CSE 332 Autumn 2024 Lecture 16: Sorting 3

Nathan Brunelle

<http://www.cs.uw.edu/332>

$log n! = O(n log n)$

$$
n! = n \cdot (n-1) \cdot (n-2) \cdot \ldots \cdot 2 \cdot 1
$$

$$
n^n = n \cdot n \cdot n \cdot n \cdot \ldots \cdot n \cdot n
$$

$$
\frac{n! \le n^n}{n!} \Rightarrow \log(n!) \le \log(n^n)
$$

$$
\Rightarrow \log(n!) \le n \log n
$$

$$
\Rightarrow \log(n!) = O(n \log n)
$$

4 log ! = Ω log ! = ⋅ − 1 ⋅ − 2 ⋅ … ⋅ 2 ⋅ 2 − 1 ⋅ … ⋅ 2 ⋅ 1 2 2 = 2 ⋅ 2 ⋅ 2 ⋅ … ⋅ 2 ⋅ 1 ⋅ … ⋅ 1 ⋅ 1 > > > = > ! ≥ 2 2 ⇒ log ! ≥ log 2 2 ⇒ log ! ≥ 2 log 2 ⇒ log ! = Ω (log) > =

Sorting Algorithm Summary

Quicksort

Idea: pick a pivot element, recursively sort two sublists around that element

- Divide: select pivot element p , Partition(p)
- Conquer: recursively sort left and right sublists
- Combine: Nothing!

Partition (Divide step)

Given: a list, a pivot p Start: unordered list

Partition Summary

- 1. Put p at beginning of list
- 2. Put a pointer (Begin) just after p , and a pointer (End) at the end of the list
- 3. While Begin < End:
	- 1. If Begin value $< p$, move Begin right
	- 2. Else swap Begin value with End value, move End Left
- 4. If pointers meet at element $\lt p$: Swap p with pointer position
- 5. Else If pointers meet at element $> p$: Swap p with value to the left

Run time? $O(n)$

Recursively sort Left and Right sublists

Quicksort Run Time (Best)

If the pivot is always the median:

Then we divide in half each time

$$
T(n) = 2T\left(\frac{n}{2}\right) + n
$$

$$
T(n) = O(n \log n)
$$

Quicksort Run Time (Worst)

If the pivot is always at the extreme:

Then we shorten by 1 each time

 $T(n) = T(n - 1) + n$

 $T(n) = O(n^2)$

Good Pivot

- What makes a good Pivot?
	- Roughly even split between left and right
	- Ideally: median
- There are ways to find the median in linear time, but it's complicated and slow and you're better off using mergesort
- In Practice:
	- Pick a random value as a pivot
	- Pick the middle of 3 random values as the pivot

Properties of Quick Sort

- Worst Case Running time:
	- $\Theta(n^2)$
	- Expected is $\Theta(n \log n)$
- In-Place?
	- Vote for yes
	- What about recursion?
- Adaptive?
	- Vote for yes
	- Vote for no
- Stable?
	- vote for yes
	- In practice, don't assume it

Sorting Algorithm Summary

*Quick Sort can be done in-place within each stack frame. Some textbooks do not include the memory occupied by the stack frame in space analysis, which would mean concluding Quick Sort is in-place. Others will include stack frame space, and therefore conclude Quick Sort is not in-place. If you try to implement it iteratively, you'll need another array somewhere (e.g. to store locations of sub-lists)

Worst Case Lower Bounds

- Prove that there is no algorithm which can sort faster than $O(n \log n)$
	- Every algorithm, in the worst case, must have a certain lower bound
- Non-existence proof!
	- Very hard to do

Sorting Algorithm "Template"

- Compare two things $(a < b)$
- Based on response (true or false), compare two other things ($c_t < d_t$ or $c_f < d_f$)
- Based on that response, compare two more things ($e_{tt} < d_{tt}$, or $e_{tf} < d_{tf}$, or $e_{ft} < d_{ft}$, or $e_{ff} < d_{ff}$)
- Repeat until we know the correct order of elements
- Examples:
	- Quick Sort: compare the pivot to arr[1], then either compare the pivot to $\widehat{arr}[2]$ or the item that was previously at arr[n-1].
	- Insertion Sort: compare arr[0] with arr[1]. Then compare arr[1] with arr[2]. Next either compare arr[1] with arr[0] or arr[3] with arr[2].

Strategy: Decision Tree

- Sorting algorithms use comparisons to figure out the order of input elements
- Draw tree to illustrate all possible execution paths

Strategy: Decision Tree

- Worst case run time is the longest execution path
- i.e., "height" of the decision tree

Strategy: Decision Tree

- Conclusion: Worst Case Optimal run time of sorting is $\Theta(n \log n)$
	- There is no (comparison-based) sorting algorithm with running time better than $n \log n$

Improving Running time

- Recall our definition of the sorting problem:
	- Input:
		- An array A of items
		- A comparison function for these items
			- Given two items x and y, we can determine whether $x < y$, $x > y$, or $x = y$
	- Output:
		- A permutation of A such that if $i \leq j$ then $A[i] \leq A[j]$
- Under this definition, it is impossible to write an algorithm faster than $n \log n$ asymptotically.
- Observation:
	- Sometimes there might be ways to determine the position of values without comparisons!

"Linear Time" Sorting Algorithms

- Useable when you are able to make additional assumptions about the contents of your list (beyond the ability to compare)
	- Examples:
		- The list contains only positive integers less than k
		- The number of distinct values in the list is much smaller than the length of the list
- The running time expression will always have a term other than the list's length to account for this assumption
	- Examples:
		- Running time might be $\Theta(k \cdot n)$ where k is the range/count of values

BucketSort

- Assumes the array contains integers between and $k-1$ (or some other small range)
- Idea:
	- Use each value as an index into an array of size k
	- Add the item into the "bucket" at that index (e.g. linked list)
	- Get sorted array by "appending" all the buckets

BucketSort Running Time

- Create array of k buckets
	- Either $\Theta(k)$ or $\Theta(1)$ depending on some things...
- Insert all n things into buckets
	- \bullet $\Theta(n)$
- Empty buckets into an array
	- \bullet $\Theta(n+k)$
- Overall:
	- $\cdot \Theta(n+k)$
- When is this better than mergesort?

Properties of BucketSort

- In-Place?
	- No
- Adaptive?
	- No
- Stable?
	- Yes!

- Radix: The base of a number system
	- We'll use base 10, most implementations will use larger bases
- Idea:
	- BucketSort by each digit, one at a time, from least significant to most significant

- Radix: The base of a number system
	- We'll use base 10, most implementations will use larger bases
- Idea:
	- BucketSort by each digit, one at a time, from least significant to most significant

- Radix: The base of a number system
	- We'll use base 10, most implementations will use larger bases
- Idea:
	- BucketSort by each digit, one at a time, from least significant to most significant

- Radix: The base of a number system
	- We'll use base 10, most implementations will use larger bases
- Idea:
	- BucketSort by each digit, one at a time, from least significant to most significant

RadixSort Running Time

- Suppose largest value is m
- Choose a radix (base of representation) b
- BucketSort all n things using b buckets
	- $\cdot \Theta(n+k)$
- Repeat once per each digit
	- $\log_b m$ iterations
- Overall:
	- $\Theta(n \log_h m + b \log_h m)$
- In practice, you can select the value of b to optimize running time
- When is this better than mergesort?