necessary to complete a
task and different threads may obtain them in a different order

• Option 1:
• Have a coarser lock granularity
• E.g. one lock for ALL bank accounts

• Option 2:
• Have a finer critical section so that only one lock is needed at a time
• E.g. instead of a synchronized transferTo, have the withdraw and deposit steps locked

separately

• Option 3:
• Force the threads to always acquire the locks in the same order
• E.g. make transferTo acquire both locks before doing either the withdraw or deposit,

make sure both threads agree on the order to aquire

Option 1: Coarser Locking

static final Object BANK = new Object();

class BankAccount {

 …

 synchronized void withdraw(int amt) {…}

 synchronized void deposit(int amt) {…}

 void transferTo(int amt, BankAccount a) {

 synchronized(BANK){

 this.withdraw(amt);

 a.deposit(amt);

 }

 }

}

Option 2: Finer Critical Section

class BankAccount {

 …

 synchronized void withdraw(int amt) {…}

 synchronized void deposit(int amt) {…}

 void transferTo(int amt, BankAccount a) {

 synchronized(this){

 this.withdraw(amt);

 }

 synchronized(a){

 a.deposit(amt);

 }

 }

}

Option 3: First Get All Locks In A Fixed Order
class BankAccount {

 …

 synchronized void withdraw(int amt) {…}

 synchronized void deposit(int amt) {…}

 void transferTo(int amt, BankAccount a) {

 if (this.acctNum < a.acctNum){

 synchronized(this){

 synchronized(a){

 this.withdraw(amt);

 a.deposit(amt);

 } } }

 else {

 synchronized(a){

 synchronized(this){

 this.withdraw(amt);

 a.deposit(amt);

 } } }

 }

}

	Slide 1: CSE 332 Autumn 2024 Lecture 23: Concurrency
	Slide 2: Memory Sharing With ForkJoin
	Slide 3: Example: Shared Queue
	Slide 4: Concurrent Programming
	Slide 5: Bank Account Example
	Slide 6: Bank Account Example - Parallel
	Slide 7: Interleaving
	Slide 8: A “Good” Interleaving
	Slide 9: A “Bad” Interleaving
	Slide 10: A Bad Fix
	Slide 11: A still “Bad” Interleaving
	Slide 12: What we want – Mutual Exclusion
	Slide 13: A Bad attempt at Mutual Exclusion
	Slide 14: A still “Bad” Interleaving
	Slide 15: Solution
	Slide 16: Almost Correct Bank Account Example
	Slide 17: Try…Finally
	Slide 18: Correct (but not Java) Bank Account Example
	Slide 19: A still “Bad” Interleaving
	Slide 20: What’s wrong here…
	Slide 21: Re-entrant Lock (Recursive Lock)
	Slide 22: Re-entrant Lock Details
	Slide 23: Java’s Re-entrant Lock Class
	Slide 24: How this looks in Java
	Slide 25: Java Synchronized Keyword
	Slide 26: Back Account Using Synchronize (Attempt 1)
	Slide 27: Back Account Using Synchronize (Attempt 2)
	Slide 28: More Syntactic Sugar!
	Slide 29: Back Account Using Synchronize (Final)
	Slide 30: Race Condition
	Slide 31: Example: Shared Stack (no problems so far)
	Slide 32: Race Condition, but no Data Race
	Slide 33: Race Condition, including a Data Race
	Slide 34: Peek and isEmpty
	Slide 35: Peek and Push
	Slide 36: Peek and Push
	Slide 37: How to fix this?
	Slide 38: How to fix this?
	Slide 39: Did this fix it?
	Slide 40: Parallel Code Conventional Wisdom
	Slide 41: Memory Categories
	Slide 42: Thread Local Memory
	Slide 43: Immutable Objects
	Slide 44: Shared and Mutable Objects
	Slide 45: Consistent Locking
	Slide 46: Lock Granularity
	Slide 47: Example: Separate Chaining Hashtable
	Slide 48: Tradeoffs
	Slide 49: Similar But Separate Issue: Critical Section Granularity
	Slide 50: Atomicity
	Slide 51: Use Pre-Tested Code
	Slide 52: Deadlock
	Slide 53: Bank Account
	Slide 54: The Deadlock
	Slide 55: The Deadlock
	Slide 56: Resolving Deadlocks
	Slide 57: Option 1: Coarser Locking
	Slide 58: Option 2: Finer Critical Section
	Slide 59: Option 3: First Get All Locks In A Fixed Order

