CSE 332 Autumn 2024 Lecture 19: Graphs 3

Nathan Brunelle

http://www.cs.uw.edu/332

Breadth-First Search

- Input: a node s
- Behavior: Start with node *s*, visit all neighbors of *s*, then all neighbors of neighbors of *s*, ...
- Visits every node reachable from s in order of distance
- Output:
 - How long is the shortest path?
 - Is the graph connected?

BFS

Running time: $\Theta(|V| + |E|)$

```
void bfs(graph, s){
      found = new Queue();
      found.enqueue(s);
      mark s as "visited";
      While (!found.isEmpty()){
            current = found.dequeue();
            for (v : neighbors(current)){
                   if (! v marked "visited"){
                         mark v as "visited";
                         found.enqueue(v);
```

Find Distance (unweighted)

Idea: when it's seen, remember its "layer" depth!

```
int findDistance(graph, s, t){
       found = new Queue();
       layer = 0;
       found.enqueue(s);
       mark s as "visited";
       While (!found.isEmpty()){
               current = found.dequeue();
               layer = depth of current;
               for (v : neighbors(current)){
                      if (! v marked "visited"){
                              mark v as "visited";
                              depth of v = layer + 1;
                              found.enqueue(v);
       return depth of t;
```

Depth-First Search

- Input: a node s
- Behavior: Start with node s, visit one neighbor of s, then all nodes reachable from that neighbor of s, then another neighbor of s,...
 - Before moving on to the second neighbor of s, visit everything reachable from the first neighbor of s
- Output:
 - Does the graph have a cycle?
 - A **topological sort** of the graph.

DFS (non-recursive)

Running time: $\Theta(|V| + |E|)$

```
void dfs(graph, s){
      found = new Stack();
      found.pop(s);
      mark s as "visited";
      While (!found.isEmpty()){
             current = found.pop();
             for (v : neighbors(current)){
                   if (! v marked "visited"){
                          mark v as "visited";
                          found.push(v);
```

DFS Recursively (more common)

```
void dfs(graph, curr){
      mark curr as "visited";
      for (v : neighbors(current)){
             if (! v marked "visited"){
                    dfs(graph, v);
      mark curr as "done";
```


DFS – Worked Example

Starting from the current node:
for each unvisited neighbor:
mark the neighbor as visited
do a DFS from the neighbor
mark the current node as done

Node	Visited?	Done?	Other Info
1	7		
2	7		
3			
4			
5	7		
6		_	
7	7		
8		·	
9	1		

Using DFS

- Consider the "visited times" and "done times"
- Edges can be categorized:
 - Tree Edge
 - (a, b) was followed when pushing
 - (a, b) when b was unvisited when we were at a
 - Back Edge

- (a, b) goes to an "ancestor"
- a and b visited but not done when we saw (a,b)
- $t_{visited}(b) < t_{visited}(a) < t_{done}(a) < t_{done}(b)$
- Forward Edge
 - (a, b) goes to a "descendent"
 - b was visited and done between when a was visited and done
 - $t_{visited}(a) < t_{visited}(b) < t_{done}(b) < t_{done}(a)$
- Cross Edge
 - (a, b) goes to a node that doesn't connect to a
 - b was seen and done before a was ever visited
 - $t_{done}(b) < t_{visited}(a)$

Back Edges

- Behavior of DFS:
 - "Visit everything reachable from the current node before going back"
- Back Edge:
 - The current node's neighbor is an "in progress" node
 - Since that other node is "in progress", the current node is reachable from it
 - The back edge is a path to that other node
 - Cycle!

Idea: Look for a back edge!

Cycle Detection

```
boolean hasCycle(graph, curr){
       mark curr as "visited";
       cycleFound = false;
       for (v : neighbors(current)){
          if (v marked "visited" &&! v marked "done"){
                      cycleFound=true;/
              if (! v marked "visited" && !cycleFound){
                      cycleFound = hasCycle(graph, v);
       mark curr as "done";
       return cycleFound;
                                                            11
```

Cycle Detection – Worked Example

Starting from the current node: for each non-done neighbor:

if the neighbor is visited:

we found a cycle!

else:

mark the neighbor as visited do a DFS from the neighbor mark the current node as done

Node	Visited?	Done?	Other Info
1			
2			
3			
4			
5			
6			
7			
8			
9			

(Call)		
Stack:		

Topological Sort

• A Topological Sort of a directed acyclic graph G = (V, E) is a permutation of V such that if $(u, v) \in E$ then u is before v in the permutation

DFS Recursively

```
void dfs(graph, curr){
      mark curr as "visited";
      for (v : neighbors(current)){
             if (! v marked "visited"){
                    dfs(graph, v);
      mark curr as "done";
```

Idea: List in reverse order by "done" time

DFS: Topological sort

```
List topSort(graph){
         List<Nodes> done = new List<>();
         for (Node v : graph.vertices){
                  if (!v.visited){
                           finishTime(graph, v, finished);
         done.reverse();
         return done;
void finishTime(graph, curr, finished){
         curr.visited = true;
         for (Node v : curr.neighbors){
                  if (!v.visited){
                           finishTime(graph, v, finished);
         done.add(curr)
```

Idea: List in reverse order by "done" time

Topological Sort- Worked Example

Starting from the current node:

for each non-done neighbor:

if the neighbor is visited: we found a cycle!

else:

mark the neighbor as visited do a DFS from the neighbor mark the current node as done add current node to finished

Node	Visited?	Done?	Other Info
1			
2			
3			
4			
5			
6			
7			
8			
9			

(Call) Stack:					
finished:					

Single-Source Shortest Path

Find the quickest way to get from UVA to each of these other places

Given a graph G = (V, E) and a start node $s \in V$, for each $v \in V$ find the least-weight path from $s \to v$ (call this weight $\delta(s, v)$)

(assumption: all edge weights are positive)

Dijkstra's Algorithm

- Input: graph with **no negative edge weights**, start node **s**, end node t
- Behavior: Start with node s, repeatedly go to the incomplete node "nearest" to s, stop when
- Output:
 - Distance from start to end
 - Distance from start to every node

End: 8

Node	Done?	Distance
0	F	0
1	F	∞
2	F	∞
3	F	∞
4	F	∞
5	F	∞
6	F	∞
7	F	∞
8	F	∞

Idea: When a node is the closest not-done thing to the start, we have found its shortest path

Extract from priority queue Mark extracted node as done for each not-done neighbor: Update its distance if we found a better path

End: 8

Node	Done?	Distance	
0	T	0	
1	F	10 <	
2	F	12	
3	F	∞	
4	F	∞	
5	F	∞	
6	F	∞	
7	F	∞	
8	F	∞	

Idea: When a node is the closest not-done thing to the start, we have found its shortest path

Extract from priority queue Mark extracted node as done for each not-done neighbor: Update its distance if we found a better path

End: 8

Node	Done?	Distance	
0	Т	0	
1	Т	10	
2	F	12	
3	F	∞	
4	F	18	
5	F	∞	
6	F	∞	
7	F	∞	
8	F	∞	

Idea: When a node is the closest not-done thing to the start, we have found its shortest path

Extract from priority queue Mark extracted node as done for each not-done neighbor:

Update its distance if we found a better path

End: 8

Node	Done?	Distance
0	Т	0
1	Т	10
2	Т	12
3	F	15
4	F	18
5	F	13
6	F	∞
7	F	∞
8	F	∞

Idea: When a node is the closest not-done thing to the start, we have found its shortest path

Extract from priority queue Mark extracted node as done for each not-done neighbor: Update its distance if we found a better path

End: 8

Node	Done?	Distance
0	Т	0
1	Т	10
2	Т	12
3	F	14
4	F	18
5	Т	13
6	F	20
7	F	∞
8	F	∞

Idea: When a node is the closest not-done thing to the start, we have found its shortest path

Extract from priority queue Mark extracted node as done for each not-done neighbor:

Update its distance if we found a better path

End: 8

Node	Done?	Distance
0	Т	0
1	Т	10
2	Т	12
3	F	14
4	F	1
5	Т	13
6	F	20
7	F	∞
8	F	∞

What if we had a negativeweight edge?

Extract from priority queue Mark extracted node as done for each not-done neighbor:

Update its distance if we found a better path

End: 8

Node	Done?	Distance
0	Т	0
1	Т	10
2	Т	12
3	Т	14
4	F	1
5	Т	13
6	F	20
7	F	∞
8	F	∞

What if we had a negativeweight edge?

Extract from priority queue Mark extracted node as done for each not-done neighbor: Update its distance if we found a better path

End: 8

Node	Done?	Distance
0	Т	0
1	Т	10
2	Т	12
3	Т	14
4	F	1
5	Т	13
6	F	20
7	F	∞
8	F	∞

There's a better path!

What if we had a negativeweight edge?

Extract from priority queue Mark extracted node as done for each not-done neighbor: Update its distance if we found a better path

Dijkstra's Algorithm

```
int dijkstras(graph, start, end){
                                                                                         10
          distances = [\infty, \infty, \infty, ...]; // one index per node
          done = [False,False,False,...]; // one index per node
          PQ = new minheap();
          PQ.insert(0, start); // priority=0, value=start
          distances[start] = 0;
          (while (!PQ.isEmpty){____
                     current = PQ.deleteMin();
                     done[current] = true;
                     for (neighbor : current.neighbors){
                               if (!done[neighbor]){
                                          new dist = distances[current]+weight(current,neighbor);
                                          if(distances[neighbor] == \infty){
                                                     distances[neighbor] = new dist;
                                                     PQ.insert(new dist, neighbor);
                                          if (new_dist < distances[neighbor]){</pre>
                                                     distances[neighbor] = new_dist;
                                                     PQ.decreaseKey(new_dist,neighbor); }
          return distances[end]
```

Dijkstra's Algorithm: Running Time

- How many total priority queue operations are necessary?
 - How many times is each node added to the priority queue?
 - How many times might a node's priority be changed?
- What's the running time of each priority queue operation?
- Overall running time:
 - $\Theta(|E|\log|V|)$

- Claim: when a node is removed from the priority queue, we have found its shortest path
- Induction over number of completed nodes
- Base Case:
- Inductive Step:

- Claim: when a node is removed from the priority queue, its distance is that of the shortest path
- Induction over number of completed nodes
- Base Case: Only the start node removed
 - It is indeed 0 away from itself
- Inductive Step:
 - If we have correctly found shortest paths for the first k nodes, then when we remove node k+1 we have found its shortest path

• Suppose a is the next node removed from the queue. What do we know bout a?

- Suppose a is the next node removed from the queue.
 - No other node incomplete node has a shorter path discovered so far
- Claim: no undiscovered path to a could be shorter
 - ullet Consider any other incomplete node b that is 1 edge away from a complete node
 - *a* is the closest node that is one away from a complete node
 - Thus no path that includes b can be a shorter path to a
 - Therefore the shortest path to *a* must use only complete nodes, and therefore we have found it already!

- Suppose *a* is the next node removed from the queue.
 - No other node incomplete node has a shorter path discovered so far
- Claim: no undiscovered path to a could be shorter
 - ullet Consider any other incomplete node b that is 1 edge away from a complete node
 - a is the closest node that is one away from a complete node
 - No path from b to a can have negative weight
 - Thus no path that includes b can be a shorter path to a
 - Therefore the shortest path to *a* must use only complete nodes, and therefore we have found it already!

