
CSE 332 Autumn 2024
Lecture 18: Graphs 2

Nathan Brunelle

http://www.cs.uw.edu/332

http://www.cs.uw.edu/332

Undirected Graphs

2

1

2

3

4

5

6
7

9

8

Definition: 𝐺 = (𝑉, 𝐸)
Vertices/Nodes

Edges

𝑉 = {1,2,3,4,5,6,7,8,9}

𝐸 = { 1,2 , 2,3 , (1,3), … }

Directed Graphs

3

Definition: 𝐺 = (𝑉, 𝐸)
Vertices/Nodes

Edges

𝑉 = {1,2,3,4,5,6,7,8,9}

𝐸 = { 1,2 , 2,3 , (1,3), … }

1

2

3

4

5

6
7

9

8

Weighted Graphs

4

10

2

6

11

9
5

8

3

7

3

1

8

12

91

2

3

4

5

6
7

9

8

Definition: 𝐺 = (𝑉, 𝐸)
Vertices/Nodes

Edges
𝑤 𝑒 = weight of edge 𝑒

𝑉 = {1,2,3,4,5,6,7,8,9}

𝐸 = { 1,2 , 2,3 , (1,3), … }

Definition: Complete Graph

5

A Graph 𝐺 = (𝑉, 𝐸) s.t. for any pair of nodes
𝑣1, 𝑣2 ∈ 𝑉 there is an edge from 𝑣1 to 𝑣2

Complete
Undirected Graph

Complete
Directed Graph

1 2

3 4

1 2

3 4

Complete Directed
Non-simple Graph

1 2

3 4

Graph Density, Data Structures, Efficiency

• The maximum number of edges in a graph is Θ |𝑉|2 :

• Undirected and simple:
|𝑉|(|𝑉|−1)

2
• Directed and simple: |𝑉|(|𝑉| − 1)
• Direct and non-simple (but no duplicates): |𝑉|2

• If the graph is connected, the minimum number of edges is 𝑉 − 1

• If 𝐸 ∈ Θ 𝑉 2 we say the graph is dense

• If 𝐸 ∈ Θ |𝑉| we say the graph is sparse

• Because 𝐸 is not always near to 𝑉 2 we do not typically substitute
𝑉 2 for 𝐸 in running times, but leave it as a separate variable
• However, log 𝐸 ∈ Θ log 𝑉

Definition: Tree

7

A Graph 𝐺 = (𝑉, 𝐸) is a tree if it is undirect,
connected, and has no cycles (i.e. is acyclic).
Often one node is identified as the “root”

A Tree

1

2

3

4

5

6
7

9

8

A Rooted Tree

1

2

3

4

56

7 9

8

Graph Operations

• To represent a Graph (i.e. build a data structure) we need:
• Add Edge

• Remove Edge

• Check if Edge Exists

• Get Neighbors (incoming)

• Get Neighbors (outgoing)

Adjacency List

9

1

2

3

4

5

6
7

9

8

1

2

3

4

5

6

7

8

9

2 3

1 3 5

1 2 4 6

3 5 6

2 4 7 8

3 4 7

5 6 8 9

5 7 9

7 8

Time/Space Tradeoffs
Space to represent: Θ(𝑛 +𝑚)
Add Edge (𝑣, 𝑤): Θ(deg(𝑣))
Remove Edge (𝑣, 𝑤): Θ(deg(𝑣))
Check if Edge (𝑣, 𝑤) Exists: Θ(deg(𝑣))
Get Neighbors (incoming): Θ(𝑛 +𝑚)
Get Neighbors (outgoing): Θ deg 𝑣

𝑉 = 𝑛
𝐸 = 𝑚

Adjacency List (Weighted)

10

1

2

3

4

5

6

7

8

9

2
(10)

3
(12)

1
(10)

3
(9)

5
(8)

1
(12)

2
(9)

4
(3)

6
(1)

3
(3)

5
(7)

6
(3)

2
(8)

4
(7)

7
(5)

8
(8)

3
(1)

4
(3)

7
(6)

5
(5)

6
(6)

8
(9)

9
(11)

5
(8)

7
(9)

9
(2)

7
(11)

8
(2)

10

2

6

11

95

8

3

7

3

1

8

12

91

2

3

4

5

6
7

9

8

𝑉 = 𝑛
𝐸 = 𝑚

Time/Space Tradeoffs
Space to represent: Θ(𝑛 +𝑚)
Add Edge (𝑣, 𝑤): Θ(deg(𝑣))
Remove Edge (𝑣, 𝑤): Θ(deg(𝑣))
Check if Edge (𝑣, 𝑤) Exists: Θ(deg(𝑣))
Get Neighbors (incoming): Θ(𝑛 +𝑚)
Get Neighbors (outgoing): Θ deg 𝑣

Adjacency Matrix

11

1

2

3

4

5

6

7

8

9

1 2 3 4 5 6 7 8 9

1 1

1 1 1

1 1 1

1 1 1

1 1 1 1

1 1 1

1 1 1 1

1 1 1

1 1

1

1

2

3

4

5

6
7

9

8

𝑉 = 𝑛
𝐸 = 𝑚

Time/Space Tradeoffs
Space to represent: Θ(𝑛2)
Add Edge (𝑣, 𝑤): Θ(1)
Remove Edge (𝑣, 𝑤): Θ(?)
Check if Edge (𝑣, 𝑤) Exists: Θ(?)
Get Neighbors (incoming): Θ(𝑛)
Get Neighbors (outgoing): Θ ?

Adjacency Matrix

12

1

2

3

4

5

6
7

9

8

𝑉 = 𝑛
𝐸 = 𝑚

Time/Space Tradeoffs
Space to represent: Θ(𝑛2)
Add Edge (𝑣, 𝑤): Θ(1)
Remove Edge (𝑣, 𝑤): Θ(1)
Check if Edge (𝑣, 𝑤) Exists: Θ(1)
Get Neighbors (incoming): Θ(𝑛)
Get Neighbors (outgoing): Θ 𝑛

1

2

3

4

5

6

7

8

9

1 2 3 4 5 6 7 8 9

1 1

1 1 1

1 1 1

1 1 1

1 1 1 1

1 1 1

1 1 1 1

1 1 1

1 1

1

Adjacency Matrix (weighted)

13

𝑉 = 𝑛
𝐸 = 𝑚

10

2

6

11

95

8

3

7

3

1

8

12

91

2

3

4

5

6
7

9

8

Time/Space Tradeoffs
Space to represent: Θ(𝑛2)
Add Edge (𝑣, 𝑤): Θ(1)
Remove Edge (𝑣, 𝑤): Θ(1)
Check if Edge (𝑣, 𝑤) Exists: Θ(1)
Get Neighbors (incoming): Θ(𝑛)
Get Neighbors (outgoing): Θ 𝑛

1

2

3

4

5

6

7

8

9

1 2 3 4 5 6 7 8 9

10 12

10 9 8

12 9 3

3 7 3

8 7 5 8

1 3 1

5 1 9 11

8 9 2

11 2

1

Comparison

• Adjacency List:
• Less memory when 𝐸 < 𝑉 2

• Operations with running time linear in degree of source node
• Add an edge
• Remove an edge
• Check for edge
• Get neighbors

• Adjacency Matrix:
• Similar amount of memory when 𝐸 ≈ 𝑉 2

• Constant time operations:
• Add an edge
• Remove an edge
• Check for an edge

• Operations running with linear time in |𝑉|
• Get neighbors

Adjacency List is more common in practice:
• Most graphs have 𝐸 ≪ 𝑉 2

• Saves memory
• Most nodes will have small degree

• Getting neighbors is a common operation
• Adjacency Matrix may be better if the

graph is “dense” or if its edges change a lot

Breadth-First Search

• Input: a node 𝑠

• Behavior: Start with node 𝑠, visit all neighbors of 𝑠, then all neighbors
of neighbors of 𝑠, …

• Visits every node reachable from 𝑠 in order of distance

• Output:
• How long is the shortest path?

• Is the graph connected?

15

1

2

3

4

5

6
7

9

8

BFS

16

void bfs(graph, s){
 found = new Queue();
 found.enqueue(s);
 mark s as “visited”;
 While (!found.isEmpty()){
 current = found.dequeue();
 for (v : neighbors(current)){
 if (! v marked “visited”){
 mark v as “visited”;
 found.enqueue(v);
 }
 }
 }
}

1

2

3

4

5

6
7

9

8

Running time: Θ 𝑉 + 𝐸

BFS – Worked Example

17

1

2

3

4

5

6
7

9

8

For each node:
 For each unvisited neighbor:
 add that neighbor to a queue
 mark that neighbor as visited

Node Visited? Other Info

1 True

2

3

4

5

6

7

8

9

Queue:

Find Distance (unweighted)

18

int findDistance(graph, s, t){
 found = new Queue();
 layer = 0;
 found.enqueue(s);
 mark s as “visited”;
 While (!found.isEmpty()){
 current = found.dequeue();
 layer = depth of current;
 for (v : neighbors(current)){
 if (! v marked “visited”){
 mark v as “visited”;
 depth of v = layer + 1;
 found.enqueue(v);
 }
 }
 }
 return depth of t;
}

Idea: when it’s seen, remember
its “layer” depth!

1

2

3

4

5

6
7

9

8

Find Distance – Worked Example

19

1

2

3

4

5

6
7

9

8

For each node:
 update current layer
 For each unvisited neighbor:
 add that neighbor to a queue
 mark that neighbor as visited
 set neighbor’s layer to be current layer + 1

Node Visited? Layer

1

2

3

4

5

6

7

8

9

Queue:

Shortest Path - Idea

20

1

2

3

4

5

6
7

9

8

For each node:
 For each unvisited neighbor:
 add that neighbor to a queue
 mark that neighbor as visited
 set neighbor’s previous to be the current node

Node Visited? Previous

1

2

3

4

5

6

7

8

9

Queue:

Depth-First Search

Depth-First Search

• Input: a node 𝑠

• Behavior: Start with node 𝑠, visit one neighbor of 𝑠, then all nodes
reachable from that neighbor of 𝑠, then another neighbor of 𝑠,…
• Before moving on to the second neighbor of 𝑠, visit everything reachable

from the first neighbor of 𝑠

• Output:
• Does the graph have a cycle?

• A topological sort of the graph.

22

0

1 2

3

4

5

61

2

3

4

5

6
7

9

8

7

DFS (non-recursive)

23

void dfs(graph, s){
 found = new Stack();
 found.pop(s);
 mark s as “visited”;
 While (!found.isEmpty()){
 current = found.pop();
 for (v : neighbors(current)){
 if (! v marked “visited”){
 mark v as “visited”;
 found.push(v);
 }
 }
 }
}

Running time: Θ 𝑉 + 𝐸

1

2

3

4

5

6
7

9

8

DFS Recursively (more common)

24

void dfs(graph, curr){
 mark curr as “visited”;
 for (v : neighbors(current)){
 if (! v marked “visited”){
 dfs(graph, v);
 }
 }
 mark curr as “done”;
}

1

2

3

4

5

6
7

9

8

DFS – Worked Example

25

Starting from the current node:
 for each unvisited neighbor:
 mark the neighbor as visited
 do a DFS from the neighbor
 mark the current node as done

Node Visited? Done? Other Info

1

2

3

4

5

6

7

8

9

(Call)
Stack:

1

2

3

4

5

6
7

9

8

Using DFS

• Consider the “visited times” and “done times”

• Edges can be categorized:
• Tree Edge

• (𝑎, 𝑏) was followed when pushing
• (𝑎, 𝑏) when 𝑏 was unvisited when we were at 𝑎

• Back Edge
• (𝑎, 𝑏) goes to an “ancestor”
• 𝑎 and 𝑏 visited but not done when we saw (𝑎, 𝑏)

• 𝑡𝑣𝑖𝑠𝑖𝑡𝑒𝑑 𝑏 < 𝑡𝑣𝑖𝑠𝑖𝑡𝑒𝑑 𝑎 < 𝑡𝑑𝑜𝑛𝑒 𝑎 < 𝑡𝑑𝑜𝑛𝑒(𝑏)

• Forward Edge
• (𝑎, 𝑏) goes to a “descendent”
• 𝑏 was visited and done between when 𝑎 was visited and done

• 𝑡𝑣𝑖𝑠𝑖𝑡𝑒𝑑 𝑎 < 𝑡𝑣𝑖𝑠𝑖𝑡𝑒𝑑 𝑏 < 𝑡𝑑𝑜𝑛𝑒 𝑏 < 𝑡𝑑𝑜𝑛𝑒 𝑎

• Cross Edge
• (𝑎, 𝑏) goes to a node that doesn’t connect to 𝑎
• 𝑏 was seen and done before 𝑎 was ever visited
• 𝑡𝑑𝑜𝑛𝑒 𝑏 < 𝑡𝑣𝑖𝑠𝑖𝑡𝑒𝑑 𝑎 26

Visited: 0
Done: 15

Visited : 1
Done: 8

Visited : 2
Done: 7

Visited : 3
Done: 6

Visited : 4
Done: 5

1

2

3

4

5

6
7

9

8

Visited : 9
Done: 14

Visited : 10
Done: 13

Visited : 11
Done: 12

Back Edges

• Behavior of DFS:
• “Visit everything reachable from the current node before going back”

• Back Edge:
• The current node’s neighbor is an “in progress” node

• Since that other node is “in progress”, the current node is reachable from it

• The back edge is a path to that other node

• Cycle!

1

2

3

4

5

6
7

9

8

Cycle Detection

28

boolean hasCycle(graph, curr){
 mark curr as “visited”;
 cycleFound = false;
 for (v : neighbors(current)){
 if (v marked “visited” && ! v marked “done”){
 cycleFound=true;
 }
 if (! v marked “visited” && !cycleFound){
 cycleFound = hasCycle(graph, v);
 }
 }
 mark curr as “done”;
 return cycleFound;
}

1

2

3

4

5

6
7

9

8

Idea: Look for a back edge!

Cycle Detection – Worked Example

29

Starting from the current node:
 for each non-done neighbor:
 if the neighbor is visited:
 we found a cycle!
 else:
 mark the neighbor as visited
 do a DFS from the neighbor
 mark the current node as done

Node Visited? Done? Other Info

1

2

3

4

5

6

7

8

9

(Call)
Stack:

1

2

3

4

5

6
7

9

8

Topological Sort

• A Topological Sort of a directed acyclic graph 𝑮 = (𝑽, 𝑬) is a
permutation of 𝑉 such that if 𝑢, 𝑣 ∈ 𝐸 then 𝑢 is before 𝑣 in the
permutation

30

1

2

3

4

5

6
7

9

8

1 23 4 56 79 8

DFS Recursively

31

void dfs(graph, curr){
 mark curr as “visited”;
 for (v : neighbors(current)){
 if (! v marked “visited”){
 dfs(graph, v);
 }
 }
 mark curr as “done”;
}

1

2

3

4

5

6
7

9

8

Idea: List in reverse
order by “done” time

DFS: Topological sort

32

List topSort(graph){
 List<Nodes> done = new List<>();
 for (Node v : graph.vertices){
 if (!v.visited){
 finishTime(graph, v, finished);
 }
 }
 done.reverse();
 return done;
}

void finishTime(graph, curr, finished){
 curr.visited = true;
 for (Node v : curr.neighbors){
 if (!v.visited){
 finishTime(graph, v, finished);
 }
 }
 done.add(curr)
}

1

2

3

4

5

6
7

9

8

finished:

Idea: List in reverse
order by “done” time

Topological Sort– Worked Example

33

Starting from the current node:
 for each non-done neighbor:
 if the neighbor is visited:
 we found a cycle!
 else:
 mark the neighbor as visited
 do a DFS from the neighbor
 mark the current node as done
 add current node to finished

finished:

Node Visited? Done? Other Info

1

2

3

4

5

6

7

8

9

(Call)
Stack:

1

2

3

4

5

6
7

9

8

	Slide 1: CSE 332 Autumn 2024 Lecture 18: Graphs 2
	Slide 2: Undirected Graphs
	Slide 3: Directed Graphs
	Slide 4: Weighted Graphs
	Slide 5: Definition: Complete Graph
	Slide 6: Graph Density, Data Structures, Efficiency
	Slide 7: Definition: Tree
	Slide 8: Graph Operations
	Slide 9: Adjacency List
	Slide 10: Adjacency List (Weighted)
	Slide 11: Adjacency Matrix
	Slide 12: Adjacency Matrix
	Slide 13: Adjacency Matrix (weighted)
	Slide 14: Comparison
	Slide 15: Breadth-First Search
	Slide 16: BFS
	Slide 17: BFS – Worked Example
	Slide 18: Find Distance (unweighted)
	Slide 19: Find Distance – Worked Example
	Slide 20: Shortest Path - Idea
	Slide 21: Depth-First Search
	Slide 22: Depth-First Search
	Slide 23: DFS (non-recursive)
	Slide 24: DFS Recursively (more common)
	Slide 25: DFS – Worked Example
	Slide 26: Using DFS
	Slide 27: Back Edges
	Slide 28: Cycle Detection
	Slide 29: Cycle Detection – Worked Example
	Slide 30: Topological Sort
	Slide 31: DFS Recursively
	Slide 32: DFS: Topological sort
	Slide 33: Topological Sort– Worked Example

