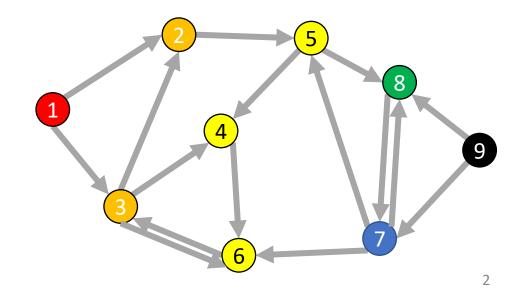
# CSE 332 Autumn 2024 Lecture 19: Graphs 3

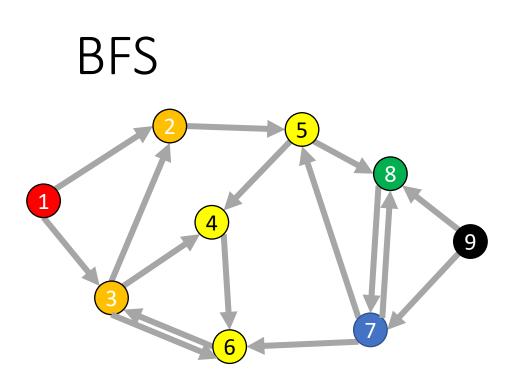
Nathan Brunelle

http://www.cs.uw.edu/332

### Breadth-First Search

- Input: a node s
- Behavior: Start with node *s*, visit all neighbors of *s*, then all neighbors of neighbors of *s*, ...
- Visits every node reachable from *s* in order of distance
- Output:
  - How long is the shortest path?
  - Is the graph connected?



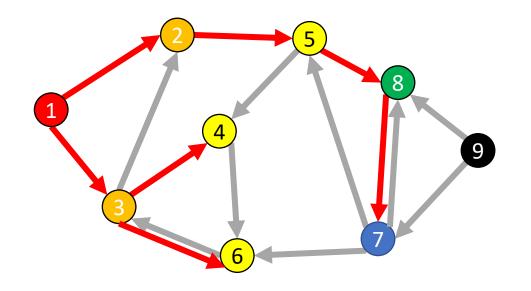


### Running time: $\Theta(|V| + |E|)$

void bfs(graph, s){ found = new Queue(); found.enqueue(s); mark s as "visited"; While (!found.isEmpty()){ current = found.dequeue(); for (v : neighbors(current)){ if (! v marked "visited"){ mark v as "visited"; found.enqueue(v);

3

### Find Distance (unweighted)



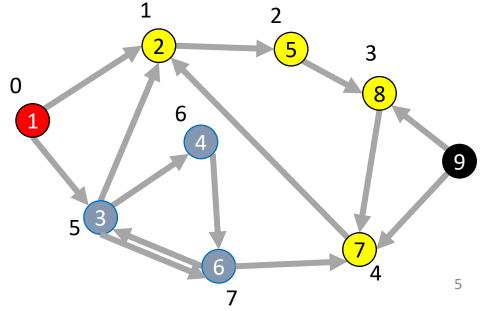
#### Idea: when it's seen, remember its "layer" depth!

int findDistance(graph, s, t){ found = new Queue(); layer = 0;found.enqueue(s); mark s as "visited"; While (!found.isEmpty()){ current = found.dequeue(); layer = depth of current; for (v : neighbors(current)){ if (! v marked "visited"){ mark v as "visited"; depth of v = layer + 1; found.enqueue(v);

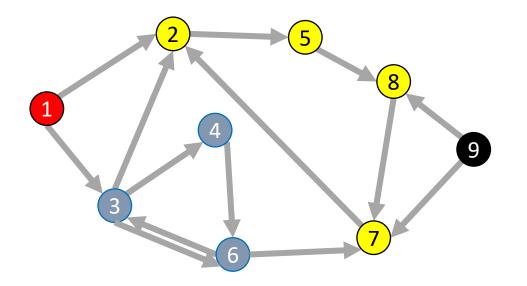
#### return depth of t;

### Depth-First Search

- Input: a node s
- Behavior: Start with node *s*, visit one neighbor of *s*, then all nodes reachable from that neighbor of *s*, then another neighbor of *s*,...
  - Before moving on to the second neighbor of *s*, visit everything reachable from the first neighbor of *s*
- Output:
  - Does the graph have a cycle?
  - A topological sort of the graph.



# DFS (non-recursive)

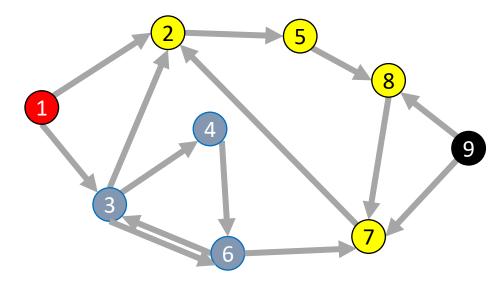


#### Running time: $\Theta(|V| + |E|)$

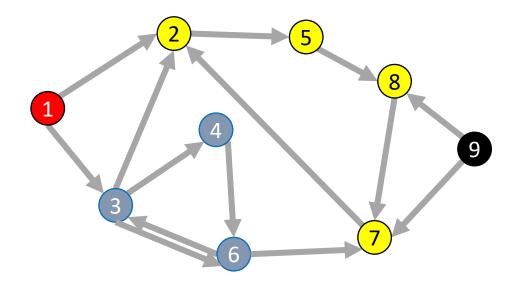
void dfs(graph, s){ found = new Stack(); found.pop(s); mark s as "visited"; While (!found.isEmpty()){ current = found.pop(); for (v : neighbors(current)){ if (! v marked "visited"){ mark v as "visited"; found.push(v);

## DFS Recursively (more common)

```
void dfs(graph, curr){
mark curr as "visited";
for (v : neighbors(current)){
    if (! v marked "visited"){
        dfs(graph, v);
        }
    mark curr as "done";
```



### DFS – Worked Example



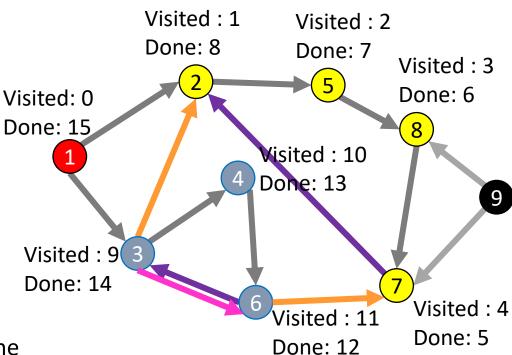
Starting from the current node: for each unvisited neighbor: mark the neighbor as visited do a DFS from the neighbor mark the current node as done

Stack:

|        | Node | Visited? | Done? | Other Info |
|--------|------|----------|-------|------------|
|        | 1    |          |       |            |
|        | 2    |          |       |            |
|        | 3    |          |       |            |
|        | 4    |          |       |            |
|        | 5    |          |       |            |
|        | 6    |          |       |            |
|        | 7    |          |       |            |
|        | 8    |          |       |            |
|        | 9    |          |       |            |
|        |      |          |       |            |
| (Call) |      |          |       |            |

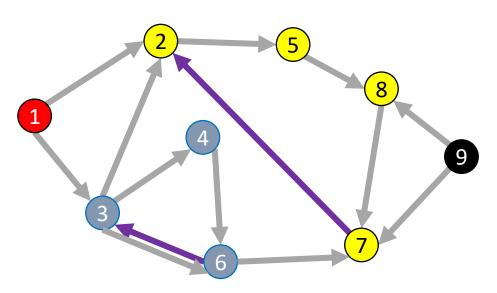
# Using DFS

- Consider the "visited times" and "done times"
- Edges can be categorized:
  - Tree Edge
    - (*a*, *b*) was followed when pushing
    - (*a*, *b*) when *b* was unvisited when we were at *a*
  - Back Edge
    - (*a*, *b*) goes to an "ancestor"
    - *a* and *b* visited but not done when we saw (*a*, *b*)
    - $t_{visited}(b) < t_{visited}(a) < t_{done}(a) < t_{done}(b)$
  - Forward Edge
    - (*a*, *b*) goes to a "descendent"
    - b was visited and done between when a was visited and done
    - $t_{visited}(a) < t_{visited}(b) < t_{done}(b) < t_{done}(a)$
  - Cross Edge
    - (*a*, *b*) goes to a node that doesn't connect to *a*
    - *b* was seen and done before *a* was ever visited
    - $t_{done}(b) < t_{visited}(a)$

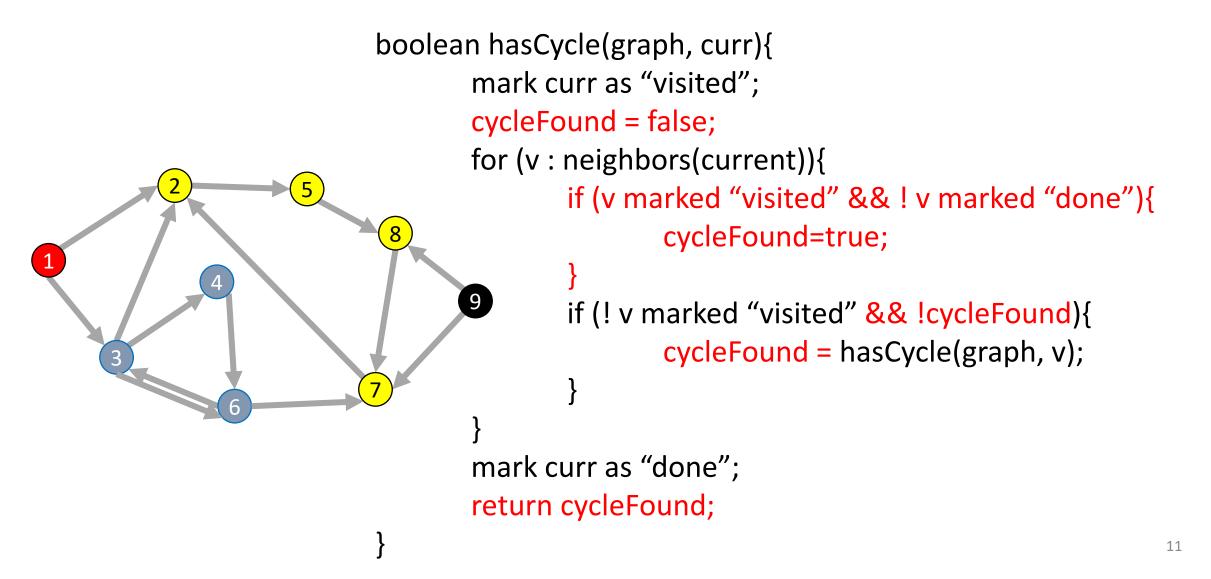


# Back Edges

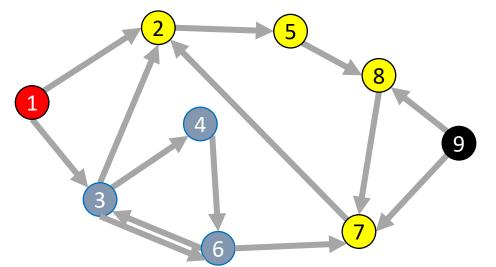
- Behavior of DFS:
  - "Visit everything reachable from the current node before going back"
- Back Edge:
  - The current node's neighbor is an "in progress" node
  - Since that other node is "in progress", the current node is reachable from it
  - The back edge is a path to that other node
  - Cycle!



# Cycle Detection



### Cycle Detection – Worked Example



Starting from the current node: for each non-done neighbor: if the neighbor is visited: we found a cycle! else:

mark the neighbor as visited do a DFS from the neighbor mark the current node as done

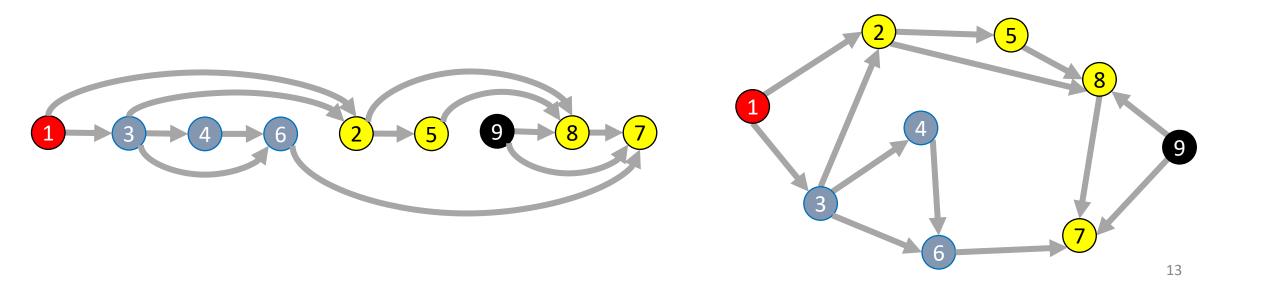
| Node | Visited? | Done? | Other Info |
|------|----------|-------|------------|
| 1    |          |       |            |
| 2    |          |       |            |
| 3    |          |       |            |
| 4    |          |       |            |
| 5    |          |       |            |
| 6    |          |       |            |
| 7    |          |       |            |
| 8    |          |       |            |
| 9    |          |       |            |

(Call) Stack:



### **Topological Sort**

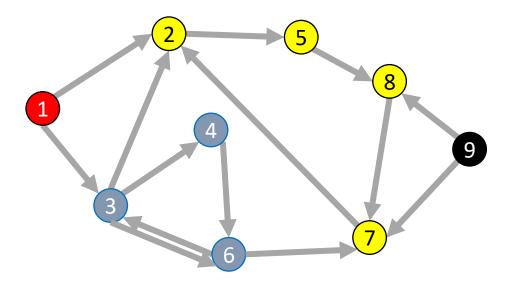
• A Topological Sort of a **directed acyclic graph** G = (V, E) is a permutation of V such that if  $(u, v) \in E$  then u is before v in the permutation



### **DFS** Recursively

```
void dfs(graph, curr){
mark curr as "visited";
for (v : neighbors(current)){
    if (! v marked "visited"){
        dfs(graph, v);
        }
    mark curr as "done";
```

#### Idea: List in reverse order by "done" time



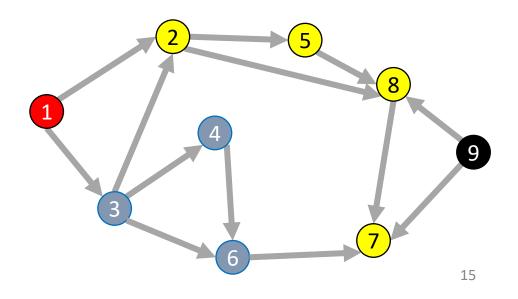
## DFS: Topological sort

```
List topSort(graph){
     List<Nodes> done = new List<>();
     for (Node v : graph.vertices){
              if (!v.visited){
                       finishTime(graph, v, finished);
     done.reverse();
     return done;
```

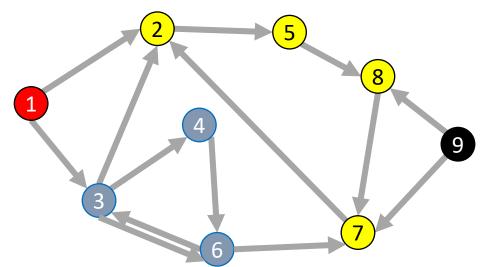
#### Idea: List in reverse order by "done" time



void finishTime(graph, curr, finished){
curr.visited = true;
for (Node v : curr.neighbors){
 if (!v.visited){
 finishTime(graph, v, finished);
 }
 }
 done.add(curr)



### Topological Sort– Worked Example

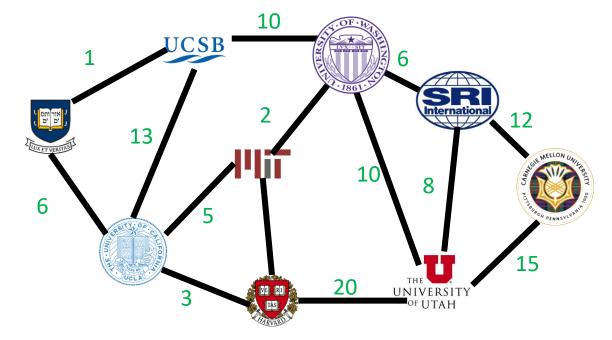


Starting from the current node: for each non-done neighbor: if the neighbor is visited: we found a cycle! else:

mark the neighbor as visited do a DFS from the neighbor mark the current node as done add current node to finished

|                  | Node | Visited? | Done? | Other Info |
|------------------|------|----------|-------|------------|
|                  | 1    |          |       |            |
|                  | 2    |          |       |            |
|                  | 3    |          |       |            |
|                  | 4    |          |       |            |
|                  | 5    |          |       |            |
|                  | 6    |          |       |            |
|                  | 7    |          |       |            |
|                  | 8    |          |       |            |
|                  | 9    |          |       |            |
| (Call)<br>Stack: |      |          |       |            |
| finished:        |      |          |       | 16         |

### Single-Source Shortest Path



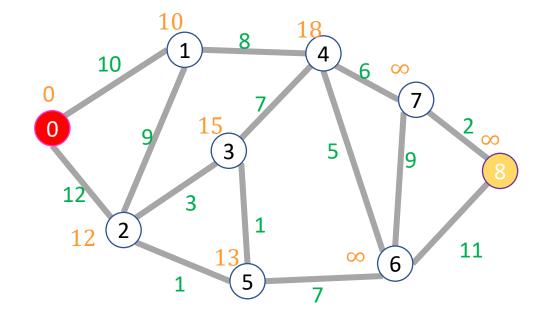
Find the quickest way to get from UVA to each of these other places

Given a graph G = (V, E) and a start node  $s \in V$ , for each  $v \in V$  find the least-weight path from  $s \rightarrow v$  (call this weight  $\delta(s, v)$ )

(assumption: all edge weights are positive)

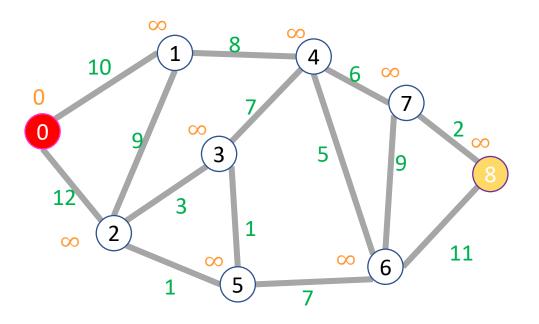
# Dijkstra's Algorithm

- Input: graph with **no negative edge weights**, start node *s*, end node *t*
- Behavior: Start with node *s*, repeatedly go to the incomplete node "nearest" to *s*, stop when
- Output:
  - Distance from start to end
  - Distance from start to every node



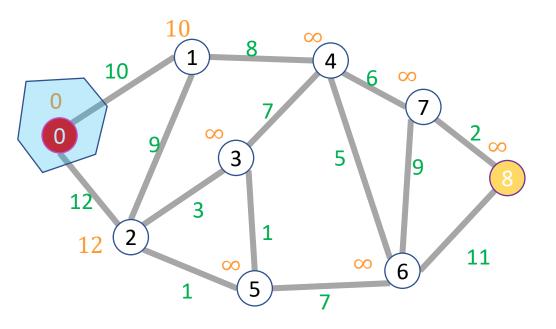
| Node | Done? | Distance |
|------|-------|----------|
| 0    | F     | 0        |
| 1    | F     | $\infty$ |
| 2    | F     | $\infty$ |
| 3    | F     | $\infty$ |
| 4    | F     | $\infty$ |
| 5    | F     | $\infty$ |
| 6    | F     | $\infty$ |
| 7    | F     | $\infty$ |
| 8    | F     | $\infty$ |

Idea: When a node is the closest not-done thing to the start, we have found its shortest path



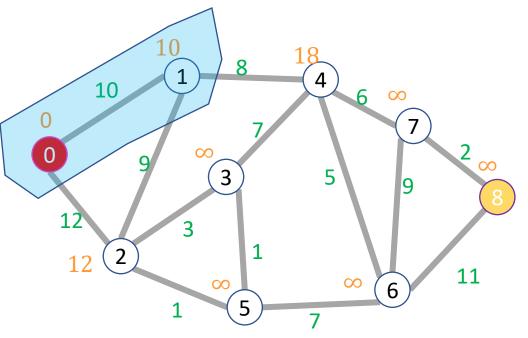
| Node | Done? | Distance |
|------|-------|----------|
| 0    | Т     | 0        |
| 1    | F     | 10       |
| 2    | F     | 12       |
| 3    | F     | $\infty$ |
| 4    | F     | $\infty$ |
| 5    | F     | $\infty$ |
| 6    | F     | $\infty$ |
| 7    | F     | $\infty$ |
| 8    | F     | $\infty$ |

Idea: When a node is the closest not-done thing to the start, we have found its shortest path



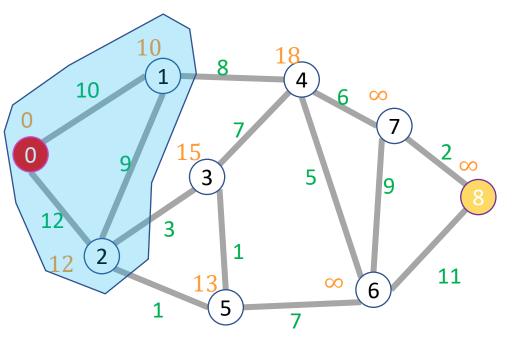
| Node | Done? | Distance |
|------|-------|----------|
| 0    | Т     | 0        |
| 1    | Т     | 10       |
| 2    | F     | 12       |
| 3    | F     | $\infty$ |
| 4    | F     | 18       |
| 5    | F     | $\infty$ |
| 6    | F     | $\infty$ |
| 7    | F     | $\infty$ |
| 8    | F     | $\infty$ |

Idea: When a node is the closest not-done thing to the start, we have found its shortest path



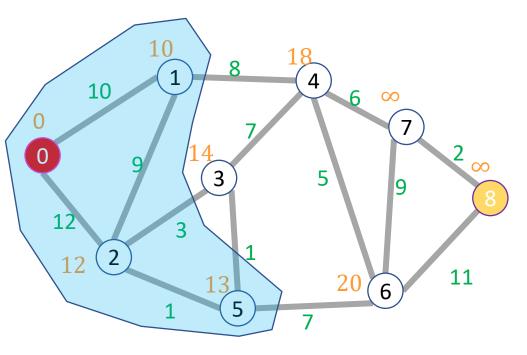
| Node | Done? | Distance |
|------|-------|----------|
| 0    | Т     | 0        |
| 1    | Т     | 10       |
| 2    | Т     | 12       |
| 3    | F     | 15       |
| 4    | F     | 18       |
| 5    | F     | 13       |
| 6    | F     | $\infty$ |
| 7    | F     | $\infty$ |
| 8    | F     | $\infty$ |

Idea: When a node is the closest not-done thing to the start, we have found its shortest path



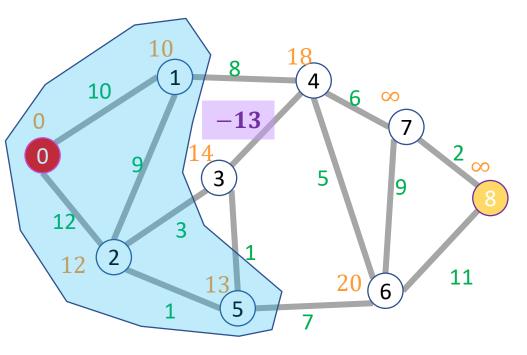
| Node | Done? | Distance |
|------|-------|----------|
| 0    | Т     | 0        |
| 1    | Т     | 10       |
| 2    | Т     | 12       |
| 3    | F     | 14       |
| 4    | F     | 18       |
| 5    | т     | 13       |
| 6    | F     | 20       |
| 7    | F     | $\infty$ |
| 8    | F     | $\infty$ |

Idea: When a node is the closest not-done thing to the start, we have found its shortest path



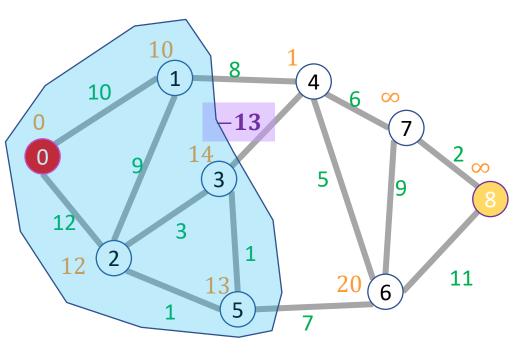
| Node | Done? | Distance |
|------|-------|----------|
| 0    | Т     | 0        |
| 1    | Т     | 10       |
| 2    | Т     | 12       |
| 3    | F     | 14       |
| 4    | F     | 18       |
| 5    | Т     | 13       |
| 6    | F     | 20       |
| 7    | F     | $\infty$ |
| 8    | F     | $\infty$ |

#### What if we had a negativeweight edge?



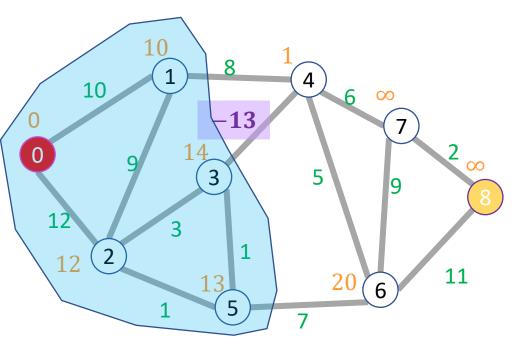
| Node | Done? | Distance |
|------|-------|----------|
| 0    | Т     | 0        |
| 1    | Т     | 10       |
| 2    | Т     | 12       |
| 3    | т     | 14       |
| 4    | F     | 1        |
| 5    | Т     | 13       |
| 6    | F     | 20       |
| 7    | F     | $\infty$ |
| 8    | F     | $\infty$ |

#### What if we had a negativeweight edge?



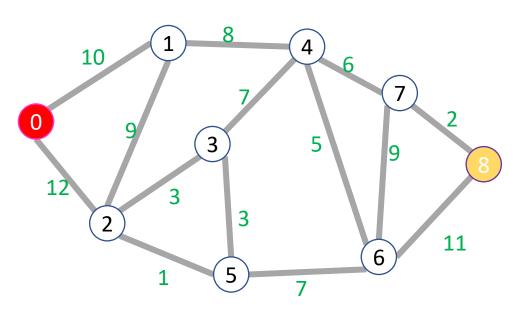
| Node | Done? | Distance |                        |
|------|-------|----------|------------------------|
| 0    | т     | 0        |                        |
| 1    | т     | 10       | There's a better path! |
| 2    | т     | 12       |                        |
| 3    | Т     | 14       |                        |
| 4    | F     | 1        |                        |
| 5    | т     | 13       |                        |
| 6    | F     | 20       |                        |
| 7    | F     | $\infty$ |                        |
| 8    | F     | $\infty$ |                        |

#### What if we had a negativeweight edge?



### Dijkstra's Algorithm

```
int dijkstras(graph, start, end){
      distances = [\infty, \infty, \infty, ...]; // one index per node
      done = [False, False, False,...]; // one index per node
      PQ = new minheap();
      PQ.insert(0, start); // priority=0, value=start
      distances[start] = 0;
      while (!PQ.isEmpty){
                 current = PQ.deleteMin();
                 done[current] = true;
                 for (neighbor : current.neighbors){
                           if (!done[neighbor]){
                                      new_dist = distances[current]+weight(current,neighbor);
                                      if(distances[neighbor] == \infty){
                                                 distances[neighbor] = new_dist;
                                                 PQ.insert(new dist, neighbor);
                                      if (new_dist < distances[neighbor]){</pre>
                                                 distances[neighbor] = new dist;
                                                 PQ.decreaseKey(new dist,neighbor); }
      return distances[end]
```

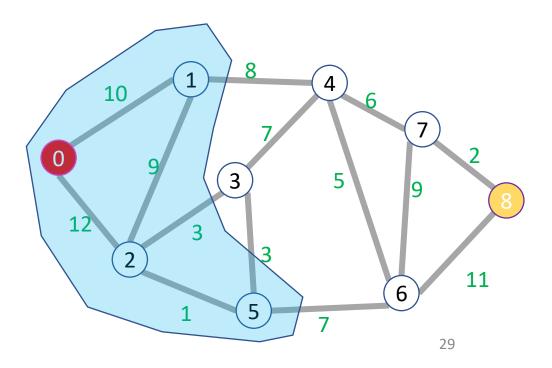


```
27
```

# Dijkstra's Algorithm: Running Time

- How many total priority queue operations are necessary?
  - How many times is each node added to the priority queue?
  - How many times might a node's priority be changed?
- What's the running time of each priority queue operation?
- Overall running time:
  - $\Theta(|E|\log|V|)$

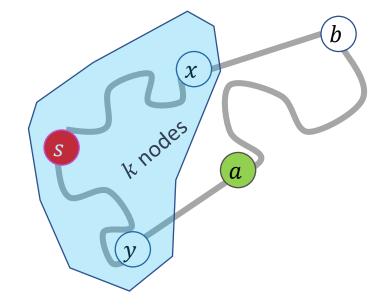
- Claim: when a node is removed from the priority queue, we have found its shortest path
- Induction over number of completed nodes
- Base Case:
- Inductive Step:



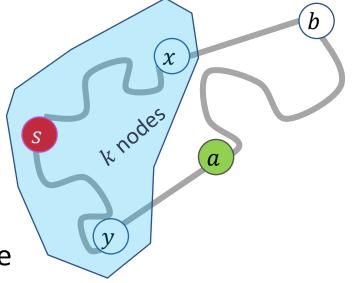
- Claim: when a node is removed from the priority queue, its distance is that of the shortest path
- Induction over number of completed nodes
- Base Case: Only the start node removed
  - It is indeed 0 away from itself
- Inductive Step:
  - If we have correctly found shortest paths for the first k nodes, then when we remove node k + 1 we have found its shortest path

| s knodes<br>y |
|---------------|
| V             |

• Suppose *a* is the next node removed from the queue. What do we know bout *a*?



- Suppose *a* is the next node removed from the queue.
  - No other node incomplete node has a shorter path discovered so far
- Claim: no undiscovered path to *a* could be shorter
  - Consider any other incomplete node *b* that is 1 edge away from a complete node
  - *a* is the closest node that is one away from a complete node
  - Thus no path that includes b can be a shorter path to a
  - Therefore the shortest path to *a* must use only complete nodes, and therefore we have found it already!



- Suppose *a* is the next node removed from the queue.
  - No other node incomplete node has a shorter path discovered so far
- Claim: no undiscovered path to *a* could be shorter
  - Consider any other incomplete node b that is 1 edge away from a complete node
  - *a* is the closest node that is one away from a complete node
  - No path from *b* to *a* can have negative weight
  - Thus no path that includes *b* can be a shorter path to *a*
  - Therefore the shortest path to *a* must use only complete nodes, and therefore we have found it already!

