CSE 332 Autumn 2024 Lecture 18: Graphs 2

Nathan Brunelle

http://www.cs.uw.edu/332

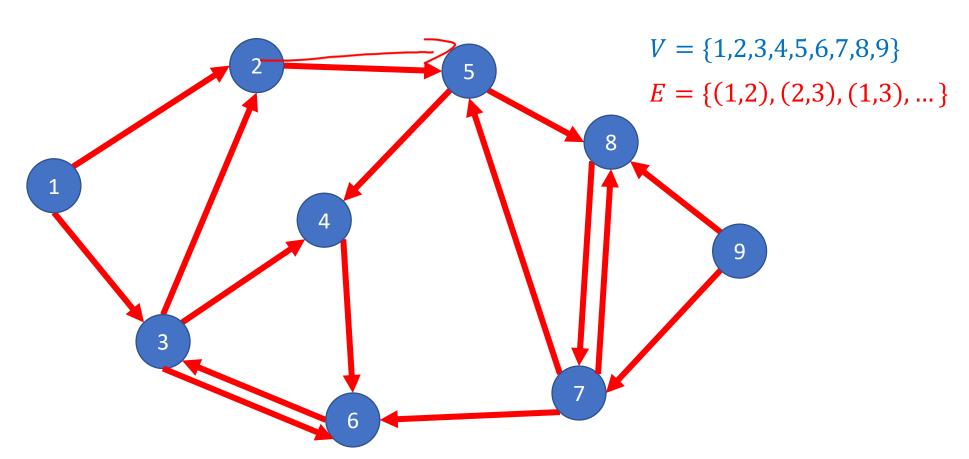
Undirected Graphs

Definition: G = (V, E)Edges



Directed Graphs

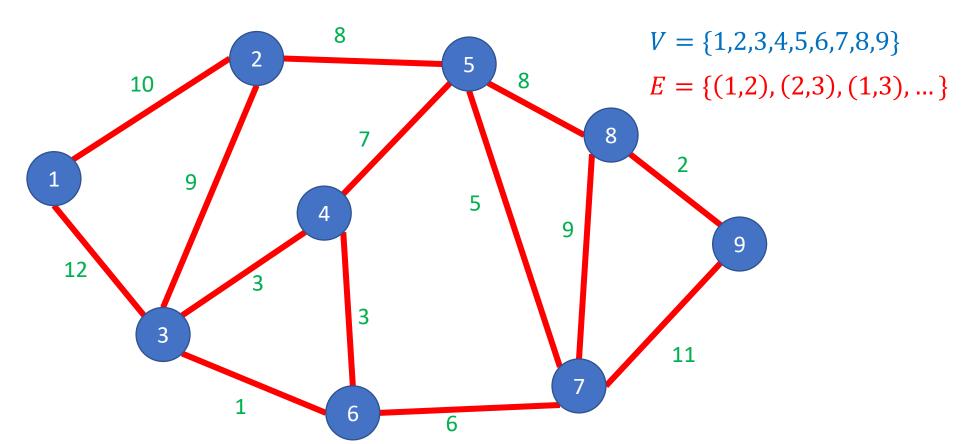
Definition:
$$G = (V, E)$$
Edges



Weighted Graphs

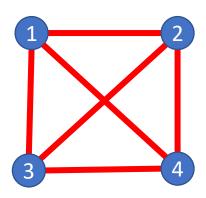
Definition: G = (V, E)Edges

w(e) = weight of edge e

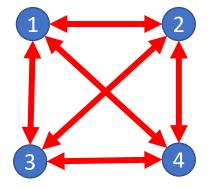


Definition: Complete Graph

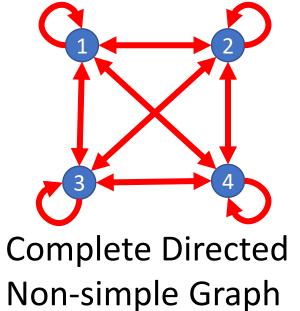
A Graph G = (V, E) s.t. for any pair of nodes $v_1, v_2 \in V$ there is an edge from v_1 to v_2



Complete
Undirected Graph



Complete Directed Graph

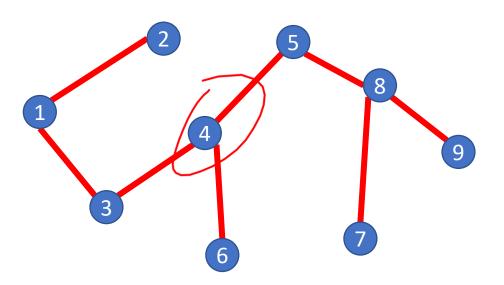


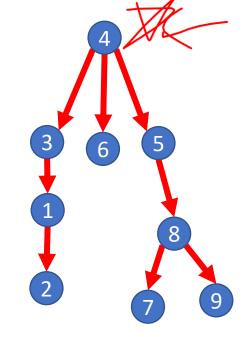
Graph Density, Data Structures, Efficiency

- The maximum number of edges in a graph is $\Theta(|V|^2)$:
- Undirected and simple: $\frac{|V|(|V|-1)}{2}$ Directed and simple: |V|(|V|-1)• Direct and non-simple (but no duplicates): $|V|^2$
- If the graph is connected, the minimum number of edges is |V|-1
- If $|E| \in \Theta(|V|^2)$ we say the graph is **dense**
- If $|E| \in \Theta(|V|)$ we say the graph is **sparse**
- Because |E| is not always near to $|V|^2$ we do not typically substitute $|V|^2$ for |E| in running times, but leave it as a separate variable
 - However, $\log(|E|) \in \Theta(\log(|V|))$

Definition: Tree

A Graph G = (V, E) is a tree if it is undirect, $C \leftarrow C$ connected, and has no cycles (i.e. is acyclic). Often one node is identified as the "root"

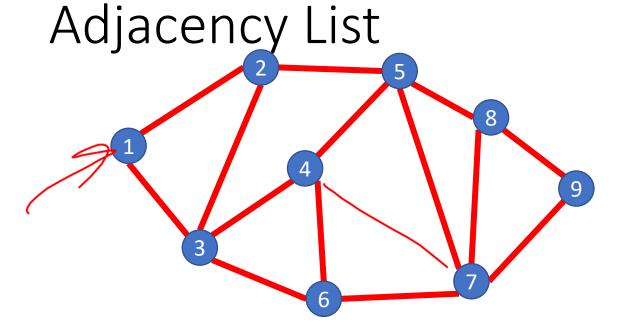




A Rooted Tree

Graph Operations

- To represent a Graph (i.e. build a data structure) we need:
 - Add Edge
 - Remove Edge
 - Check if Edge Exists
 - Get Neighbors (incoming)
 - Get Neighbors (outgoing)



Time/Space Tradeoffs

Space to represent: $\Theta(n+m)$

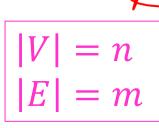
Add Edge (v, w): $\Theta(\deg(v))$

Remove Edge (v, w): $\Theta(\deg(v))$

Check if Edge (v, w) Exists: $\Theta(\deg(v)) \mid E \mid = m$

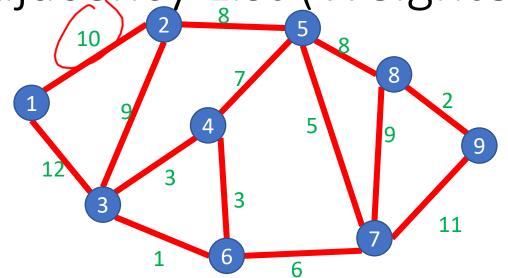
Get Neighbors (incoming): $\Theta(n+m)$

Get Neighbors (outgoing): $\Theta(\deg(v))$



 -						
	1 (2	3		\	
	2	1	3	5		
	3	1	2	4	6	4
	4	3	5	6	> >	
	5	2	4	7	8	
	6	3	4	7		
	7	5	6	8	9	4
	8	5	7	9		
	9	7	8		•	0

Adjacency List (Weighted)



Time/Space Tradeoffs

Space to represent: $\Theta(n+m)$

Add Edge (v, w): $\Theta(\deg(v))$

Remove Edge (v, w): $\Theta(\deg(v))$

Check if Edge (v, w) Exists: $\Theta(\deg(v))$

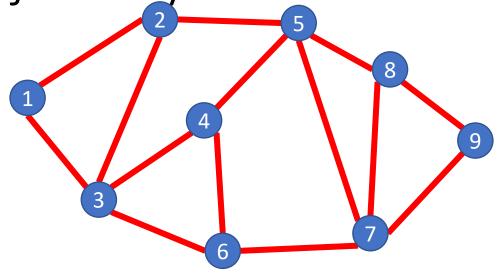
Get Neighbors (incoming): $\Theta(n+m)$

Get Neighbors (outgoing): $\Theta(\deg(v))$

V	=	n
E	=	m

7				
1	2 (10)	3 (12)		
2	1 (10)	3 (9)	5 (8)	
3	1 (12)	2 (9)	4 (3)	6 (1)
4	3 (3)	5 (7)	6 (3)	
5	2 (8)	4 (7)	7 (5)	8 (8)
6	3 (1)	4 (3)	7 (6)	
7	5 (5)	6 (6)	8 (9)	9 (11)
8	5 (8)	7 (9)	9 (2)	
9	7 (11)	8 (2)		-

Adjacency Matrix



Time/Space Tradeoffs

Space to represent: $\Theta(n^2)$

Add Edge (v, w): $\Theta(1)$

Remove Edge (v, w): $\Theta(?)$

Check if Edge (v, w) Exists: $\Theta(?)$

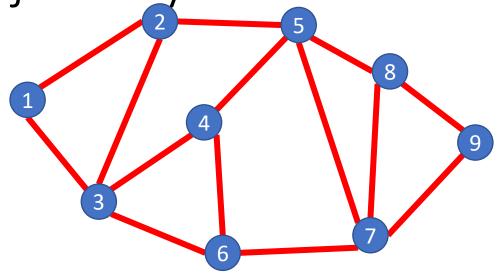
Get Neighbors (incoming): $\Theta(n)$

Get Neighbors (outgoing): $\Theta(?)$

V	=	n
E	=	m

	/									
		1	2	3	4	5	6	7	8	9
/ ·	1		<u>(1</u>	1						
	2	1		1		1				
	3	1	1		1		1			
	4			1		1	1			
$\langle \ $	5		1		1			1	1	
	6			1	1			1		
	7					1	1		1	1
	8					1		1		1
	9							1	1	

Adjacency Matrix



Time/Space Tradeoffs

Space to represent: $\Theta(n^2)$

Add Edge (v, w): $\Theta(1)$

Remove Edge (v, w): $\Theta(1)$

Check if Edge (v, w) Exists: $\Theta(1)$

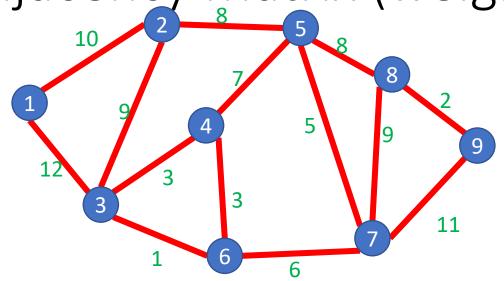
Get Neighbors (incoming): $\Theta(n)$

Get Neighbors (outgoing): $\Theta(n)$

$$|E|=m$$

	1	2	3	4	5	6	7	8	9
1		1	1						
2	1		1		1				
3	1	1		1		1			
4			1		1	1			
5		1		1			1	1	
6			1	1			1		
7					1	1		1	1
8					1		1		1
9							1	1	

Adjacency Matrix (weighted)



Time/Space Tradeoffs

Space to represent: $\Theta(n^2)$

Add Edge (v, w): $\Theta(1)$

Remove Edge (v, w): $\Theta(1)$

Check if Edge (v, w) Exists: $\Theta(1)$

Get Neighbors (incoming): $\Theta(n)$

Get Neighbors (outgoing): $\Theta(n)$

V	=	n
10	ı	200

	1	2	3	4	5	6	7	8	9
1		10	12						
2	10		9		8				
3	12	9		3		1			
4			3		7	3			
5		8		7			5	8	
6			1	3			1		
7					5	1		9	11
8					8		9		2
9							11	2	

Comparison

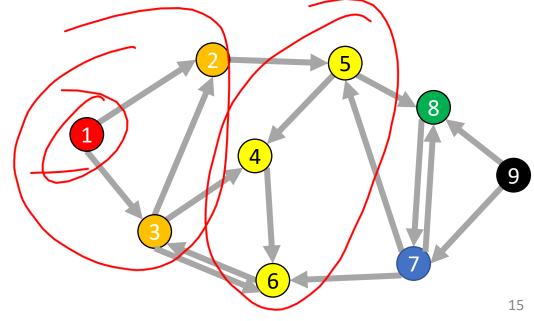
- Adjacency List:
 - Less memory when $|E| < |V|^2$
 - Operations with running time linear in degree of source node
 - Add an edge
 - Remove an edge
 - Check for edge
 - Get neighbors
- Adjacency Matrix:
 - Similar amount of memory when $|E| \approx |V|^2$
 - Constant time operations:
 - Add an edge
 - Remove an edge
 - Check for an edge
 - Operations running with linear time in |V|
 - Get neighbors

Adjacency List is more common in practice:

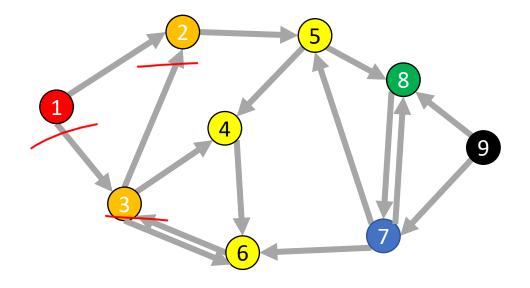
- Most graphs have $|E| \ll |V|^2$
 - Saves memory
 - Most nodes will have small degree
- Getting neighbors is a common operation
- Adjacency Matrix may be better if the graph is "dense" or if its edges change a lot

Breadth-First Search

- Input: a node s
- Behavior: Start with node *s*, visit all neighbors of *s*, then all neighbors of neighbors of *s*, ...
- Visits every node reachable from s in order of distance
- Output:
 - How long is the shortest path?
 - Is the graph connected?



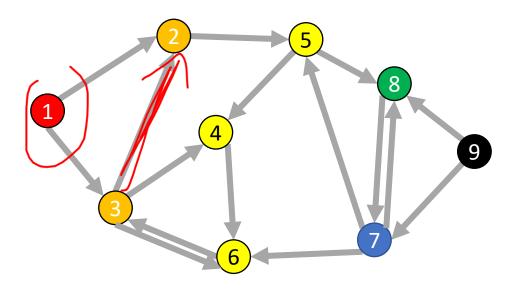
BFS



Running time: $\Theta(|V| + |E|)$

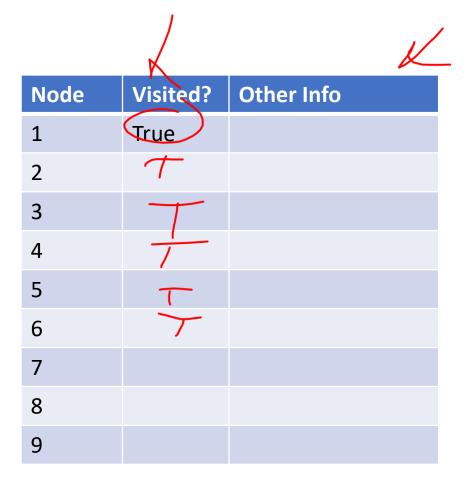
```
void bfs(graph, s){
      found = new Queue();
      found.enqueue(s);
      mark s as "visited";
      While (!found.isEmpty()){
            current = found.dequeue();
            for (v : neighbors(current)){
                   if (! v marked "visited"){
                         mark v as "visited";
                         found.enqueue(v);
```

BFS – Worked Example

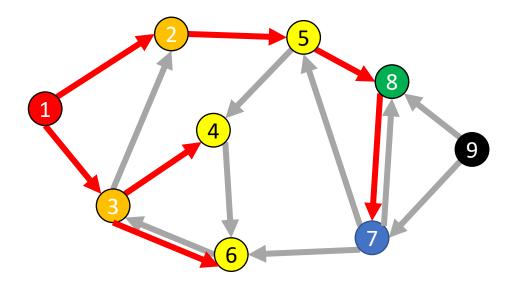


For each node:

For each unvisited neighbor: add that neighbor to a queue mark that neighbor as visited



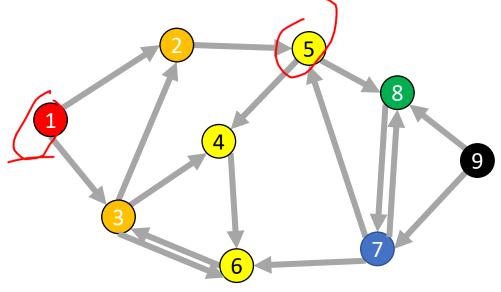
Find Distance (unweighted)



Idea: when it's seen, remember its "layer" depth!

```
int findDistance(graph, s, t){
       found = new Queue();
       layer = 0;
       found.enqueue(s);
       mark s as "visited";
       While (!found.isEmpty()){
               current = found.dequeue();
               layer = depth of current;
               for (v : neighbors(current)){
                      if (! v marked "visited"){
                              mark v as "visited";
                              depth of v = layer + 1;
                              found.enqueue(v);
       return depth of t;
                                              18
```

Find Distance – Worked Example



F	- O	r	ea	C	h	n	O	d	e	•
•		•				•		V		•

update current layer

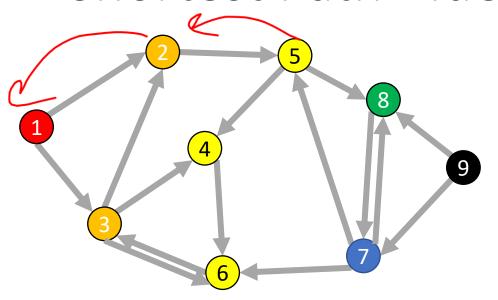
For each unvisited neighbor:

add that neighbor to a queue mark that neighbor as visited set neighbor's layer to be current layer + 1

No	ode	Visited?	Layer	
1		7		
2		Ť	1	
3			l	
4		•		
5		+	7	
6				
7				
8				
9				

19

Shortest Path - Idea



Node	Visited?	Previous	
1	T	_	
2	1	- 1	
3	+)	
4		·	
5	+	ک	
6			
7			
8			
9			

For each node:

For each unvisited neighbor:

add that neighbor to a queue

mark that neighbor as visited

set neighbor's previous to be the current node

Depth-First Search

Depth-First Search

Input: a node s

• Behavior: Start with node s, visit one neighbor of s, then all nodes reachable from that neighbor of s, then another neighbor of s,...

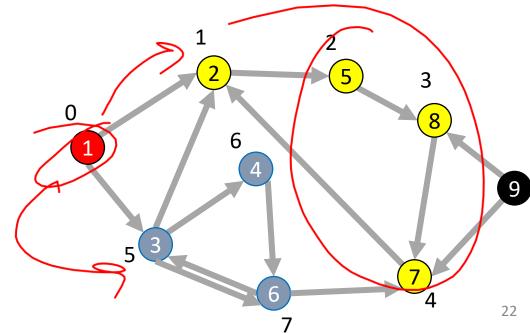
• Before moving on to the second neighbor of *s*, visit everything reachable

from the first neighbor of s

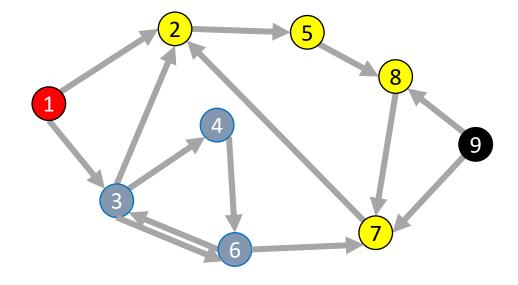
• Output:

Does the graph have a cycle?

• A **topological sort** of the graph.



DFS (non-recursive)

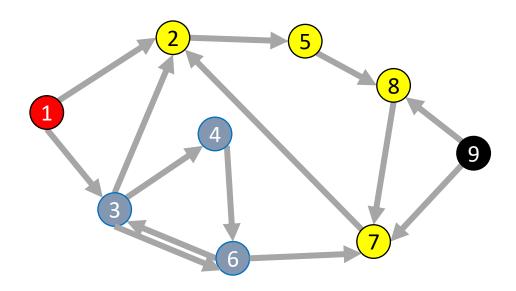


Running time: $\Theta(|V| + |E|)$

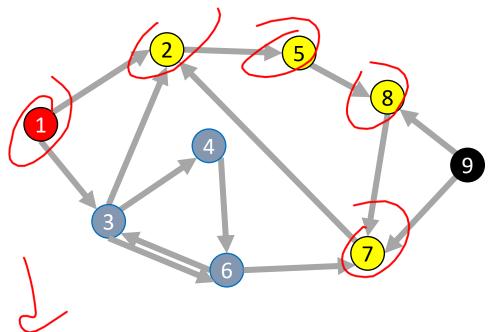
```
void dfs(graph, s){
      found = new Stack();
      found.pop(s);
      mark s as "visited";
      While (!found.isEmpty()){
             current = found.pop();
             for (v : neighbors(current)){
                   if (! v marked "visited"){
                          mark v as "visited";
                          found.push(v);
```

DFS Recursively (more common)

```
void dfs(graph, curr){
      mark curr as "visited";
      for (v : neighbors(current)){
             if (! v marked "visited"){
                    dfs(graph, v);
      mark curr as "done";
```



DFS – Worked Example



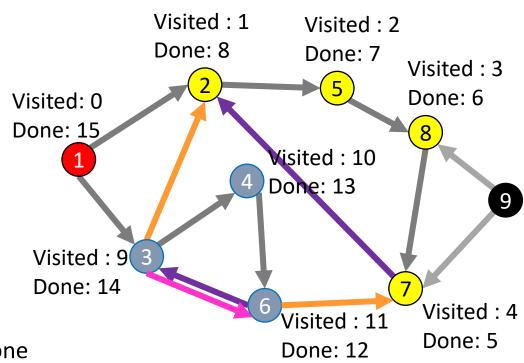
Starting from the current node:
for each unvisited neighbor:
mark the neighbor as visited
do a DFS from the neighbor
mark the current node as done

Node	Visited?	Done?	Other Info
1			
2	T		
3	•		
4			
5	7		
6			
7	—	X	
8	T	/	
9			

(Call) Stack:

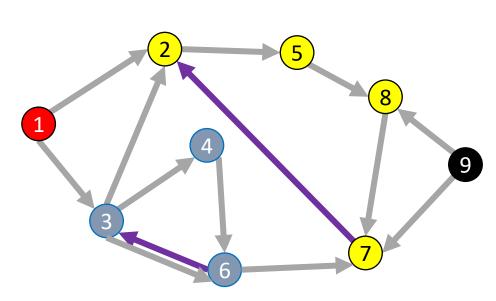
Using DFS

- Consider the "visited times" and "done times"
- Edges can be categorized:
 - Tree Edge
 - (a, b) was followed when pushing
 - (a, b) when b was unvisited when we were at a
 - Back Edge
 - (a, b) goes to an "ancestor"
 - a and b visited but not done when we saw (a, b)
 - $t_{visited}(b) < t_{visited}(a) < t_{done}(a) < t_{done}(b)$
 - Forward Edge
 - (a, b) goes to a "descendent"
 - b was visited and done between when a was visited and done
 - $t_{visited}(a) < t_{visited}(b) < t_{done}(b) < t_{done}(a)$
 - Cross Edge
 - (a, b) goes to a node that doesn't connect to a
 - b was seen and done before a was ever visited
 - $t_{done}(b) < t_{visited}(a)$



Back Edges

- Behavior of DFS:
 - "Visit everything reachable from the current node before going back"
- Back Edge:
 - The current node's neighbor is an "in progress" node
 - Since that other node is "in progress", the current node is reachable from it
 - The back edge is a path to that other node
 - Cycle!

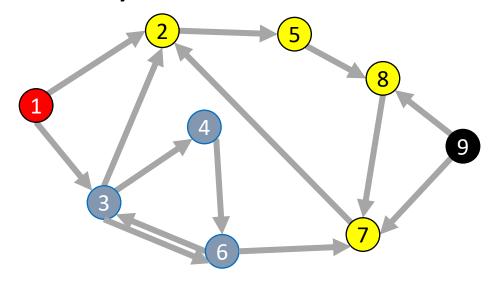


Idea: Look for a back edge!

Cycle Detection

```
boolean hasCycle(graph, curr){
       mark curr as "visited";
       cycleFound = false;
       for (v : neighbors(current)){
              if (v marked "visited" &&! v marked "done"){
                      cycleFound=true;
              if (! v marked "visited" && !cycleFound){
                      cycleFound = hasCycle(graph, v);
       mark curr as "done";
       return cycleFound;
```

Cycle Detection – Worked Example



Starting from the current node: for each non-done neighbor:

if the neighbor is visited:

we found a cycle!

else:

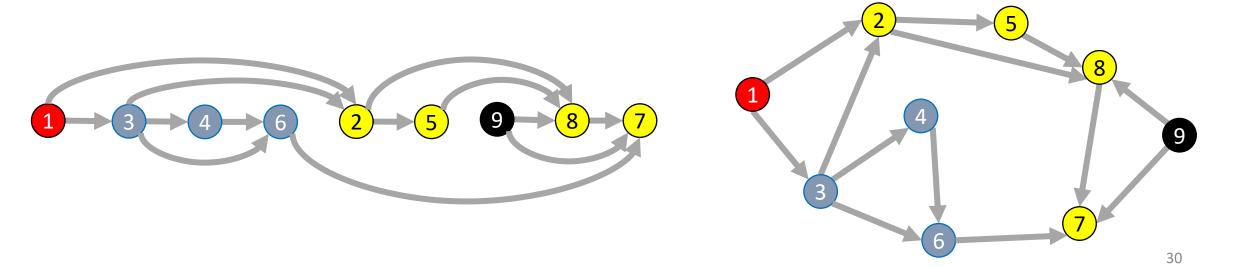
mark the neighbor as visited do a DFS from the neighbor mark the current node as done

Node	Visited?	Done?	Other Info
1			
2			
3			
4			
5			
6			
7			
8			
9			

(Call)		
Stack:		

Topological Sort

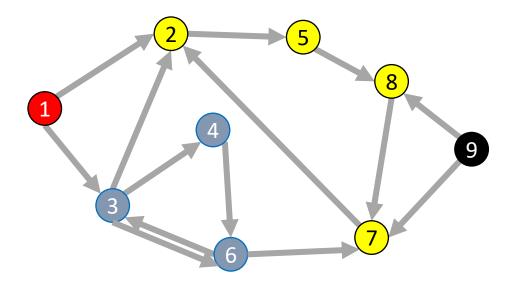
• A Topological Sort of a **directed acyclic graph** G = (V, E) is a permutation of V such that if $(u, v) \in E$ then u is before v in the permutation



DFS Recursively

```
void dfs(graph, curr){
      mark curr as "visited";
      for (v : neighbors(current)){
             if (! v marked "visited"){
                    dfs(graph, v);
      mark curr as "done";
```

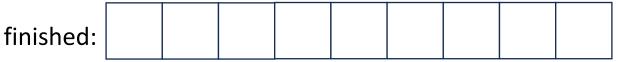
Idea: List in reverse order by "done" time

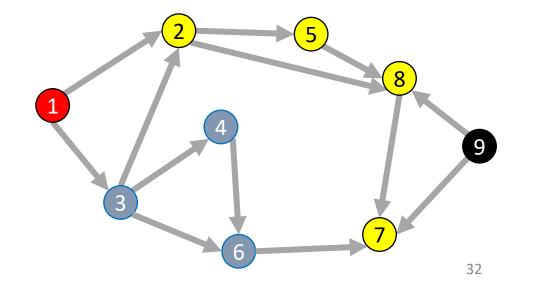


DFS: Topological sort

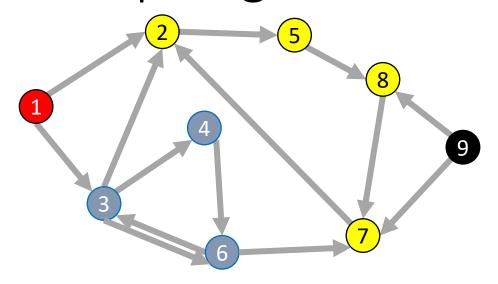
```
List topSort(graph){
         List<Nodes> done = new List<>();
         for (Node v : graph.vertices){
                  if (!v.visited){
                           finishTime(graph, v, finished);
         done.reverse();
         return done;
void finishTime(graph, curr, finished){
         curr.visited = true;
         for (Node v : curr.neighbors){
                  if (!v.visited){
                           finishTime(graph, v, finished);
         done.add(curr)
```

Idea: List in reverse order by "done" time





Topological Sort- Worked Example



Starting from the current node:

for each non-done neighbor:

if the neighbor is visited: we found a cycle!

else:

mark the neighbor as visited do a DFS from the neighbor mark the current node as done add current node to finished

Node	Visited?	Done?	Other Info
1			
2			
3			
4			
5			
6			
7			
8			
9			

Call) Stack:					