
CSE 332 Autumn 2024
Lecture 19: Graphs 3

Nathan Brunelle

http://www.cs.uw.edu/332

http://www.cs.uw.edu/332

Breadth-First Search

• Input: a node 𝑠

• Behavior: Start with node 𝑠, visit all neighbors of 𝑠, then all neighbors
of neighbors of 𝑠, …

• Visits every node reachable from 𝑠 in order of distance

• Output:
• How long is the shortest path?

• Is the graph connected?

2

1

2

3

4

5

6
7

9

8

BFS

3

void bfs(graph, s){
 found = new Queue();
 found.enqueue(s);
 mark s as “visited”;
 While (!found.isEmpty()){
 current = found.dequeue();
 for (v : neighbors(current)){
 if (! v marked “visited”){
 mark v as “visited”;
 found.enqueue(v);
 }
 }
 }
}

1

2

3

4

5

6
7

9

8

Running time: Θ 𝑉 + 𝐸

Find Distance (unweighted)

4

int findDistance(graph, s, t){
 found = new Queue();
 layer = 0;
 found.enqueue(s);
 mark s as “visited”;
 While (!found.isEmpty()){
 current = found.dequeue();
 layer = depth of current;
 for (v : neighbors(current)){
 if (! v marked “visited”){
 mark v as “visited”;
 depth of v = layer + 1;
 found.enqueue(v);
 }
 }
 }
 return depth of t;
}

Idea: when it’s seen, remember
its “layer” depth!

1

2

3

4

5

6
7

9

8

Depth-First Search

• Input: a node 𝑠

• Behavior: Start with node 𝑠, visit one neighbor of 𝑠, then all nodes
reachable from that neighbor of 𝑠, then another neighbor of 𝑠,…
• Before moving on to the second neighbor of 𝑠, visit everything reachable

from the first neighbor of 𝑠

• Output:
• Does the graph have a cycle?

• A topological sort of the graph.

5

0

1 2

3

4

5

61

2

3

4

5

6
7

9

8

7

DFS (non-recursive)

6

void dfs(graph, s){
 found = new Stack();
 found.pop(s);
 mark s as “visited”;
 While (!found.isEmpty()){
 current = found.pop();
 for (v : neighbors(current)){
 if (! v marked “visited”){
 mark v as “visited”;
 found.push(v);
 }
 }
 }
}

Running time: Θ 𝑉 + 𝐸

1

2

3

4

5

6
7

9

8

DFS Recursively (more common)

7

void dfs(graph, curr){
 mark curr as “visited”;
 for (v : neighbors(current)){
 if (! v marked “visited”){
 dfs(graph, v);
 }
 }
 mark curr as “done”;
}

1

2

3

4

5

6
7

9

8

DFS – Worked Example

8

Starting from the current node:
 for each unvisited neighbor:
 mark the neighbor as visited
 do a DFS from the neighbor
 mark the current node as done

Node Visited? Done? Other Info

1

2

3

4

5

6

7

8

9

(Call)
Stack:

1

2

3

4

5

6
7

9

8

Using DFS

• Consider the “visited times” and “done times”

• Edges can be categorized:
• Tree Edge

• (𝑎, 𝑏) was followed when pushing
• (𝑎, 𝑏) when 𝑏 was unvisited when we were at 𝑎

• Back Edge
• (𝑎, 𝑏) goes to an “ancestor”
• 𝑎 and 𝑏 visited but not done when we saw (𝑎, 𝑏)

• 𝑡𝑣𝑖𝑠𝑖𝑡𝑒𝑑 𝑏 < 𝑡𝑣𝑖𝑠𝑖𝑡𝑒𝑑 𝑎 < 𝑡𝑑𝑜𝑛𝑒 𝑎 < 𝑡𝑑𝑜𝑛𝑒(𝑏)

• Forward Edge
• (𝑎, 𝑏) goes to a “descendent”
• 𝑏 was visited and done between when 𝑎 was visited and done

• 𝑡𝑣𝑖𝑠𝑖𝑡𝑒𝑑 𝑎 < 𝑡𝑣𝑖𝑠𝑖𝑡𝑒𝑑 𝑏 < 𝑡𝑑𝑜𝑛𝑒 𝑏 < 𝑡𝑑𝑜𝑛𝑒 𝑎

• Cross Edge
• (𝑎, 𝑏) goes to a node that doesn’t connect to 𝑎
• 𝑏 was seen and done before 𝑎 was ever visited
• 𝑡𝑑𝑜𝑛𝑒 𝑏 < 𝑡𝑣𝑖𝑠𝑖𝑡𝑒𝑑 𝑎 9

Visited: 0
Done: 15

Visited : 1
Done: 8

Visited : 2
Done: 7

Visited : 3
Done: 6

Visited : 4
Done: 5

1

2

3

4

5

6
7

9

8

Visited : 9
Done: 14

Visited : 10
Done: 13

Visited : 11
Done: 12

Back Edges

• Behavior of DFS:
• “Visit everything reachable from the current node before going back”

• Back Edge:
• The current node’s neighbor is an “in progress” node

• Since that other node is “in progress”, the current node is reachable from it

• The back edge is a path to that other node

• Cycle!

1

2

3

4

5

6
7

9

8

Cycle Detection

11

boolean hasCycle(graph, curr){
 mark curr as “visited”;
 cycleFound = false;
 for (v : neighbors(current)){
 if (v marked “visited” && ! v marked “done”){
 cycleFound=true;
 }
 if (! v marked “visited” && !cycleFound){
 cycleFound = hasCycle(graph, v);
 }
 }
 mark curr as “done”;
 return cycleFound;
}

1

2

3

4

5

6
7

9

8

Idea: Look for a back edge!

Cycle Detection – Worked Example

12

Starting from the current node:
 for each non-done neighbor:
 if the neighbor is visited:
 we found a cycle!
 else:
 mark the neighbor as visited
 do a DFS from the neighbor
 mark the current node as done

Node Visited? Done? Other Info

1

2

3

4

5

6

7

8

9

(Call)
Stack:

1

2

3

4

5

6
7

9

8

Topological Sort

• A Topological Sort of a directed acyclic graph 𝑮 = (𝑽, 𝑬) is a
permutation of 𝑉 such that if 𝑢, 𝑣 ∈ 𝐸 then 𝑢 is before 𝑣 in the
permutation

13

1

2

3

4

5

6
7

9

8

1 23 4 56 79 8

DFS Recursively

14

void dfs(graph, curr){
 mark curr as “visited”;
 for (v : neighbors(current)){
 if (! v marked “visited”){
 dfs(graph, v);
 }
 }
 mark curr as “done”;
}

1

2

3

4

5

6
7

9

8

Idea: List in reverse
order by “done” time

DFS: Topological sort

15

List topSort(graph){
 List<Nodes> done = new List<>();
 for (Node v : graph.vertices){
 if (!v.visited){
 finishTime(graph, v, finished);
 }
 }
 done.reverse();
 return done;
}

void finishTime(graph, curr, finished){
 curr.visited = true;
 for (Node v : curr.neighbors){
 if (!v.visited){
 finishTime(graph, v, finished);
 }
 }
 done.add(curr)
}

1

2

3

4

5

6
7

9

8

finished:

Idea: List in reverse
order by “done” time

Topological Sort– Worked Example

16

Starting from the current node:
 for each non-done neighbor:
 if the neighbor is visited:
 we found a cycle!
 else:
 mark the neighbor as visited
 do a DFS from the neighbor
 mark the current node as done
 add current node to finished

finished:

Node Visited? Done? Other Info

1

2

3

4

5

6

7

8

9

(Call)
Stack:

1

2

3

4

5

6
7

9

8

Single-Source Shortest Path

17

Find the quickest way to get from UVA to each of these other places

Given a graph 𝐺 = (𝑉, 𝐸) and a start node 𝑠 ∈ 𝑉, for each 𝑣 ∈ 𝑉 find
the least-weight path from 𝑠 → 𝑣 (call this weight 𝛿(𝑠, 𝑣))

(assumption: all edge weights are positive)

10

1 6

13
2

10

12

8

15
203

6 5

Dijkstra’s Algorithm

• Input: graph with no negative edge weights, start node 𝑠, end node 𝑡

• Behavior: Start with node 𝑠, repeatedly go to the incomplete node
“nearest” to 𝑠, stop when

• Output:
• Distance from start to end

• Distance from start to every node

18

10

2

7

11

95

6

1

7

3

1

8

12

90

1

2

3

4

5
6

8

70

10

12

15

18

13 ∞

∞

∞

Dijkstra’s Algorithm

19

Start: 0
End: 8

10

2

7

11

95

6

1

7

3

1

8

12

90

1

2

3

4

5
6

8

70

∞

∞

∞

∞

∞ ∞

∞

∞

Node Done? Distance

0 F 0

1 F ∞

2 F ∞

3 F ∞

4 F ∞

5 F ∞

6 F ∞

7 F ∞

8 F ∞

Idea: When a node is the closest
not-done thing to the start, we
have found its shortest path
Extract from priority queue
Mark extracted node as done
for each not-done neighbor:
 Update its distance if we found a better path

Dijkstra’s Algorithm

20

Start: 0
End: 8

10

2

7

11

95

6

1

7

3

1

8

12

90

1

2

3

4

5
6

8

70

10

12

∞

∞

∞ ∞

∞

∞

Node Done? Distance

0 T 0

1 F 10

2 F 12

3 F ∞

4 F ∞

5 F ∞

6 F ∞

7 F ∞

8 F ∞

Idea: When a node is the closest
not-done thing to the start, we
have found its shortest path
Extract from priority queue
Mark extracted node as done
for each not-done neighbor:
 Update its distance if we found a better path

Dijkstra’s Algorithm

21

Start: 0
End: 8

10

2

7

11

95

6

1

7

3

1

8

12

90

1

2

3

4

5
6

8

70

10

12

∞

18

∞ ∞

∞

∞

Node Done? Distance

0 T 0

1 T 10

2 F 12

3 F ∞

4 F 18

5 F ∞

6 F ∞

7 F ∞

8 F ∞

Idea: When a node is the closest
not-done thing to the start, we
have found its shortest path
Extract from priority queue
Mark extracted node as done
for each not-done neighbor:
 Update its distance if we found a better path

Dijkstra’s Algorithm

22

Start: 0
End: 8

10

2

7

11

95

6

1

7

3

1

8

12

90

1

2

3

4

5
6

8

70

10

12

15

18

13 ∞

∞

∞

Node Done? Distance

0 T 0

1 T 10

2 T 12

3 F 15

4 F 18

5 F 13

6 F ∞

7 F ∞

8 F ∞

Idea: When a node is the closest
not-done thing to the start, we
have found its shortest path
Extract from priority queue
Mark extracted node as done
for each not-done neighbor:
 Update its distance if we found a better path

Dijkstra’s Algorithm

23

Start: 0
End: 8

10

2

7

11

95

6

1

7

3

1

8

12

90

1

2

3

4

5
6

8

70

10

12

14

18

13 20

∞

∞

Node Done? Distance

0 T 0

1 T 10

2 T 12

3 F 14

4 F 18

5 T 13

6 F 20

7 F ∞

8 F ∞

Idea: When a node is the closest
not-done thing to the start, we
have found its shortest path
Extract from priority queue
Mark extracted node as done
for each not-done neighbor:
 Update its distance if we found a better path

Dijkstra’s Algorithm

24

Start: 0
End: 8

10

2

7

11

95

6

1

−𝟏𝟑

3

1

8

12

90

1

2

3

4

5
6

8

70

10

12

14

18

13 20

∞

∞

Node Done? Distance

0 T 0

1 T 10

2 T 12

3 F 14

4 F 18

5 T 13

6 F 20

7 F ∞

8 F ∞

What if we had a negative-
weight edge?

Extract from priority queue
Mark extracted node as done
for each not-done neighbor:
 Update its distance if we found a better path

Dijkstra’s Algorithm

25

Start: 0
End: 8

10

2

7

11

95

6

1

−𝟏𝟑

3

1

8

12

90

1

2

3

4

5
6

8

70

10

12

14

1

13 20

∞

∞

Node Done? Distance

0 T 0

1 T 10

2 T 12

3 T 14

4 F 1

5 T 13

6 F 20

7 F ∞

8 F ∞

What if we had a negative-
weight edge?

Extract from priority queue
Mark extracted node as done
for each not-done neighbor:
 Update its distance if we found a better path

Dijkstra’s Algorithm

26

Start: 0
End: 8

10

2

7

11

95

6

1

−𝟏𝟑

3

1

8

12

90

1

2

3

4

5
6

8

70

10

12

14

1

13 20

∞

∞

Node Done? Distance

0 T 0

1 T 10

2 T 12

3 T 14

4 F 1

5 T 13

6 F 20

7 F ∞

8 F ∞

What if we had a negative-
weight edge?

Extract from priority queue
Mark extracted node as done
for each not-done neighbor:
 Update its distance if we found a better path

There’s a better path!

Dijkstra’s Algorithm

27

int dijkstras(graph, start, end){
 distances = [∞, ∞, ∞,…]; // one index per node
 done = [False,False,False,…]; // one index per node
 PQ = new minheap();
 PQ.insert(0, start); // priority=0, value=start
 distances[start] = 0;
 while (!PQ.isEmpty){
 current = PQ.deleteMin();
 done[current] = true;
 for (neighbor : current.neighbors){
 if (!done[neighbor]){
 new_dist = distances[current]+weight(current,neighbor);
 if(distances[neighbor] == ∞){
 distances[neighbor] = new_dist;
 PQ.insert(new_dist, neighbor);
 }
 if (new_dist < distances[neighbor]){
 distances[neighbor] = new_dist;
 PQ.decreaseKey(new_dist,neighbor); }
 }
 }
 }
 return distances[end]
}

10

2

7

11

95

6

3

7

3

1

8

12

90

1

2

3

4

5
6

8

7

Dijkstra’s Algorithm: Running Time

• How many total priority queue operations are necessary?
• How many times is each node added to the priority queue?

• How many times might a node’s priority be changed?

• What’s the running time of each priority queue operation?

• Overall running time:
• Θ 𝐸 log 𝑉

28

Dijkstra’s Algorithm: Correctness

• Claim: when a node is removed from the priority queue, we have
found its shortest path

• Induction over number of completed nodes

• Base Case:

• Inductive Step:

29

10

2

7

11

95

6

3

7

3

1

8

12

90

1

2

3

4

5
6

8

7

Dijkstra’s Algorithm: Correctness

• Claim: when a node is removed from the
priority queue, its distance is that of the
shortest path

• Induction over number of completed nodes

• Base Case: Only the start node removed
• It is indeed 0 away from itself

• Inductive Step:
• If we have correctly found shortest paths for the first
𝑘 nodes, then when we remove node 𝑘 + 1 we have
found its shortest path

30

𝑠

𝑥

𝑦

𝑎

𝑏

Dijkstra’s Algorithm: Correctness

• Suppose 𝑎 is the next node removed from the
queue. What do we know bout 𝑎?

31

𝑠

𝑥

𝑦

𝑎

𝑏

Dijkstra’s Algorithm: Correctness

• Suppose 𝑎 is the next node removed from the queue.
• No other node incomplete node has a shorter path

discovered so far

• Claim: no undiscovered path to 𝑎 could be shorter
• Consider any other incomplete node 𝑏 that is 1 edge away

from a complete node

• 𝑎 is the closest node that is one away from a complete node

• Thus no path that includes 𝑏 can be a shorter path to 𝑎

• Therefore the shortest path to 𝑎 must use only complete
nodes, and therefore we have found it already!

32

𝑠

𝑥

𝑦

𝑎

𝑏

Dijkstra’s Algorithm: Correctness

• Suppose 𝑎 is the next node removed from the queue.
• No other node incomplete node has a shorter path

discovered so far

• Claim: no undiscovered path to 𝑎 could be shorter
• Consider any other incomplete node 𝑏 that is 1 edge away

from a complete node

• 𝑎 is the closest node that is one away from a complete node

• No path from 𝑏 to 𝑎 can have negative weight

• Thus no path that includes 𝑏 can be a shorter path to 𝑎

• Therefore the shortest path to 𝑎 must use only complete
nodes, and therefore we have found it already!

33

𝑠

𝑥

𝑦

𝑎

𝑏

	Slide 1: CSE 332 Autumn 2024 Lecture 19: Graphs 3
	Slide 2: Breadth-First Search
	Slide 3: BFS
	Slide 4: Find Distance (unweighted)
	Slide 5: Depth-First Search
	Slide 6: DFS (non-recursive)
	Slide 7: DFS Recursively (more common)
	Slide 8: DFS – Worked Example
	Slide 9: Using DFS
	Slide 10: Back Edges
	Slide 11: Cycle Detection
	Slide 12: Cycle Detection – Worked Example
	Slide 13: Topological Sort
	Slide 14: DFS Recursively
	Slide 15: DFS: Topological sort
	Slide 16: Topological Sort– Worked Example
	Slide 17: Single-Source Shortest Path
	Slide 18: Dijkstra’s Algorithm
	Slide 19: Dijkstra’s Algorithm
	Slide 20: Dijkstra’s Algorithm
	Slide 21: Dijkstra’s Algorithm
	Slide 22: Dijkstra’s Algorithm
	Slide 23: Dijkstra’s Algorithm
	Slide 24: Dijkstra’s Algorithm
	Slide 25: Dijkstra’s Algorithm
	Slide 26: Dijkstra’s Algorithm
	Slide 27: Dijkstra’s Algorithm
	Slide 28: Dijkstra’s Algorithm: Running Time
	Slide 29: Dijkstra’s Algorithm: Correctness
	Slide 30: Dijkstra’s Algorithm: Correctness
	Slide 31: Dijkstra’s Algorithm: Correctness
	Slide 32: Dijkstra’s Algorithm: Correctness
	Slide 33: Dijkstra’s Algorithm: Correctness

