CSE 332 Autumn 2024
Lecture 19: Graphs 3

Nathan Brunelle
http://www.cs.uw.edu/332

http://www.cs.uw.edu/332

Breadth-First Search

* Input: anode s

* Behavior: Start with node s, visit all neighbors of s, then all neighbors
of neighbors of s, ...

* Visits every node reachable from s in order of distance

* Output: o
 How long is the shortest path? @
* |s the graph connected? o 9

void bfs(graph, s){
BFS found = new Queue();

o ® found.enq:Je.u.e(s)’i
0O mark s as “visited”;

@), G While (!found.isEmpty()){
O current = found.dequeue();
O for (v : neighbors(current)){
® O if (! v marked “visited”){
mark v as “visited”;
found.enqueue(v);

Running time: O(|V| + |E|) }

Find Distance (unweighted) " f'”d?;Ztﬁgieﬁir@pggi’u%;
layer = 0;
found.enqueue(s);
mark s as “visited”;
While (!found.isEmpty()){
current = found.dequeue();
(9] layer = depth of current;
for (v : neighbors(current)){
if (! v marked “visited”){
mark v as “visited”;
depth of v = layer + 1;

ldea: when it’s seen, remember found.enqueue(v);
its “layer” depth! } }

}

return depth of t;

Depth-First Search

* Input: anode s

* Behavior: Start with node s, visit one neighbor of s, then all nodes
reachable from that neighbor of s, then another neighbor of s,...

* Before moving on to the second neighbor of s, visit everything reachable
from the first neighbor of s

1 2
* Output:) ONEE
* Does the graph have a cycle? 0
« A topological sort of the graph. @ 6@

;€

DFS (non-recursive) voiddfsigraph, s)

found = new Stack();
found.pop(s);

© G) mark s as “visited”;
While (!found.isEmpty()){
O 0 o current = found.pop();
for (v : neighbors(current)){
O if (! v marked “visited”){
O @ mark v as “visited”;
found.push(v);
Running time: O(|V| + |E|) }

DFS Recursively (more common)

void dfs(graph, curr){ /

mark curr as /visited”;
for (v : neighbors(current)){
if (! v marked “visited”){
dfs(graph, v);

}
} O

mark curr as @_ej; (\

DFS — Worked Example
28 2 e

J

O 00 N o U1 B W N =

Starting from the current node:
for each unvisited neighbor:

mark the neighbor as visited cal) [= /
do a DFS from the neighbor ~ _ stack | — {> / D)g | %

mark the current node as done .

Using DFS

e Consider the “visited times” and “done times”

* Edges can be categorized: — Visited : 1 _Visited : 2

o Done: 8~ :
Tree Edge bone: 7_ \isited : 3

* (a, b) was followed when pushing — Visited: 0
* (a,b) when b was unvisited when we were at a Done: 15

* Back Edge
5{ * (a,b) goes to an “ancestor”

* a and b visited but not done when we saw (a, b)

* tyisitea (D) < tyisitea(@) < taone(@) < tgone (b) (>Visited :
* Forward Edge

* (a,b) goes to a “descendent”

* b was visited and done between when a was visited and done

¢ tvisited (a) < tvisited (b) < tdone (b) < tdone (a)

(a, b) goes to a node that doesn’t connect to a
b was seen and done before a was ever visited

¢ tdone(b) < lyisited (a) ?

Back Edges

* Behavior of DFS:
* “Visit everything reachable from the current node before going back”

* Back Edge:

* The current node’s neighbor is an “in progress” node
* Since that other node is “in progress”, the current node is reachable from it

* The back edge is a path to that other node
* Cycle! @

¢ o

~o

ldea: Look for a back edge!

Cycle Detection

boolean hasCycle(graph, curr){
mark curr as “visited”;
cycleFound = false;

for (v : neighbors(current)){

@ ® — if (v marked “visited” && ! v marked “done”){
Rl

)7 chIeFound=truej/ -

\ ,

0 9 if (! v marked “visited” && IcycleFound){

(3] cycleFound = hasCycle(graph, v);

O @ }

}
mark curr as “done”;
return cycleFound;

} 11

Cycle Detection — Worked Example
Node | Visited? | Done? | otherinfo

Starting from the current node:
for each non-done neighbor:
if the neighbor is visited:
we found a cycle!

O 00 N o U1 B W N =

else: (Call
mark the neighbor as visited Stack:

do a DFS from the neighbor
mark the current node as done

12

Topological Sort

* A Topological Sort of a directed acyclic graph G = (V,E) is a
permutation of V such that if (u, v) € E then u is before v in the
permutation

—
—_— \

@@@@@@e@

I S o—=

13

DFS Recursively

void dfs(graph, curr){
mark curr as “visited”;
for (v : neighbors(current)){
if (! v marked “visited”){
dfs(graph, v);
}
}

mark curr as “done”;

ldea: List in reverse
order by “done” time

14

DFS: Topological sort

List topSort(graph){
List<Nodes> done = new List<>();
for (Node v : graph.vertices){
if (v.visited){

}
}

done.reverse();
return done;

}

void finishTime(graph, curr, finished){
curr.visited = true;
for (Node v : curr.neighbors){
if (Iv.visited){

finishTime(graph, v, finished);

} &~
)

done.add(curr)

finished:

ldea: List in reverse
order by “done” time

(3

4

-

2 |10 1”7

O//

O@O

Topological Sort— Worked Example
Node | Visited? | Done? | otherinfo

Starting from the current node:
for each non-done neighbor:
if the neighbor is visited:
we found a cycle!
else: (Call)
mark the neighbor as visited Stack:
do a DFS from the neighbor
mark the current node as done finished:
add current node to finished 16

O 00 N o U1 B W N =

15

Vi il g
A,
5' Gapyps>”

Find the quickest way to get from UVA to each of these other places

Given agraph G = (V,E) and astart node s € V, for each v € V find
the least-weight path from s = v (call this weight § (s, v))

(assumption: all edge weights are positive)

17

Dijkstra’s Algorithm

* Input: graph withgm negative edge weights, start node s, end node t

* Behavior: Start with node s, repeatedly go to the incomplete node
hearest” to s, stop when

* Output:
g (D——a)
e Distance from start to end 10 5
* Distance from start to every node / @
@ 9 2
@ > 9 Q
12 3
@ 1
11

18

ldea: When a node is the closest

DIJ kstra’s Algo rithm not-done thing to the start, we
Start: O have found its shortest path

Extract from priority queue
Mark extracted node as done
for each not-done neighbor:
Update its distance if we found a better path

19

Dijkstra’s Algorithm

Start: O

End: 8

ldea: When a node is the closest
not-done thing to the start, we
have found its shortest path

Extract from priority queue
Mark extracted node as done
for each not-done neighbor:
Update its distance if we found a better path

20

Dijkstra’s Algorithm

Start: O

End: 8

ldea: When a node is the closest
not-done thing to the start, we
have found its shortest path

Extract from priority queue
Mark extracted node as done
for each not-done neighbor:
Update its distance if we found a better path

21

ldea: When a node is the closest

DIJ kstra’s Algo rithm not-done thing to the start, we
Start: O have found its shortest path

Extract from priority queue
Mark extracted node as done
for each not-done neighbor:
Update its distance if we found a better path

22

Dijkstra’s Algorithm

Start: O

End: 8 L

rre’

ldea: When a node is the closest
not-done thing to the start, we
have found its shortest path

Extract from priority queue
Mark extracted node as done
for each not-done neighbor:
Update its distance if we found a better path

23

Dijkstra’s Algorithm

Start: O

End: 8

What if we had a negative-
weight edge?

Extract from priority queue
Mark extracted node as done
for each not-done neighbor:
Update its distance if we found a better path

24

Dijkstra’s Algorithm

Start: O

End: 8

What if we had a negative-
weight edge?

Extract from priority queue
Mark extracted node as done
for each not-done neighbor:
Update its distance if we found a better path

25

. , . What if we had a negative-
Dijkstra’s Algorithm weight edge?

Start: O

End: 8

Extract from priority queue
Mark extracted node as done

--_ for each not-done neighbor:
--_ Update its distance if we found a better path
--_ There’s a better path!

26

Dijkstra’s Algorithm

int dijkstras(graph, start, end){ @ 8 @
distances = [0, 00, 0,...]; // one index per node | 10 6
done = [False,False,False,...]; // one index per node C 7
PQ-= new minheap(); . Q g
PQ.insert(0, start); // priority=0, value=start @ 5

~—_distances[start] = 0;

while (PQ.isEmpty){ e log |/ . :
current = PQ.deleteMin(); @ 3
V done[current] = true;
for (neighbor : current.neighbors){ 1 @ 7
if (!done[neighbor]){
new_dist = distances[current]+weight(current,neighbor);

if(distances[neighbor] == co){
distances[neighbor] = new_dist;

PQ.insert(new dist, neighbor);
f) (new- ghbor) / Dj L

if (new_dist < distances[neighbor]){

return distances[end]

distances[neighbor] = new_dist;
PQ.decreaseKey(new_dist,neighbor); } M Y
g (V1epv ¥
L
}

Dijkstra’s Algorithm: Running Time

* How many total priority queue operations are necessary?
* How many times is each node added to the priority queue?
 How many times might a node’s priority be changed?

* What's the running time of each priority queue operation?

e Overall running time:
* O(|E]log|V])

Dijkstra’s Algorithm: Correctness

* Claim: when a node is removed from the priority queue, we have
found its shortest path

* Induction over number of completed nodes
* Base Case:
* Inductive Step:

Dijkstra’s Algorithm: Correctness

e Claim: when a node is removed from the
priority queue, its distance is that of the
shortest path

* Induction over number of completed nodes

* Base Case: Only the start node removed
* |tis indeed 0 away from itself

* Inductive Step:

* If we have correctly found shortest paths for the first
k nodes, then when we remove node k + 1 we have
found its shortest path

Dijkstra’s Algorithm: Correctness

e Suppose a is the next node removed from the
queue. What do we know bout a?

31

Dijkstra’s Algorithm: Correctness

e Suppose a is the next node removed from the queue.

* No other node incomplete node has a shorter path
discovered so far

* Claim: no undiscovered path to a could be shorter

e Consider any other incomplete node b that is 1 edge away
from a complete node

* ais the closest node that is one away from a complete node
e Thus no path that includes b can be a shorter path to a

* Therefore the shortest path to a must use only complete
nodes, and therefore we have found it already!

Dijkstra’s Algorithm: Correctness

e Suppose a is the next node removed from the queue.

* No other node incomplete node has a shorter path
discovered so far

* Claim: no undiscovered path to a could be shorter

e Consider any other incomplete node b that is 1 edge away
from a complete node

* ais the closest node that is one away from a complete node
* No path from b to a can have negative weight
e Thus no path that includes b can be a shorter path to a

* Therefore the shortest path to a must use only complete
nodes, and therefore we have found it already!

	Slide 1: CSE 332 Autumn 2024 Lecture 19: Graphs 3
	Slide 2: Breadth-First Search
	Slide 3: BFS
	Slide 4: Find Distance (unweighted)
	Slide 5: Depth-First Search
	Slide 6: DFS (non-recursive)
	Slide 7: DFS Recursively (more common)
	Slide 8: DFS – Worked Example
	Slide 9: Using DFS
	Slide 10: Back Edges
	Slide 11: Cycle Detection
	Slide 12: Cycle Detection – Worked Example
	Slide 13: Topological Sort
	Slide 14: DFS Recursively
	Slide 15: DFS: Topological sort
	Slide 16: Topological Sort– Worked Example
	Slide 17: Single-Source Shortest Path
	Slide 18: Dijkstra’s Algorithm
	Slide 19: Dijkstra’s Algorithm
	Slide 20: Dijkstra’s Algorithm
	Slide 21: Dijkstra’s Algorithm
	Slide 22: Dijkstra’s Algorithm
	Slide 23: Dijkstra’s Algorithm
	Slide 24: Dijkstra’s Algorithm
	Slide 25: Dijkstra’s Algorithm
	Slide 26: Dijkstra’s Algorithm
	Slide 27: Dijkstra’s Algorithm
	Slide 28: Dijkstra’s Algorithm: Running Time
	Slide 29: Dijkstra’s Algorithm: Correctness
	Slide 30: Dijkstra’s Algorithm: Correctness
	Slide 31: Dijkstra’s Algorithm: Correctness
	Slide 32: Dijkstra’s Algorithm: Correctness
	Slide 33: Dijkstra’s Algorithm: Correctness

