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Undirected Graphs
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Definition: 𝐺 = (𝑉, 𝐸)
Vertices/Nodes

Edges

𝑉 = {1,2,3,4,5,6,7,8,9}

𝐸 = { 1,2 , 2,3 , (1,3), … }



Directed Graphs
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Definition: 𝐺 = (𝑉, 𝐸)
Vertices/Nodes

Edges

𝑉 = {1,2,3,4,5,6,7,8,9}

𝐸 = { 1,2 , 2,3 , (1,3), … }
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Weighted Graphs
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Definition: 𝐺 = (𝑉, 𝐸)
Vertices/Nodes

Edges
𝑤 𝑒 = weight of edge 𝑒

𝑉 = {1,2,3,4,5,6,7,8,9}

𝐸 = { 1,2 , 2,3 , (1,3), … }



Definition: Complete Graph
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A Graph 𝐺 = (𝑉, 𝐸) s.t. for any pair of nodes 
𝑣1, 𝑣2 ∈ 𝑉 there is an edge from 𝑣1 to 𝑣2

Complete 
Undirected Graph

Complete 
Directed Graph

1 2

3 4

1 2

3 4

Complete Directed 
Non-simple Graph

1 2

3 4



Graph Density, Data Structures, Efficiency

• The maximum number of edges in a graph is Θ |𝑉|2 :

• Undirected and simple: 
|𝑉|(|𝑉|−1)

2
• Directed and simple: |𝑉|(|𝑉| − 1)
• Direct and non-simple (but no duplicates): |𝑉|2

• If the graph is connected, the minimum number of edges is 𝑉 − 1

• If 𝐸 ∈ Θ 𝑉 2  we say the graph is dense

• If 𝐸 ∈ Θ |𝑉|  we say the graph is sparse

• Because 𝐸  is not always near to 𝑉 2 we do not typically substitute 
𝑉 2 for 𝐸  in running times, but leave it as a separate variable
• However, log 𝐸 ∈ Θ log 𝑉



Definition: Tree
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A Graph 𝐺 = (𝑉, 𝐸) is a tree if it is undirect, 
connected, and has no cycles (i.e. is acyclic).
Often one node is identified as the “root”

A Tree
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A Rooted Tree
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Graph Operations

• To represent a Graph (i.e. build a data structure) we need:
• Add Edge

• Remove Edge

• Check if Edge Exists

• Get Neighbors (incoming)

• Get Neighbors (outgoing)



Adjacency List
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2 3

1 3 5

1 2 4 6

3 5 6

2 4 7 8

3 4 7

5 6 8 9

5 7 9

7 8

Time/Space Tradeoffs
Space to represent: Θ(𝑛 +𝑚)
Add Edge (𝑣, 𝑤): Θ(deg(𝑣))
Remove Edge (𝑣, 𝑤): Θ(deg(𝑣))
Check if Edge (𝑣, 𝑤) Exists: Θ(deg(𝑣))
Get Neighbors (incoming): Θ(𝑛 +𝑚)
Get Neighbors (outgoing): Θ deg 𝑣

𝑉 = 𝑛 
𝐸 = 𝑚 



Adjacency List (Weighted)
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𝑉 = 𝑛 
𝐸 = 𝑚 

Time/Space Tradeoffs
Space to represent: Θ(𝑛 +𝑚)
Add Edge (𝑣, 𝑤): Θ(deg(𝑣))
Remove Edge (𝑣, 𝑤): Θ(deg(𝑣))
Check if Edge (𝑣, 𝑤) Exists: Θ(deg(𝑣))
Get Neighbors (incoming): Θ(𝑛 +𝑚)
Get Neighbors (outgoing): Θ deg 𝑣



Adjacency Matrix

11

1

2

3

4

5

6

7

8

9

1 2 3 4 5 6 7 8 9

1 1

1 1 1

1 1 1

1 1 1

1 1 1 1

1 1 1

1 1 1 1

1 1 1

1 1

1

1

2

3

4

5

6
7

9

8

𝑉 = 𝑛 
𝐸 = 𝑚 

Time/Space Tradeoffs
Space to represent: Θ(𝑛2)
Add Edge (𝑣, 𝑤): Θ(1)
Remove Edge (𝑣, 𝑤): Θ(? )
Check if Edge (𝑣, 𝑤) Exists: Θ(? )
Get Neighbors (incoming): Θ(𝑛)
Get Neighbors (outgoing): Θ ?



Adjacency Matrix
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𝑉 = 𝑛 
𝐸 = 𝑚 

Time/Space Tradeoffs
Space to represent: Θ(𝑛2)
Add Edge (𝑣, 𝑤): Θ(1)
Remove Edge (𝑣, 𝑤): Θ(1)
Check if Edge (𝑣, 𝑤) Exists: Θ(1)
Get Neighbors (incoming): Θ(𝑛)
Get Neighbors (outgoing): Θ 𝑛
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Adjacency Matrix (weighted)
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𝑉 = 𝑛 
𝐸 = 𝑚 
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Time/Space Tradeoffs
Space to represent: Θ(𝑛2)
Add Edge (𝑣, 𝑤): Θ(1)
Remove Edge (𝑣, 𝑤): Θ(1)
Check if Edge (𝑣, 𝑤) Exists: Θ(1)
Get Neighbors (incoming): Θ(𝑛)
Get Neighbors (outgoing): Θ 𝑛
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5 1 9 11
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Comparison

• Adjacency List:
• Less memory when 𝐸 < 𝑉 2

• Operations with running time linear in degree of source node
• Add an edge
• Remove an edge
• Check for edge
• Get neighbors

• Adjacency Matrix:
• Similar amount of memory when 𝐸 ≈ 𝑉 2

• Constant time operations:
• Add an edge
• Remove an edge
• Check for an edge

• Operations running with linear time in |𝑉|
• Get neighbors

Adjacency List is more common in practice:
• Most graphs have 𝐸 ≪ 𝑉 2

• Saves memory
• Most nodes will have small degree

• Getting neighbors is a common operation
• Adjacency Matrix may be better if the 

graph is “dense” or if its edges change a lot



Breadth-First Search

• Input: a node 𝑠

• Behavior: Start with node 𝑠, visit all neighbors of 𝑠, then all neighbors 
of neighbors of 𝑠, …

• Visits every node reachable from 𝑠 in order of distance

• Output: 
• How long is the shortest path?

• Is the graph connected?
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BFS
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void bfs(graph, s){
 found = new Queue();
 found.enqueue(s);
 mark s as “visited”;
 While (!found.isEmpty()){
  current = found.dequeue();
  for (v : neighbors(current)){
   if (! v marked “visited”){
    mark v as “visited”;
    found.enqueue(v);
   }
  }
 } 
}   
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Running time: Θ 𝑉 + 𝐸



BFS – Worked Example
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For each node:
    For each unvisited neighbor:
        add that neighbor to a queue
        mark that neighbor as visited

Node Visited? Other Info

1 True

2

3

4

5

6

7

8

9

Queue:



Find Distance (unweighted)
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int findDistance(graph, s, t){
 found = new Queue();
 layer = 0;
 found.enqueue(s);
 mark s as “visited”;
 While (!found.isEmpty()){
  current = found.dequeue();
  layer = depth of current;
  for (v : neighbors(current)){
   if (! v marked “visited”){
    mark v as “visited”;
    depth of v = layer + 1;
    found.enqueue(v);
   }
  }
 }
 return depth of t; 
}   

Idea: when it’s seen, remember 
its “layer” depth!
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Find Distance – Worked Example
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For each node:
    update current layer
    For each unvisited neighbor:
        add that neighbor to a queue
        mark that neighbor as visited
        set neighbor’s layer to be current layer + 1
        

Node Visited? Layer
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Queue:



Shortest Path - Idea
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For each node:
    For each unvisited neighbor:
        add that neighbor to a queue
        mark that neighbor as visited
        set neighbor’s previous to be the current node
        

Node Visited? Previous
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9

Queue:



Depth-First Search



Depth-First Search

• Input: a node 𝑠

• Behavior: Start with node 𝑠, visit one neighbor of 𝑠, then all nodes 
reachable from that neighbor of 𝑠, then another neighbor of 𝑠,…
• Before moving on to the second neighbor of 𝑠, visit everything reachable 

from the first neighbor of 𝑠

• Output: 
• Does the graph have a cycle?

• A topological sort of the graph.
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DFS (non-recursive)
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void dfs(graph, s){
 found = new Stack();
 found.pop(s);
 mark s as “visited”;
 While (!found.isEmpty()){
  current = found.pop();
  for (v : neighbors(current)){
   if (! v marked “visited”){
    mark v as “visited”;
    found.push(v);
   }
  }
 } 
}   

Running time: Θ 𝑉 + 𝐸
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DFS Recursively (more common)
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void dfs(graph, curr){
 mark curr as “visited”;
 for (v : neighbors(current)){
  if (! v marked “visited”){
   dfs(graph, v);
  }
 }
 mark curr as “done”;
}   
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DFS – Worked Example
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Starting from the current node:
    for each unvisited neighbor:
        mark the neighbor as visited
        do a DFS from the neighbor
    mark the current node as done

Node Visited? Done? Other Info
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(Call)
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Using DFS

• Consider the “visited times” and “done times” 

• Edges can be categorized:
• Tree Edge

• (𝑎, 𝑏) was followed when pushing
• (𝑎, 𝑏) when 𝑏 was unvisited when we were at 𝑎

• Back Edge
• (𝑎, 𝑏) goes to an “ancestor”
• 𝑎 and 𝑏 visited but not done when we saw (𝑎, 𝑏)

• 𝑡𝑣𝑖𝑠𝑖𝑡𝑒𝑑 𝑏 < 𝑡𝑣𝑖𝑠𝑖𝑡𝑒𝑑 𝑎 < 𝑡𝑑𝑜𝑛𝑒 𝑎 < 𝑡𝑑𝑜𝑛𝑒(𝑏)

• Forward Edge
• (𝑎, 𝑏) goes to a “descendent”
• 𝑏 was visited and done between when 𝑎 was visited and done

• 𝑡𝑣𝑖𝑠𝑖𝑡𝑒𝑑 𝑎 < 𝑡𝑣𝑖𝑠𝑖𝑡𝑒𝑑 𝑏 < 𝑡𝑑𝑜𝑛𝑒 𝑏 < 𝑡𝑑𝑜𝑛𝑒 𝑎

• Cross Edge
• (𝑎, 𝑏) goes to a node that doesn’t connect to 𝑎
• 𝑏 was seen and done before 𝑎 was ever visited
• 𝑡𝑑𝑜𝑛𝑒 𝑏 < 𝑡𝑣𝑖𝑠𝑖𝑡𝑒𝑑 𝑎  26

Visited: 0
Done: 15

Visited : 1
Done: 8

Visited : 2
Done: 7
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Visited : 9
Done: 14 

Visited : 10
Done: 13 

Visited : 11
Done: 12



Back Edges

• Behavior of DFS:
• “Visit everything reachable from the current node before going back”

• Back Edge:
• The current node’s neighbor is an “in progress” node

• Since that other node is “in progress”, the current node is reachable from it

• The back edge is a path to that other node

• Cycle!
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Cycle Detection
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boolean hasCycle(graph, curr){
 mark curr as “visited”;
 cycleFound = false;
 for (v : neighbors(current)){
  if (v marked “visited” && ! v marked “done”){
   cycleFound=true;
  }
  if (! v marked “visited” && !cycleFound){
   cycleFound = hasCycle(graph, v);
  }
 }
 mark curr as “done”;
 return cycleFound;
}   
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Idea: Look for a back edge!



Cycle Detection – Worked Example
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Starting from the current node:
    for each non-done neighbor:
        if the neighbor is visited:
            we found a cycle!
        else:
            mark the neighbor as visited
            do a DFS from the neighbor
    mark the current node as done

Node Visited? Done? Other Info
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(Call)
Stack:
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Topological Sort

• A Topological Sort of a directed acyclic graph 𝑮 = (𝑽, 𝑬) is a 
permutation of 𝑉 such that if 𝑢, 𝑣 ∈ 𝐸 then 𝑢 is before 𝑣 in the 
permutation
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DFS Recursively
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void dfs(graph, curr){
 mark curr as “visited”;
 for (v : neighbors(current)){
  if (! v marked “visited”){
   dfs(graph, v);
  }
 }
 mark curr as “done”;
}   
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Idea: List in reverse 
order by “done” time



DFS: Topological sort
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List topSort(graph){
 List<Nodes> done = new List<>();
 for (Node v : graph.vertices){
  if (!v.visited){
   finishTime(graph, v, finished);
  }
 }
 done.reverse();
 return done;
}

void finishTime(graph, curr, finished){
 curr.visited = true;
 for (Node v : curr.neighbors){
  if (!v.visited){
   finishTime(graph, v, finished);
  }
 }
 done.add(curr)
}   
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Idea: List in reverse 
order by “done” time



Topological Sort– Worked Example

33

Starting from the current node:
    for each non-done neighbor:
        if the neighbor is visited:
            we found a cycle!
        else:
            mark the neighbor as visited
            do a DFS from the neighbor
    mark the current node as done
    add current node to finished

finished:

Node Visited? Done? Other Info
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