CSE 332 Autumn 2024 Lecture 16: Sorting 3

Nathan Brunelle

http://www.cs.uw.edu/332

$\frac{\text{Warm up}}{\text{Show } \log(n!)} = \Theta(n \log n)$

Hint: show
$$n! \le n^n$$

Hint 2: show $n! \ge \left(\frac{n}{2}\right)^{\frac{n}{2}}$

$\log n! = O(n \log n)$

$$n! \le n^n$$

$$\Rightarrow \log(n!) \le \log(n^n)$$

$$\Rightarrow \log(n!) \le n \log n$$

$$\Rightarrow \log(n!) = O(n \log n)$$

$$\log n! = \Omega(n \log n)$$

$$n! = n \cdot (n-1) \cdot (n-2) \cdot \dots \cdot \frac{n}{2} \cdot \left(\frac{n}{2}-1\right) \cdot \dots \cdot 2 \cdot 1$$

$$\vee \quad \vee \quad \vee \quad \parallel \quad \vee \quad \vee \quad \parallel$$

$$\frac{\left(\frac{n}{2}\right)^{\frac{n}{2}}}{2} = \frac{n}{2} \cdot \frac{n}{2} \cdot \frac{n}{2} \cdot \frac{n}{2} \cdot \dots \cdot \frac{n}{2} \cdot 1 \quad \cdots \cdot 1 \cdot 1$$

$$n! \ge \left(\frac{n}{2}\right)^{\frac{n}{2}}$$

$$\Rightarrow \log(n!) \ge \log\left(\left(\frac{n}{2}\right)^{\frac{n}{2}}\right)$$

$$\Rightarrow \log(n!) \ge \frac{n}{2}\log\frac{n}{2}$$

$$\Rightarrow \log(n!) \ge \Omega(n \log n)$$

Sorting Algorithm Summary

Algorithm	Running Time	Adaptive?	In-Place?	Stable?	Online?
Selection	n^2	No	Yes	No	No
Insertion	n^2	Yes	Yes	Yes	Yes
Неар	$n\log n$	No	Yes	No	No
Merge	$n\log n$	No	No	Yes	No
Quick					

Quicksort

Idea: pick a pivot element, recursively sort two sublists around that element

- Divide: select pivot element p, Partition(p)
- Conquer: recursively sort left and right sublists
- Combine: Nothing!

Partition (Divide step)

Given: a list, a pivot p Start: unordered list

8	5	7	3	12	10	1	2	4	9	6	11
---	---	---	---	----	----	---	---	---	---	---	----

Goal: All elements < p on left, all > p on right

Partition Summary

- 1. Put *p* at beginning of list
- 2. Put a pointer (Begin) just after *p*, and a pointer (End) at the end of the list
- 3. While Begin < End:
 - 1. If Begin value < p, move Begin right
 - 2. Else swap Begin value with End value, move End Left
- 4. If pointers meet at element : Swap <math>p with pointer position
- 5. Else If pointers meet at element > p: Swap p with value to the left

Run time? O(n)

Recursively sort Left and Right sublists

Quicksort Run Time (Best)

If the pivot is always the median:

Then we divide in half each time

$$T(n) = 2T\left(\frac{n}{2}\right) + n$$
$$T(n) = O(n\log n)$$

Quicksort Run Time (Worst)

If the pivot is always at the extreme:

Then we shorten by 1 each time

T(n) = T(n-1) + n

 $T(n) = O(n^2)$

Good Pivot

- What makes a good Pivot?
 - Roughly even split between left and right
 - Ideally: median
- There are ways to find the median in linear time, but it's complicated and slow and you're better off using mergesort
- In Practice:
 - Pick a random value as a pivot
 - Pick the middle of 3 random values as the pivot

Properties of Quick Sort

- Worst Case Running time:
- In-Place?
- Adaptive?
- Stable?
 - •

Sorting Algorithm Summary

Algorithm	Running Time	Adaptive?	In-Place?	Stable?	Online?
Selection	n^2	No	Yes	No	No
Insertion	n^2	Yes	Yes	Yes	Yes
Неар	$n\log n$	No	Yes	No	No
Merge	$n\log n$	No	No	Yes	No
Quick	$n\log n$ (expected)	No	No*	No	No

*Quick Sort can be done in-place within each stack frame. Some textbooks do not include the memory occupied by the stack frame in space analysis, which would mean concluding Quick Sort is in-place. Others will include stack frame space, and therefore conclude Quick Sort is not in-place. If you try to implement it iteratively, you'll need another array somewhere (e.g. to store locations of sub-lists)

Worst Case Lower Bounds

- Prove that there is no algorithm which can sort faster than $O(n \log n)$
 - Every algorithm, in the worst case, must have a certain lower bound
- Non-existence proof!
 - Very hard to do

Sorting Algorithm "Template"

- Compare two things (a < b)
- Based on response (true or false), compare two other things ($c_t < d_t$ or $c_f < d_f$)
- Based on that response, compare two more things ($e_{tt} < d_{tt}$, or $e_{tf} < d_{tf}$, or $e_{ft} < d_{ft}$, or $e_{ff} < d_{ff}$)
- Repeat until we know the correct order of elements
- Examples:
 - Quick Sort: compare the pivot to arr[1], then either compare the pivot to arr[2] or the item that was previously at arr[n-1].
 - Insertion Sort: compare arr[0] with arr[1]. Then compare arr[1] with arr[2]. Next either compare arr[1] with arr[0] or arr[3] with arr[2].

- Strategy: Decision Tree Sorting algorithms use comparisons to figure out the order of input elements
- Draw tree to illustrate all possible execution paths

Strategy: Decision Tree Worst case run time is the longest execution path

- i.e., "height" of the decision tree

Strategy: Decision Tree

- Conclusion: Worst Case Optimal run time of sorting is $\Theta(n \log n)$
 - There is no (comparison-based) sorting algorithm with running time better than $n \log n$

Improving Running time

- Recall our definition of the sorting problem:
 - Input:
 - An array A of items
 - A comparison function for these items
 - Given two items x and y, we can determine whether x < y, x > y, or x = y
 - Output:
 - A permutation of A such that if $i \leq j$ then $A[i] \leq A[j]$
- Under this definition, it is impossible to write an algorithm faster than n log n asymptotically.
- Observation:
 - Sometimes there might be ways to determine the position of values without comparisons!

"Linear Time" Sorting Algorithms

- Useable when you are able to make additional assumptions about the contents of your list (beyond the ability to compare)
 - Examples:
 - The list contains only positive integers less than k
 - The number of distinct values in the list is much smaller than the length of the list
- The running time expression will always have a term other than the list's length to account for this assumption
 - Examples:
 - Running time might be $\Theta(k \cdot n)$ where k is the range/count of values

BucketSort

- Assumes the array contains integers between 0 and k 1 (or some other small range)
- Idea:
 - Use each value as an index into an array of size k
 - Add the item into the "bucket" at that index (e.g. linked list)
 - Get sorted array by "appending" all the buckets

BucketSort Running Time

- Create array of k buckets
 - Either $\Theta(k)$ or $\Theta(1)$ depending on some things...
- Insert all n things into buckets
 - $\Theta(n)$
- Empty buckets into an array
 - $\Theta(n+k)$
- Overall:
 - $\Theta(n+k)$
- When is this better than mergesort?

Properties of BucketSort

- In-Place?
 - No
- Adaptive?
 - No
- Stable?
 - Yes!

- Radix: The base of a number system
 - We'll use base 10, most implementations will use larger bases
- Idea:
 - BucketSort by each digit, one at a time, from least significant to most significant

103	801	401	323	255	823	999	101	113	901	555	512	245	800	018	121
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15

Place each element into a "bucket" according to its 1's place

- Radix: The base of a number system
 - We'll use base 10, most implementations will use larger bases
- Idea:
 - BucketSort by each digit, one at a time, from least significant to most significant

- Radix: The base of a number system
 - We'll use base 10, most implementations will use larger bases
- Idea:
 - BucketSort by each digit, one at a time, from least significant to most significant

- Radix: The base of a number system
 - We'll use base 10, most implementations will use larger bases
- Idea:
 - BucketSort by each digit, one at a time, from least significant to most significant

RadixSort Running Time

- Suppose largest value is m
- Choose a radix (base of representation) *b*
- BucketSort all n things using b buckets
 - $\Theta(n+k)$
- Repeat once per each digit
 - $\log_b m$ iterations
- Overall:
 - $\Theta(n \log_b m + b \log_b m)$
- In practice, you can select the value of b to optimize running time
- When is this better than mergesort?