CSE 332 Autumn 2024
Lecture 18: Graphs 2

Nathan Brunelle
http://www.cs.uw.edu/332

http://www.cs.uw.edu/332

UﬂdireCted Graphs Vertices/Nodes
Definition: G = (V, E)

Edges

V =1{1,2,3,4,5,6,7,8,9)
E={(12),(23),(13),..}

DireCted Graphs Vertices/Nodes
Definition: G = (V, E)

Edges

V =1{1,2,3,4,5,6,7,8,9)
E={(12),(23),(13),..}

Welghted Graphs Vertices/Nodes
Definition: G = (V, E)

Edges

w(e) = weight of edge e

8 vV =1{1,2,3,4,5,6,7,8,9}
E=1{(1,2),0273),(13),..}

Definition: Complete Graph

A Graph G = (V, E) s.t. for any pair of nodes
V4, V, € IV there is an edge from v to v,

Complete Complete Complete Directed
Undirected Graph Directed Graph Non-simple Graph

Graph Density, Data Structures, Efficiency

 The maximum number of edges in a graph is O(|V|%):
Vi(lV|—1)

* Undirected and simple: »
* Directed and simple: |V|[(|V]| — 1)
* Direct and non-simple (but no duplicates): |V|?

* |f the graph is connected, the minimum number of edges is |[V| — 1
e If |[E| € O(|V]|?) we say the graph is dense
 If |E| € O(]V|) we say the graph is sparse

* Because |E| is not always near to |V |? we do not typically substitute
|V |2 for |E| in running times, but leave it as a separate variable

* However, log(|E|) € ©(og(|V]))

Definition: Tree

A Graph G = (V,E) is a treeif it is undirect,
connected, and has no cycles (i.e. is acyclic).
Often one node is identified as the “root”

A Rooted Tree

Graph Operations

* To represent a Graph (i.e. build a data structure) we need:
* Add Edge
* Remove Edge
* Check if Edge Exists
e Get Neighbors (incoming)
* Get Neighbors (outgoing)

AdJacenc List

Time/Space Tradeoffs

Space to represent: O(n + m)
Add Edge (v,w): O(deg(v))
Remove Edge (v, w): O(deg(v)) V] =n
Check if Edge (v, w) Exists: ©@(deg(v)) |E| = m
Get Neighbors (incoming): ©®(n + m)
Get Neighbors (outgoing): @(deg(v))

AdJacenc List (Welghted)

2 3
(10) (12)
1 3
(10) (9)
1 2
(12) (9)
3 5
3) (7)

Time/Space Tradeoffs &)
Space to represent: O(n + m)
Add Edge (v,w): O(deg(v))

Remove Edge (v, w): O(deg(v)) V] =n
Check if Edge (v, w) Exists: ©@(deg(v)) |E| = m
Get Neighbors (incoming): ©®(n + m)
Get Neighbors (outgoing): @(deg(v))

Adjacency Matrix

)
3
4
5

Time/Space Tradeoffs :

Space to represent: O(?) :

Add Edge (v,w): 0(?)

Remove Edge (v,w): B(?) V| =n 8

Check if Edge (v, w) Exists: O(?) |E| = m 9

Get Neighbors (incoming): ©(?)
Get Neighbors (outgoing): 0(?)

11

Adjacency Matrix

2
3
4
5
Time/Space Tradeoffs
6
Space to represent: @(n?) :
Add Edge (v,w): O(1)
Remove Edge (v, w): ©(1) Vl=n ®
Check if Edge (v, w) Exists: ©(1) |E| = m 9

Get Neighbors (incoming): ©(n)
Get Neighbors (outgoing): ©(n)

12

AdJacenc I\/Iatrlx (Welghted)

Time/Space Tradeoffs

Space to represent: ©(n?)
Add Edge (v,w): O(1)

Remove Edge (v, w): ©(1) V| =n
Check if Edge (v, w) Exists: O(1) |E] = m
Get Neighbors (incoming): ©(n)
Get Neighbors (outgoing): ©(n)

13

Comparison

e Adjacency List:
* Less memory when |E| < |V]|?
e Operations with running time linear in degree of source node

 Add an edge
* Remove an edge

* Check for edge
* Get neighbors
* Adjacency Matrix:

e Similar amount of memory when |E| = |V|?
* Constant time operations:

Adjacency List is more common in practice:
* Most graphs have |E| < |V|?
* Saves memory
* Most nodes will have small degree
. Add an edge isjcting neilsﬂhbgrs isa cbombmon g?e;ation
* Remove an edge Jacency atrix may be etter if the
* Check for an edge graph is “dense” or if its edges change a lot

* Operations running with linear time in |V|
* Get neighbors

Breadth-First Search

* Input: anode s

* Behavior: Start with node s, visit all neighbors of s, then all neighbors
of neighbors of s, ...

* Visits every node reachable from s in order of distance

* Output: o
 How long is the shortest path? @
* |s the graph connected? o 9

void bfs(graph, s){
BFS found = new Queue();

o ® found.enq:Je.u.e(s)’i
0O mark s as “visited”;

@), G While (!found.isEmpty()){
(9) current = found.dequeue();

O for (v : neighbors(current)){
® O if (! v marked “visited”){
mark v as “visited”;
found.enqueue(v);

Running time: O(|V| + |E|) }

16

BFS — Worked Example

For each node:
For each unvisited neighbor:
add that neighbor to a queue
mark that neighbor as visited

Queue:

O 00 N o U1l b W N =

Node | Viied? | Otherinto

True

17

Find Distance (unweighted) " f'”d?;Ztﬁgieﬁir@pggi’u%;
layer = 0;
found.enqueue(s);
mark s as “visited”;
While (!found.isEmpty()){
current = found.dequeue();
(9] layer = depth of current;
for (v : neighbors(current)){
if (! v marked “visited”){
mark v as “visited”;
depth of v = layer + 1;

ldea: when it’s seen, remember found.enqueue(v);
its “layer” depth! } }
}
return depth of t;
} 18

Find Distance — Worked Example

[
1
2
3
4
5
6
For each node: !
update current layer j

For each unvisited neighbor:

add that neighbor to a queue
mark that neighbor as visited

Queue:

set neighbor’s layer to be current layer + 1

Shortest Path - Idea

Node | Visited? | Previous
1
2
3
4
5
6
7
8
For each node: 5

For each unvisited neighbor:

add that neighbor to a queue
mark that neighbor as visited

Queue:

set neighbor’s previous to be the current node

20

Depth-First Search

Depth-First Search

* Input: anode s

* Behavior: Start with node s, visit one neighbor of s, then all nodes
reachable from that neighbor of s, then another neighbor of s,...

* Before moving on to the second neighbor of s, visit everything reachable
from the first neighbor of s

1 2
* Output:) ONEE
* Does the graph have a cycle? 0
« A topological sort of the graph. @ 6@

;€

DFS (non-recursive) voiddfsigraph, s)

found = new Stack();
found.pop(s);

© G) mark s as “visited”;
While (!found.isEmpty()){
O 0 o current = found.pop();
for (v : neighbors(current)){
O if (! v marked “visited”){
O @ mark v as “visited”;
found.push(v);
Running time: O(|V| + |E|) }

23

DFS Recursively (more common)

void dfs(graph, curr){
mark curr as “visited”;
for (v : neighbors(current)){
if (! v marked “visited”){
dfs(graph, v);
} | °

mark curr as “done”;

DFS — Worked Example
Node | Visited? | Done? | otherinfo

O 00 N o U1 B W N =

Starting from the current node:
for each unvisited neighbor:

mark the neighbor as visited (call)
do a DFS from the neighbor Stack:

mark the current node as done .

Using DFS

e Consider the “visited times” and “done times”

* Edges can be categorized: Visited : 1 Visited : 2

* Tree Edge pone: 8 DONE: 7 \isited : 3
* (a, b) was followed when pushing Visited: 0 Done: 6
* (a,b) when b was unvisited when we were at a Done: 15
* Back Edge
* (a,b) goes to an “ancestor”
* a and b visited but not done when we saw (a, b)
* tyisitea(h) < tyisitea(@) < tgone(@) < tgone(b) Visited : 9
* Forward Edge Done: 14
* (a,b) goes to a “descendent”
* b was visited and done between when a was visited and done Done: 12 Done: 5

¢ tvisited (a) < tvisited (b) < tdone (b) < tdone (a)

Visited : 4

(a, b) goes to a node that doesn’t connect to a
b was seen and done before a was ever visited

¢ tdone(b) < lyisited (a) 26

Back Edges

* Behavior of DFS:
* “Visit everything reachable from the current node before going back”

* Back Edge:

* The current node’s neighbor is an “in progress” node
* Since that other node is “in progress”, the current node is reachable from it

* The back edge is a path to that other node
* Cycle! @

¢ o

~o

ldea: Look for a back edge!

Cycle Detection

boolean hasCycle(graph, curr){
mark curr as “visited”;
cycleFound = false;
for (v : neighbors(current)){
@ @ if (v marked “visited” && ! v marked “done”){

cycleFound=true;
}
° 9 if (! v marked “visited” && IcycleFound){
(3] cycleFound = hasCycle(graph, v);
© @ }
}
mark curr as “done”;
return cycleFound;

} 28

Cycle Detection — Worked Example
Node | Visited? | Done? | otherinfo

Starting from the current node:
for each non-done neighbor:
if the neighbor is visited:
we found a cycle!

O 00 N o U1 B W N =

else: (Call
mark the neighbor as visited Stack:

do a DFS from the neighbor
mark the current node as done

29

Topological Sort

* A Topological Sort of a directed acyclic graph G = (V,E) is a
permutation of V such that if (u, v) € E then u is before v in the
permutation

0000 -6 0G0

DFS Recursively

void dfs(graph, curr){
mark curr as “visited”;
for (v : neighbors(current)){
if (! v marked “visited”){
dfs(graph, v);
}
}

mark curr as “done”;

ldea: List in reverse
order by “done” time

31

DFS: Topological sort

List topSort(graph){
List<Nodes> done = new List<>();
for (Node v : graph.vertices){
if (v.visited){
finishTime(graph, v, finished);
}
}

done.reverse();
return done;

}

void finishTime(graph, curr, finished){
curr.visited = true;
for (Node v : curr.neighbors){
if (Iv.visited){
finishTime(graph, v, finished);
}
}

done.add(curr)

finished:

ldea: List in reverse
order by “done” time

Topological Sort— Worked Example
Node | Visited? | Done? | otherinfo

Starting from the current node:
for each non-done neighbor:
if the neighbor is visited:
we found a cycle!
else: (Call)
mark the neighbor as visited Stack:
do a DFS from the neighbor
mark the current node as done finished:
add current node to finished 33

O 00 N o U1 B W N =

	Slide 1: CSE 332 Autumn 2024 Lecture 18: Graphs 2
	Slide 2: Undirected Graphs
	Slide 3: Directed Graphs
	Slide 4: Weighted Graphs
	Slide 5: Definition: Complete Graph
	Slide 6: Graph Density, Data Structures, Efficiency
	Slide 7: Definition: Tree
	Slide 8: Graph Operations
	Slide 9: Adjacency List
	Slide 10: Adjacency List (Weighted)
	Slide 11: Adjacency Matrix
	Slide 12: Adjacency Matrix
	Slide 13: Adjacency Matrix (weighted)
	Slide 14: Comparison
	Slide 15: Breadth-First Search
	Slide 16: BFS
	Slide 17: BFS – Worked Example
	Slide 18: Find Distance (unweighted)
	Slide 19: Find Distance – Worked Example
	Slide 20: Shortest Path - Idea
	Slide 21: Depth-First Search
	Slide 22: Depth-First Search
	Slide 23: DFS (non-recursive)
	Slide 24: DFS Recursively (more common)
	Slide 25: DFS – Worked Example
	Slide 26: Using DFS
	Slide 27: Back Edges
	Slide 28: Cycle Detection
	Slide 29: Cycle Detection – Worked Example
	Slide 30: Topological Sort
	Slide 31: DFS Recursively
	Slide 32: DFS: Topological sort
	Slide 33: Topological Sort– Worked Example

