
CSE 332 Autumn 2024
Lecture 16: Sorting 3

Nathan Brunelle

http://www.cs.uw.edu/332

http://www.cs.uw.edu/332

Warm up

Show log 𝑛! = Θ(𝑛 log 𝑛)

Hint: show 𝑛! ≤ 𝑛𝑛

Hint 2: show 𝑛! ≥
𝑛

2

𝑛

2

2

3

log 𝑛! = 𝑂 𝑛 log 𝑛

𝑛! = 𝑛 ⋅ 𝑛 − 1 ⋅ 𝑛 − 2 ⋅ … ⋅ 2 ⋅ 1

𝑛𝑛 = 𝑛 ⋅ 𝑛 ⋅ 𝑛 ⋅ … ⋅ 𝑛 ⋅ 𝑛

= < < < <

𝑛! ≤ 𝑛𝑛

⇒ log 𝑛! ≤ log 𝑛𝑛

⇒ log 𝑛! ≤ 𝑛 log 𝑛
⇒ log 𝑛! = 𝑂(𝑛 log 𝑛)

4

log 𝑛! = Ω 𝑛 log 𝑛

𝑛! = 𝑛 ⋅ 𝑛 − 1 ⋅ 𝑛 − 2 ⋅ … ⋅
𝑛

2
⋅

𝑛

2
− 1 ⋅ … ⋅ 2 ⋅ 1

𝑛

2

𝑛
2

=
𝑛

2
⋅

𝑛

2
 ⋅

𝑛

2
 ⋅ … ⋅

𝑛

2
⋅ 1 ⋅ … ⋅ 1 ⋅ 1

> > > >=

𝑛! ≥
𝑛

2

𝑛
2

⇒ log 𝑛! ≥ log
𝑛

2

𝑛
2

⇒ log 𝑛! ≥
𝑛

2
log

𝑛

2
⇒ log 𝑛! = Ω(𝑛 log 𝑛)

> =

Sorting Algorithm Summary

Algorithm Running Time Adaptive? In-Place? Stable? Online?

Selection 𝑛2 No Yes No No

Insertion 𝑛2 Yes Yes Yes Yes

Heap 𝑛 log 𝑛 No Yes No No

Merge 𝑛 log 𝑛 No No Yes No

Quick

Quicksort

Idea: pick a pivot element, recursively sort two sublists around that
element

• Divide: select pivot element 𝑝, Partition(𝑝)

• Conquer: recursively sort left and right sublists

• Combine: Nothing!

6

Partition (Divide step)

Given: a list, a pivot 𝑝

7

8 5 7 3 12 10 1 2 4 9 6 11

Goal: All elements < 𝑝 on left, all > 𝑝 on right

Start: unordered list

5 7 3 1 2 4 6 8 12 10 9 11

Partition Summary

1. Put 𝑝 at beginning of list

2. Put a pointer (Begin) just after 𝑝, and a pointer (End) at the end of
the list

3. While Begin < End:
1. If Begin value < 𝑝, move Begin right

2. Else swap Begin value with End value, move End Left

4. If pointers meet at element < 𝑝: Swap 𝑝 with pointer position

5. Else If pointers meet at element > 𝑝: Swap 𝑝 with value to the left

8

Run time? 𝑂(𝑛)

Conquer

Recursively sort Left and Right sublists

9

2 5 7 3 6 4 1 8 10 9 11 12

All elements < 𝑝 All elements > 𝑝

Exactly where it belongs!

Quicksort Run Time (Best)

Then we divide in half each time

10

2 5 1 3 6 4 7 8 10 9 11 12

2 1 3 5 6 4 7 8 9 10 11 12

𝑇 𝑛 = 2𝑇
𝑛

2
+ 𝑛

If the pivot is always the median:

𝑇 𝑛 = 𝑂(𝑛 log 𝑛)

Quicksort Run Time (Worst)

Then we shorten by 1 each time

11

1 5 2 3 6 4 7 8 10 9 11 12

1 2 3 5 6 4 7 8 10 9 11 12

𝑇 𝑛 = 𝑇 𝑛 − 1 + 𝑛

If the pivot is always at the extreme:

𝑇 𝑛 = 𝑂(𝑛2)

Good Pivot

• What makes a good Pivot?
• Roughly even split between left and right

• Ideally: median

• There are ways to find the median in linear time, but it’s complicated
and slow and you’re better off using mergesort

• In Practice:
• Pick a random value as a pivot

• Pick the middle of 3 random values as the pivot

12

Properties of Quick Sort

• Worst Case Running time:
• Θ(𝑛2)
• Expected is Θ(𝑛 log 𝑛)

• In-Place?
• Vote for yes
• What about recursion?

• Adaptive?
• Vote for yes
• Vote for no

• Stable?
• vote for yes
• In practice, don’t assume it

Sorting Algorithm Summary

Algorithm Running Time Adaptive? In-Place? Stable? Online?

Selection 𝑛2 No Yes No No

Insertion 𝑛2 Yes Yes Yes Yes

Heap 𝑛 log 𝑛 No Yes No No

Merge 𝑛 log 𝑛 No No Yes No

Quick 𝑛 log 𝑛 (expected) No No* No No

*Quick Sort can be done in-place within each stack frame. Some textbooks do not include the memory
occupied by the stack frame in space analysis, which would mean concluding Quick Sort is in-place. Others will
include stack frame space, and therefore conclude Quick Sort is not in-place. If you try to implement it
iteratively, you’ll need another array somewhere (e.g. to store locations of sub-lists)

Worst Case Lower Bounds

• Prove that there is no algorithm which can sort faster than 𝑂(𝑛 log 𝑛)
• Every algorithm, in the worst case, must have a certain lower bound

• Non-existence proof!
• Very hard to do

15

Sorting Algorithm “Template”

• Compare two things (𝑎 < 𝑏)

• Based on response (true or false), compare two other things (𝑐𝑡 < 𝑑𝑡
or 𝑐𝑓 < 𝑑𝑓)

• Based on that response, compare two more things (𝑒𝑡𝑡 < 𝑑𝑡𝑡, or
𝑒𝑡𝑓 < 𝑑𝑡𝑓, or 𝑒𝑓𝑡 < 𝑑𝑓𝑡, or 𝑒𝑓𝑓 < 𝑑𝑓𝑓)

• Repeat until we know the correct order of elements

• Examples:
• Quick Sort: compare the pivot to arr[1], then either compare the pivot to

arr[2] or the item that was previously at arr[n-1].
• Insertion Sort: compare arr[0] with arr[1]. Then compare arr[1] with arr[2].

Next either compare arr[1] with arr[0] or arr[3] with arr[2].

Strategy: Decision Tree
• Sorting algorithms use comparisons to figure out the order of input

elements

• Draw tree to illustrate all possible execution paths

17

>or<?

>or<? >or<?

>or<? >or<? >or<? >or<?

>or<?>or<?>or<?>or<?>or<?>or<?>or<?>or<?

[1,2,3,4,5] [2,1,3,4,5] [5,2,4,1,3] [5,4,3,2,1]… …

… … … …

><

< >

< > >> >

<

< <<

>

One
comparison Result of

comparison

Permutation
of the list

Possible
execution path

Strategy: Decision Tree
• Worst case run time is the longest execution path

• i.e., “height” of the decision tree

18

>or<?

>or<? >or<?

>or<? >or<? >or<? >or<?

>or<?>or<?>or<?>or<?>or<?>or<?>or<?>or<?

[1,2,3,4,5] [2,1,3,4,5] [5,2,4,1,3] [5,4,3,2,1]… …

… … … …

><

< >

< > >> >

<

< <<

>

One
comparison Result of

comparison

Permutation
of the list

Possible
execution path

𝑛! Possible permutations

log 𝑛!

Θ(𝑛 log 𝑛)

Strategy: Decision Tree
• Conclusion: Worst Case Optimal run time of sorting is Θ(𝑛 log 𝑛)

• There is no (comparison-based) sorting algorithm with running time better
than 𝑛 log 𝑛

19

>or<?

>or<? >or<?

>or<? >or<? >or<? >or<?

>or<?>or<?>or<?>or<?>or<?>or<?>or<?>or<?

[1,2,3,4,5] [2,1,3,4,5] [5,2,4,1,3] [5,4,3,2,1]… …

… … … …

><

< >

< > >> >

<

< <<

>

One
comparison Result of

comparison

Permutation
of the list

Possible
execution path

𝑛! Possible permutations

log 𝑛!

Θ(𝑛 log 𝑛)

Improving Running time

• Recall our definition of the sorting problem:
• Input:

• An array 𝐴 of items
• A comparison function for these items

• Given two items 𝑥 and 𝑦, we can determine whether 𝑥 < 𝑦, 𝑥 > 𝑦, or 𝑥 = 𝑦

• Output:
• A permutation of 𝐴 such that if 𝑖 ≤ 𝑗 then 𝐴 𝑖 ≤ 𝐴[𝑗]

• Under this definition, it is impossible to write an algorithm faster than
𝑛 log 𝑛 asymptotically.

• Observation:
• Sometimes there might be ways to determine the position of values without

comparisons!

“Linear Time” Sorting Algorithms

• Useable when you are able to make additional assumptions about the
contents of your list (beyond the ability to compare)
• Examples:

• The list contains only positive integers less than 𝑘

• The number of distinct values in the list is much smaller than the length of the list

• The running time expression will always have a term other than the
list’s length to account for this assumption
• Examples:

• Running time might be Θ(𝑘 ⋅ 𝑛) where 𝑘 is the range/count of values

BucketSort

• Assumes the array contains integers between 0 and 𝑘 − 1 (or some
other small range)

• Idea:
• Use each value as an index into an array of size 𝑘

• Add the item into the “bucket” at that index (e.g. linked list)

• Get sorted array by “appending” all the buckets

3
3

2
2
2

0 1 2 3

1
1

0
0
0
0
0

0 2 3 0 0 1 2 1 3 0 2 0 0 0 0 0 0 1 1 2 2 2 3 3

BucketSort Running Time

• Create array of 𝑘 buckets
• Either Θ(𝑘) or Θ(1) depending on some things…

• Insert all 𝑛 things into buckets
• Θ(𝑛)

• Empty buckets into an array
• Θ(𝑛 + 𝑘)

• Overall:
• Θ 𝑛 + 𝑘

• When is this better than mergesort?

Properties of BucketSort

• In-Place?
• No

• Adaptive?
• No

• Stable?
• Yes!

RadixSort
• Radix: The base of a number system

• We’ll use base 10, most implementations will use larger bases

• Idea:
• BucketSort by each digit, one at a time, from least significant to most significant

Place each element into
a “bucket” according to
its 1’s place

103 801 401 323 255 823 999 101

0 1 2 3 4 5 6 7

113 901 555 512 245 800 018 121

8 9 10 11 12 13 14 15

999018
255
555
245

103
323
823
113

512

0 1 2 3 4 5 6 7

801
401
101
901
121

800

8 9

RadixSort
• Radix: The base of a number system

• We’ll use base 10, most implementations will use larger bases

• Idea:
• BucketSort by each digit, one at a time, from least significant to most significant

Place each element into
a “bucket” according to
its 10’s place

999018
255
555
245

103
323
823
113

512

0 1 2 3 4 5 6 7

801
401
101
901
121

800

8 9

999
255
555

245
121
323
823

0 1 2 3 4 5 6 7

512
113
018

800
801
401
101
901
103

8 9

RadixSort
• Radix: The base of a number system

• We’ll use base 10, most implementations will use larger bases

• Idea:
• BucketSort by each digit, one at a time, from least significant to most significant

Place each element into
a “bucket” according to
its 100’s place

999
255
555

245
121
323
823

0 1 2 3 4 5 6 7

512
113
018

800
801
401
101
901
103

8 9
901
999

800
801
823

512
555

401323
245
255

0 1 2 3 4 5 6 7

101
103
113
121

018

8 9

RadixSort
• Radix: The base of a number system

• We’ll use base 10, most implementations will use larger bases

• Idea:
• BucketSort by each digit, one at a time, from least significant to most significant

Convert back into an array
901
999

800
801
823

512
555

401323
245
255

0 1 2 3 4 5 6 7

101
103
113
121

018

8 9

018 811 103 113 121 245 255 323

0 1 2 3 4 5 6 7

401 512 555 800 801 823 901 999

8 9 10 11 12 13 14 15

RadixSort Running Time

• Suppose largest value is 𝑚

• Choose a radix (base of representation) 𝑏

• BucketSort all 𝑛 things using 𝑏 buckets
• Θ(𝑛 + 𝑘)

• Repeat once per each digit
• log𝑏 𝑚 iterations

• Overall:
• Θ 𝑛 log𝑏 𝑚 + 𝑏 log𝑏 𝑚

• In practice, you can select the value of 𝑏 to optimize running time

• When is this better than mergesort?

	Slide 1: CSE 332 Autumn 2024 Lecture 16: Sorting 3
	Slide 2
	Slide 3: log n factorial equals cap O open paren n log n , , close paren
	Slide 4: log n factorial equals cap omega open paren n log n , , close paren
	Slide 5: Sorting Algorithm Summary
	Slide 6: Quicksort
	Slide 7: Partition (Divide step)
	Slide 8: Partition Summary
	Slide 9: Conquer
	Slide 10: Quicksort Run Time (Best)
	Slide 11: Quicksort Run Time (Worst)
	Slide 12: Good Pivot
	Slide 13: Properties of Quick Sort
	Slide 14: Sorting Algorithm Summary
	Slide 15: Worst Case Lower Bounds
	Slide 16: Sorting Algorithm “Template”
	Slide 17: Strategy: Decision Tree
	Slide 18: Strategy: Decision Tree
	Slide 19: Strategy: Decision Tree
	Slide 20: Improving Running time
	Slide 21: “Linear Time” Sorting Algorithms
	Slide 22: BucketSort
	Slide 23: BucketSort Running Time
	Slide 24: Properties of BucketSort
	Slide 25: RadixSort
	Slide 26: RadixSort
	Slide 27: RadixSort
	Slide 28: RadixSort
	Slide 29: RadixSort Running Time

