CSE 332 Autumn 2024 Lecture 18: Graphs 2

Nathan Brunelle

http://www.cs.uw.edu/332

Definition: Complete Graph

A Graph G = (V, E) s.t. for any pair of nodes $v_1, v_2 \in V$ there is an edge from v_1 to v_2

Complete Undirected Graph

Complete Directed Graph

Non-simple Graph

Graph Density, Data Structures, Efficiency

- The maximum number of edges in a graph is $\Theta(|V|^2)$:
 - Undirected and simple: $\frac{|V|(|V|-1)}{2}$
 - Directed and simple: |V|(|V| 1)
 - Direct and non-simple (but no duplicates): $|V|^2$
- If the graph is connected, the minimum number of edges is |V| 1
- If $|E| \in \Theta(|V|^2)$ we say the graph is **dense**
- If $|E| \in \Theta(|V|)$ we say the graph is **sparse**
- Because |E| is not always near to $|V|^2$ we do not typically substitute $|V|^2$ for |E| in running times, but leave it as a separate variable
 - However, $\log(|E|) \in \Theta(\log(|V|))$

Definition: Tree

A Graph G = (V, E) is a tree if it is undirect, connected, and has no cycles (i.e. is acyclic). Often one node is identified as the "root"

A Rooted Tree

Graph Operations

- To represent a Graph (i.e. build a data structure) we need:
 - Add Edge
 - Remove Edge
 - Check if Edge Exists
 - Get Neighbors (incoming)
 - Get Neighbors (outgoing)

Time/Space Tradeoffs

Space to represent: $\Theta(n + m)$ Add Edge (v, w): $\Theta(\deg(v))$ Remove Edge (v, w): $\Theta(\deg(v))$ Check if Edge (v, w) Exists: $\Theta(\deg(v))$ Get Neighbors (incoming): $\Theta(n + m)$ Get Neighbors (outgoing): $\Theta(\deg(v))$

$$|V| = n$$
$$|E| = m$$

1	2	3		
2	1	3	5	
3	1	2	4	6
4	3	5	6	
5	2	4	7	8
6	3	4	7	
7	5	6	8	9
8	5	7	9	
9	7	8		-

Time/Space Tradeoffs

Space to represent: $\Theta(n + m)$ Add Edge (v, w): $\Theta(\deg(v))$ Remove Edge (v, w): $\Theta(\deg(v))$ Check if Edge (v, w) Exists: $\Theta(\deg(v))$ Get Neighbors (incoming): $\Theta(n + m)$ Get Neighbors (outgoing): $\Theta(\deg(v))$

$$|V| = n$$
$$|E| = m$$

			_	
1	2	3		
Т	(10)	(12)		
2	1	3	5	
2	(10)	(9)	(8)	
2	1	2	4	6
5	(12)	(9)	(3)	(1)
Л	3	5	6	
4	(3)	(7)	(3)	
F	2	4	7	8
C	(8)	(7)	(5)	(8)
C	3	4	7	
O	(1)	(3)	(6)	
7	5	6	8	9
/	(5)	(6)	(9)	(11)
8	5	7	9	
	(8)	(9)	(2)	
0	7	8		•
9	(11)	(2)		

Time/Space Tradeoffs

Space to represent: $\Theta(?)$ Add Edge (v, w): $\Theta(?)$ Remove Edge (v, w): $\Theta(?)$ Check if Edge (v, w) Exists: $\Theta(?)$ Get Neighbors (incoming): $\Theta(?)$ Get Neighbors (outgoing): $\Theta(?)$

$$|V| = n$$
$$|E| = m$$

	1	2	3	4	5	6	7	8	9
1		1	1						
2	1		1		1				
3	1	1		1		1			
4			1		1	1			
5		1		1			1	1	
6			1	1			1		
7					1	1		1	1
8					1		1		1
9							1	1	

<u>Time/Space Tradeoffs</u> Space to represent: $\Theta(n^2)$ Add Edge (v, w): $\Theta(1)$ Remove Edge (v, w): $\Theta(1)$ Check if Edge (v, w) Exists: $\Theta(1)$ Get Neighbors (incoming): $\Theta(n)$ Get Neighbors (outgoing): $\Theta(n)$

V	= n
E	= m

	1	2	3	4	5	6	7	8	9
1		1	1						
2	1		1		1				
3	1	1		1		1			
4			1		1	1			
5		1		1			1	1	
6			1	1			1		
7					1	1		1	1
8					1		1		1
9							1	1	

<u>Time/Space Tradeoffs</u> Space to represent: $\Theta(n^2)$ Add Edge (v, w): $\Theta(1)$ Remove Edge (v, w): $\Theta(1)$ Check if Edge (v, w) Exists: $\Theta(1)$ Get Neighbors (incoming): $\Theta(n)$ Get Neighbors (outgoing): $\Theta(n)$

V	= n
	= m

	1	2	3	4	5	6	7	8	9
1		10	12						
2	10		9		8				
3	12	9		3		1			
4			3		7	3			
5		8		7			5	8	
6			1	3			1		
7					5	1		9	11
8					8		9		2
9							11	2	

Comparison

- Adjacency List:
 - Less memory when $|E| < |V|^2$
 - Operations with running time linear in degree of source node
 - Add an edge
 - Remove an edge
 - Check for edge
 - Get neighbors
- Adjacency Matrix:
 - Similar amount of memory when $|E| \approx |V|^2$
 - Constant time operations:
 - Add an edge
 - Remove an edge
 - Check for an edge
 - Operations running with linear time in |V|
 - Get neighbors

Adjacency List is more common in practice:

- Most graphs have $|E| \ll |V|^2$
 - Saves memory
 - Most nodes will have small degree
- Getting neighbors is a common operation
- Adjacency Matrix may be better if the graph is "dense" or if its edges change a lot

Breadth-First Search

- Input: a node s
- Behavior: Start with node *s*, visit all neighbors of *s*, then all neighbors of neighbors of *s*, ...
- Visits every node reachable from *s* in order of distance
- Output:
 - How long is the shortest path?
 - Is the graph connected?

Running time: $\Theta(|V| + |E|)$

void bfs(graph, s){ found = new Queue(); found.enqueue(s); mark s as "visited"; While (!found.isEmpty()){ current = found.dequeue(); for (v : neighbors(current)){ if (! v marked "visited"){ mark v as "visited"; found.enqueue(v);

16

BFS – Worked Example

For each node:

For each unvisited neighbor: add that neighbor to a queue mark that neighbor as visited

Node	Visited?	Other Info
1	True	
2		
3		
4		
5		
6		
7		
8		
9		

Queue:

Find Distance (unweighted)

Idea: when it's seen, remember its "layer" depth!

int findDistance(graph, s, t){ found = new Queue(); layer = 0;found.enqueue(s); mark s as "visited"; While (!found.isEmpty()){ current = found.dequeue(); layer = depth of current; for (v : neighbors(current)){ if (! v marked "visited"){ mark v as "visited"; depth of v = layer + 1; found.enqueue(v);

return depth of t;

Find Distance – Worked Example

For each node:

update current layer

For each unvisited neighbor:

add that neighbor to a queue mark that neighbor as visited

Node	Visited?	Layer
1		
2		
3		
4		
5		
6		
7		
8		
9		

Queue:

set neighbor's layer to be current layer + 1

Shortest Path - Idea

For each node:

For each unvisited neighbor: add that neighbor to a queue mark that neighbor as visited set neighbor's previous to be the current node

Node	Visited?	Previous
1		
2		
3		
4		
5		
6		
7		
8		
9		

Queue:

Depth-First Search

Depth-First Search

- Input: a node s
- Behavior: Start with node *s*, visit one neighbor of *s*, then all nodes reachable from that neighbor of *s*, then another neighbor of *s*,...
 - Before moving on to the second neighbor of *s*, visit everything reachable from the first neighbor of *s*
- Output:
 - Does the graph have a cycle?
 - A topological sort of the graph.

DFS (non-recursive)

Running time: $\Theta(|V| + |E|)$

void dfs(graph, s){ found = new Stack(); found.pop(s); mark s as "visited"; While (!found.isEmpty()){ current = found.pop(); for (v : neighbors(current)){ if (! v marked "visited"){ mark v as "visited"; found.push(v);

DFS Recursively (more common)

```
void dfs(graph, curr){
mark curr as "visited";
for (v : neighbors(current)){
    if (! v marked "visited"){
        dfs(graph, v);
        }
    mark curr as "done";
```


DFS – Worked Example

Starting from the current node: for each unvisited neighbor: mark the neighbor as visited do a DFS from the neighbor mark the current node as done

Node	Visited?	Done?	Other Info
1			
2			
3			
4			
5			
6			
7			
8			
9			

Using DFS

- Consider the "visited times" and "done times"
- Edges can be categorized:
 - Tree Edge
 - (*a*, *b*) was followed when pushing
 - (*a*, *b*) when *b* was unvisited when we were at *a*
 - Back Edge
 - (*a*, *b*) goes to an "ancestor"
 - *a* and *b* visited but not done when we saw (*a*, *b*)
 - $t_{visited}(b) < t_{visited}(a) < t_{done}(a) < t_{done}(b)$
 - Forward Edge
 - (*a*, *b*) goes to a "descendent"
 - b was visited and done between when a was visited and done
 - $t_{visited}(a) < t_{visited}(b) < t_{done}(b) < t_{done}(a)$
 - Cross Edge
 - (*a*, *b*) goes to a node that doesn't connect to *a*
 - *b* was seen and done before *a* was ever visited
 - $t_{done}(b) < t_{visited}(a)$

Back Edges

- Behavior of DFS:
 - "Visit everything reachable from the current node before going back"
- Back Edge:
 - The current node's neighbor is an "in progress" node
 - Since that other node is "in progress", the current node is reachable from it
 - The back edge is a path to that other node
 - Cycle!

Cycle Detection

Cycle Detection – Worked Example

Starting from the current node: for each non-done neighbor: if the neighbor is visited: we found a cycle! else:

mark the neighbor as visited do a DFS from the neighbor mark the current node as done

Node	Visited?	Done?	Other Info
1			
2			
3			
4			
5			
6			
7			
8			
9			

(Call) Stack:

Topological Sort

• A Topological Sort of a **directed acyclic graph** G = (V, E) is a permutation of V such that if $(u, v) \in E$ then u is before v in the permutation

DFS Recursively

```
void dfs(graph, curr){
mark curr as "visited";
for (v : neighbors(current)){
    if (! v marked "visited"){
        dfs(graph, v);
        }
    mark curr as "done";
```

Idea: List in reverse order by "done" time

DFS: Topological sort

void finishTime(graph, curr, finished){ curr.visited = true; for (Node v : curr.neighbors){ if (!v.visited){ finishTime(graph, v, finished); } } done.add(curr)

Idea: List in reverse order by "done" time

Topological Sort– Worked Example

Starting from the current node: for each non-done neighbor: if the neighbor is visited: we found a cycle! else:

mark the neighbor as visited do a DFS from the neighbor mark the current node as done add current node to finished

	Node	Visited?	Done?	Other Info
	1			
	2			
	3			
	4			
	5			
	6			
	7			
	8			
	9			
(Call) Stack:				
finished:				33