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Breadth-First Search

• Input: a node 𝑠

• Behavior: Start with node 𝑠, visit all neighbors of 𝑠, then all neighbors 
of neighbors of 𝑠, …

• Visits every node reachable from 𝑠 in order of distance

• Output: 
• How long is the shortest path?

• Is the graph connected?
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BFS
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void bfs(graph, s){
 found = new Queue();
 found.enqueue(s);
 mark s as “visited”;
 While (!found.isEmpty()){
  current = found.dequeue();
  for (v : neighbors(current)){
   if (! v marked “visited”){
    mark v as “visited”;
    found.enqueue(v);
   }
  }
 } 
}   
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Running time: Θ 𝑉 + 𝐸



Find Distance (unweighted)
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int findDistance(graph, s, t){
 found = new Queue();
 layer = 0;
 found.enqueue(s);
 mark s as “visited”;
 While (!found.isEmpty()){
  current = found.dequeue();
  layer = depth of current;
  for (v : neighbors(current)){
   if (! v marked “visited”){
    mark v as “visited”;
    depth of v = layer + 1;
    found.enqueue(v);
   }
  }
 }
 return depth of t; 
}   

Idea: when it’s seen, remember 
its “layer” depth!
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Depth-First Search

• Input: a node 𝑠

• Behavior: Start with node 𝑠, visit one neighbor of 𝑠, then all nodes 
reachable from that neighbor of 𝑠, then another neighbor of 𝑠,…
• Before moving on to the second neighbor of 𝑠, visit everything reachable 

from the first neighbor of 𝑠

• Output: 
• Does the graph have a cycle?

• A topological sort of the graph.
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DFS (non-recursive)
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void dfs(graph, s){
 found = new Stack();
 found.pop(s);
 mark s as “visited”;
 While (!found.isEmpty()){
  current = found.pop();
  for (v : neighbors(current)){
   if (! v marked “visited”){
    mark v as “visited”;
    found.push(v);
   }
  }
 } 
}   

Running time: Θ 𝑉 + 𝐸
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DFS Recursively (more common)
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void dfs(graph, curr){
 mark curr as “visited”;
 for (v : neighbors(current)){
  if (! v marked “visited”){
   dfs(graph, v);
  }
 }
 mark curr as “done”;
}   
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DFS – Worked Example
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Starting from the current node:
    for each unvisited neighbor:
        mark the neighbor as visited
        do a DFS from the neighbor
    mark the current node as done

Node Visited? Done? Other Info
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Using DFS

• Consider the “visited times” and “done times” 

• Edges can be categorized:
• Tree Edge

• (𝑎, 𝑏) was followed when pushing
• (𝑎, 𝑏) when 𝑏 was unvisited when we were at 𝑎

• Back Edge
• (𝑎, 𝑏) goes to an “ancestor”
• 𝑎 and 𝑏 visited but not done when we saw (𝑎, 𝑏)

• 𝑡𝑣𝑖𝑠𝑖𝑡𝑒𝑑 𝑏 < 𝑡𝑣𝑖𝑠𝑖𝑡𝑒𝑑 𝑎 < 𝑡𝑑𝑜𝑛𝑒 𝑎 < 𝑡𝑑𝑜𝑛𝑒(𝑏)

• Forward Edge
• (𝑎, 𝑏) goes to a “descendent”
• 𝑏 was visited and done between when 𝑎 was visited and done

• 𝑡𝑣𝑖𝑠𝑖𝑡𝑒𝑑 𝑎 < 𝑡𝑣𝑖𝑠𝑖𝑡𝑒𝑑 𝑏 < 𝑡𝑑𝑜𝑛𝑒 𝑏 < 𝑡𝑑𝑜𝑛𝑒 𝑎

• Cross Edge
• (𝑎, 𝑏) goes to a node that doesn’t connect to 𝑎
• 𝑏 was seen and done before 𝑎 was ever visited
• 𝑡𝑑𝑜𝑛𝑒 𝑏 < 𝑡𝑣𝑖𝑠𝑖𝑡𝑒𝑑 𝑎  9
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Back Edges

• Behavior of DFS:
• “Visit everything reachable from the current node before going back”

• Back Edge:
• The current node’s neighbor is an “in progress” node

• Since that other node is “in progress”, the current node is reachable from it

• The back edge is a path to that other node

• Cycle!
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Cycle Detection
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boolean hasCycle(graph, curr){
 mark curr as “visited”;
 cycleFound = false;
 for (v : neighbors(current)){
  if (v marked “visited” && ! v marked “done”){
   cycleFound=true;
  }
  if (! v marked “visited” && !cycleFound){
   cycleFound = hasCycle(graph, v);
  }
 }
 mark curr as “done”;
 return cycleFound;
}   

1

2

3

4

5

6
7

9

8

Idea: Look for a back edge!



Cycle Detection – Worked Example
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Starting from the current node:
    for each non-done neighbor:
        if the neighbor is visited:
            we found a cycle!
        else:
            mark the neighbor as visited
            do a DFS from the neighbor
    mark the current node as done

Node Visited? Done? Other Info
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Topological Sort

• A Topological Sort of a directed acyclic graph 𝑮 = (𝑽, 𝑬) is a 
permutation of 𝑉 such that if 𝑢, 𝑣 ∈ 𝐸 then 𝑢 is before 𝑣 in the 
permutation
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DFS Recursively
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void dfs(graph, curr){
 mark curr as “visited”;
 for (v : neighbors(current)){
  if (! v marked “visited”){
   dfs(graph, v);
  }
 }
 mark curr as “done”;
}   
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Idea: List in reverse 
order by “done” time



DFS: Topological sort
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List topSort(graph){
 List<Nodes> done = new List<>();
 for (Node v : graph.vertices){
  if (!v.visited){
   finishTime(graph, v, finished);
  }
 }
 done.reverse();
 return done;
}

void finishTime(graph, curr, finished){
 curr.visited = true;
 for (Node v : curr.neighbors){
  if (!v.visited){
   finishTime(graph, v, finished);
  }
 }
 done.add(curr)
}   
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Idea: List in reverse 
order by “done” time



Topological Sort– Worked Example
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Starting from the current node:
    for each non-done neighbor:
        if the neighbor is visited:
            we found a cycle!
        else:
            mark the neighbor as visited
            do a DFS from the neighbor
    mark the current node as done
    add current node to finished

finished:

Node Visited? Done? Other Info
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Single-Source Shortest Path
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Find the quickest way to get from UVA to each of these other places

Given a graph 𝐺 = (𝑉, 𝐸) and a start node 𝑠 ∈ 𝑉, for each 𝑣 ∈ 𝑉 find 
the least-weight path from 𝑠 → 𝑣 (call this weight 𝛿(𝑠, 𝑣))

(assumption: all edge weights are positive)

10

1 6

13
2

10

12

8

15
203

6 5



Dijkstra’s Algorithm

• Input: graph with no negative edge weights, start node 𝑠, end node 𝑡

• Behavior: Start with node 𝑠, repeatedly go to the incomplete node 
“nearest” to 𝑠, stop when 

• Output: 
• Distance from start to end

• Distance from start to every node
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Dijkstra’s Algorithm
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Idea: When a node is the closest 
not-done thing to the start, we 
have found its shortest path
Extract from priority queue
Mark extracted node as done
for each not-done neighbor:
        Update its distance if we found a better path



Dijkstra’s Algorithm
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Idea: When a node is the closest 
not-done thing to the start, we 
have found its shortest path
Extract from priority queue
Mark extracted node as done
for each not-done neighbor:
        Update its distance if we found a better path



Dijkstra’s Algorithm
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Idea: When a node is the closest 
not-done thing to the start, we 
have found its shortest path
Extract from priority queue
Mark extracted node as done
for each not-done neighbor:
        Update its distance if we found a better path



Dijkstra’s Algorithm
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Idea: When a node is the closest 
not-done thing to the start, we 
have found its shortest path
Extract from priority queue
Mark extracted node as done
for each not-done neighbor:
        Update its distance if we found a better path



Dijkstra’s Algorithm
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Idea: When a node is the closest 
not-done thing to the start, we 
have found its shortest path
Extract from priority queue
Mark extracted node as done
for each not-done neighbor:
        Update its distance if we found a better path



Dijkstra’s Algorithm
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What if we had a negative-
weight edge?

Extract from priority queue
Mark extracted node as done
for each not-done neighbor:
        Update its distance if we found a better path



Dijkstra’s Algorithm
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What if we had a negative-
weight edge?

Extract from priority queue
Mark extracted node as done
for each not-done neighbor:
        Update its distance if we found a better path



Dijkstra’s Algorithm
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What if we had a negative-
weight edge?

Extract from priority queue
Mark extracted node as done
for each not-done neighbor:
        Update its distance if we found a better path

There’s a better path!



Dijkstra’s Algorithm
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int dijkstras(graph, start, end){
 distances = [∞, ∞, ∞,…];  // one index per node
 done = [False,False,False,…];  // one index per node
 PQ = new minheap();
 PQ.insert(0, start);  // priority=0, value=start
 distances[start] = 0;
 while (!PQ.isEmpty){
  current = PQ.deleteMin();
  done[current] = true;
  for (neighbor : current.neighbors){
   if (!done[neighbor]){
    new_dist = distances[current]+weight(current,neighbor);
    if(distances[neighbor] == ∞){
     distances[neighbor] = new_dist;
     PQ.insert(new_dist, neighbor);
    }
    if (new_dist < distances[neighbor]){
     distances[neighbor] = new_dist;
     PQ.decreaseKey(new_dist,neighbor); }
   }
  }
 }
 return distances[end]
}
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Dijkstra’s Algorithm: Running Time

• How many total priority queue operations are necessary?
• How many times is each node added to the priority queue?

• How many times might a node’s priority be changed?

• What’s the running time of each priority queue operation?

• Overall running time:
• Θ 𝐸 log 𝑉
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Dijkstra’s Algorithm: Correctness

• Claim: when a node is removed from the priority queue, we have 
found its shortest path

• Induction over number of completed nodes

• Base Case:

• Inductive Step:
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Dijkstra’s Algorithm: Correctness

• Claim: when a node is removed from the 
priority queue, its distance is that of the 
shortest path

• Induction over number of completed nodes

• Base Case: Only the start node removed
• It is indeed 0 away from itself

• Inductive Step:
• If we have correctly found shortest paths for the first 
𝑘 nodes, then when we remove node 𝑘 + 1 we have 
found its shortest path
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Dijkstra’s Algorithm: Correctness

• Suppose 𝑎 is the next node removed from the 
queue. What do we know bout 𝑎?
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Dijkstra’s Algorithm: Correctness

• Suppose 𝑎 is the next node removed from the queue. 
• No other node incomplete node has a shorter path 

discovered so far

• Claim: no undiscovered path to 𝑎 could be shorter
• Consider any other incomplete node 𝑏 that is 1 edge away 

from a complete node

• 𝑎 is the closest node that is one away from a complete node

• Thus no path that includes 𝑏 can be a shorter path to 𝑎

• Therefore the shortest path to 𝑎 must use only complete 
nodes, and therefore we have found it already!
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Dijkstra’s Algorithm: Correctness

• Suppose 𝑎 is the next node removed from the queue. 
• No other node incomplete node has a shorter path 

discovered so far

• Claim: no undiscovered path to 𝑎 could be shorter
• Consider any other incomplete node 𝑏 that is 1 edge away 

from a complete node

• 𝑎 is the closest node that is one away from a complete node

• No path from 𝑏 to 𝑎 can have negative weight

• Thus no path that includes 𝑏 can be a shorter path to 𝑎

• Therefore the shortest path to 𝑎 must use only complete 
nodes, and therefore we have found it already!
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