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Warm up

Show log 𝑛! = Θ(𝑛 log 𝑛)

Hint: show 𝑛! ≤ 𝑛𝑛

Hint 2: show 𝑛! ≥
𝑛
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log 𝑛! = 𝑂 𝑛 log 𝑛

𝑛! = 𝑛 ⋅ 𝑛 − 1 ⋅ 𝑛 − 2 ⋅ … ⋅ 2 ⋅ 1
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⇒ log 𝑛! ≤ log 𝑛𝑛

⇒ log 𝑛! ≤ 𝑛 log 𝑛
⇒ log 𝑛! = 𝑂(𝑛 log 𝑛)
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log 𝑛! = Ω 𝑛 log 𝑛
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Sorting Algorithm Summary

Algorithm Running Time Adaptive? In-Place? Stable? Online?

Selection 𝑛2 No Yes No No

Insertion 𝑛2 Yes Yes Yes Yes

Heap 𝑛 log 𝑛 No Yes No No

Merge 𝑛 log 𝑛 No No Yes No

Quick



Quicksort

Idea: pick a pivot element, recursively sort two sublists around that 
element

• Divide: select pivot element 𝑝, Partition(𝑝)

• Conquer: recursively sort left and right sublists

• Combine: Nothing!
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Partition (Divide step)

Given: a list, a pivot 𝑝
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8 5 7 3 12 10 1 2 4 9 6 11

Goal: All elements < 𝑝 on left, all > 𝑝 on right

Start: unordered list

5 7 3 1 2 4 6 8 12 10 9 11



Partition Summary

1. Put 𝑝 at beginning of list

2. Put a pointer (Begin) just after 𝑝, and a pointer (End) at the end of 
the list

3. While Begin < End:
1. If Begin value <  𝑝, move Begin right

2. Else swap Begin value with End value, move End Left

4. If pointers meet at element < 𝑝: Swap 𝑝 with pointer position

5. Else If pointers meet at element > 𝑝: Swap 𝑝 with value to the left
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Run time? 𝑂(𝑛)



Conquer

Recursively sort Left and Right sublists
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2 5 7 3 6 4 1 8 10 9 11 12

All elements < 𝑝 All elements > 𝑝

Exactly where it belongs!



Quicksort Run Time (Best)

Then we divide in half each time
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2 5 1 3 6 4 7 8 10 9 11 12

2 1 3 5 6 4 7 8 9 10 11 12

𝑇 𝑛 = 2𝑇
𝑛

2
+ 𝑛

If the pivot is always the median:

𝑇 𝑛 = 𝑂(𝑛 log 𝑛)



Quicksort Run Time (Worst)

Then we shorten by 1 each time

11

1 5 2 3 6 4 7 8 10 9 11 12

1 2 3 5 6 4 7 8 10 9 11 12

𝑇 𝑛 = 𝑇 𝑛 − 1 + 𝑛

If the pivot is always at the extreme:

𝑇 𝑛 = 𝑂(𝑛2)



Good Pivot

• What makes a good Pivot?
• Roughly even split between left and right

• Ideally: median

• There are ways to find the median in linear time, but it’s complicated 
and slow and you’re better off using mergesort

• In Practice:
• Pick a random value as a pivot

• Pick the middle of 3 random values as the pivot
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Properties of Quick Sort

• Worst Case Running time:

• In-Place?

• Adaptive?

• Stable?
•  



Sorting Algorithm Summary

Algorithm Running Time Adaptive? In-Place? Stable? Online?

Selection 𝑛2 No Yes No No

Insertion 𝑛2 Yes Yes Yes Yes

Heap 𝑛 log 𝑛 No Yes No No

Merge 𝑛 log 𝑛 No No Yes No

Quick 𝑛 log 𝑛 (expected) No No* No No

*Quick Sort can be done in-place within each stack frame. Some textbooks do not include the memory 
occupied by the stack frame in space analysis, which would mean concluding Quick Sort is in-place. Others will 
include stack frame space, and therefore conclude Quick Sort is not in-place. If you try to implement it 
iteratively, you’ll need another array somewhere (e.g. to store locations of sub-lists)



Worst Case Lower Bounds

• Prove that there is no algorithm which can sort faster than 𝑂(𝑛 log 𝑛)
• Every algorithm, in the worst case, must have a certain lower bound

• Non-existence proof!
• Very hard to do
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Sorting Algorithm “Template”

• Compare two things (𝑎 < 𝑏)

• Based on response (true or false), compare two other things (𝑐𝑡 < 𝑑𝑡 
or 𝑐𝑓 < 𝑑𝑓)

• Based on that response, compare two more things (𝑒𝑡𝑡 < 𝑑𝑡𝑡, or 
𝑒𝑡𝑓 < 𝑑𝑡𝑓, or 𝑒𝑓𝑡 < 𝑑𝑓𝑡, or 𝑒𝑓𝑓 < 𝑑𝑓𝑓)

• Repeat until we know the correct order of elements

• Examples: 
• Quick Sort: compare the pivot to arr[1], then either compare the pivot to 

arr[2] or the item that was previously at arr[n-1].
• Insertion Sort: compare arr[0] with arr[1]. Then compare arr[1] with arr[2]. 

Next either compare arr[1] with arr[0] or arr[3] with arr[2].



Strategy: Decision Tree
• Sorting algorithms use comparisons to figure out the order of input 

elements

• Draw tree to illustrate all possible execution paths
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Strategy: Decision Tree
• Worst case run time is the longest execution path

• i.e., “height” of the decision tree
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Strategy: Decision Tree
• Conclusion: Worst Case Optimal run time of sorting is Θ(𝑛 log 𝑛)

• There is no (comparison-based) sorting algorithm with running time better 
than 𝑛 log 𝑛
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Improving Running time

• Recall our definition of the sorting problem:
• Input:

• An array 𝐴 of items
• A comparison function for these items

• Given two items 𝑥 and 𝑦, we can determine whether 𝑥 < 𝑦, 𝑥 > 𝑦, or 𝑥 = 𝑦

• Output:
• A permutation of 𝐴 such that if 𝑖 ≤ 𝑗 then 𝐴 𝑖 ≤ 𝐴[𝑗]

• Under this definition, it is impossible to write an algorithm faster than 
𝑛 log 𝑛 asymptotically.

• Observation:
• Sometimes there might be ways to determine the position of values without 

comparisons!



“Linear Time” Sorting Algorithms

• Useable when you are able to make additional assumptions about the 
contents of your list (beyond the ability to compare)
• Examples:

• The list contains only positive integers less than 𝑘

• The number of distinct values in the list is much smaller than the length of the list

• The running time expression will always have a term other than the 
list’s length to account for this assumption
• Examples:

• Running time might be Θ(𝑘 ⋅ 𝑛) where 𝑘 is the range/count of values



BucketSort

• Assumes the array contains integers between 0 and 𝑘 − 1 (or some 
other small range)

• Idea:
• Use each value as an index into an array of size 𝑘

• Add the item into the “bucket” at that index (e.g. linked list)

• Get sorted array by “appending” all the buckets

3
3
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2
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0 1 2 3

1
1

0
0
0
0
0

0 2 3 0 0 1 2 1 3 0 2 0 0 0 0 0 0 1 1 2 2 2 3 3



BucketSort Running Time

• Create array of 𝑘 buckets
• Either Θ(𝑘) or Θ(1) depending on some things…

• Insert all 𝑛 things into buckets
• Θ(𝑛)

• Empty buckets into an array
• Θ(𝑛 + 𝑘)

• Overall:
• Θ 𝑛 + 𝑘

• When is this better than mergesort?



Properties of BucketSort

• In-Place?
• No

• Adaptive?
• No

• Stable?
• Yes! 



RadixSort
• Radix: The base of a number system

• We’ll use base 10, most implementations will use larger bases

• Idea: 
• BucketSort by each digit, one at a time, from least significant to most significant

Place each element into 
a “bucket” according to 
its 1’s place

103 801 401 323 255 823 999 101

0 1 2 3 4 5 6 7

113 901 555 512 245 800 018 121

8 9 10 11 12 13 14 15

999018
255
555
245

103
323
823
113

512

0 1 2 3 4 5 6 7

801
401
101
901
121

800

8 9



RadixSort
• Radix: The base of a number system

• We’ll use base 10, most implementations will use larger bases

• Idea: 
• BucketSort by each digit, one at a time, from least significant to most significant

Place each element into 
a “bucket” according to 
its 10’s place

999018
255
555
245

103
323
823
113

512

0 1 2 3 4 5 6 7

801
401
101
901
121

800

8 9

999
255
555

245
121
323
823

0 1 2 3 4 5 6 7

512
113
018

800
801
401
101
901
103

8 9



RadixSort
• Radix: The base of a number system

• We’ll use base 10, most implementations will use larger bases

• Idea: 
• BucketSort by each digit, one at a time, from least significant to most significant

Place each element into 
a “bucket” according to 
its 100’s place

999
255
555

245
121
323
823

0 1 2 3 4 5 6 7

512
113
018

800
801
401
101
901
103

8 9
901
999

800
801
823

512
555

401323
245
255

0 1 2 3 4 5 6 7

101
103
113
121

018

8 9



RadixSort
• Radix: The base of a number system

• We’ll use base 10, most implementations will use larger bases

• Idea: 
• BucketSort by each digit, one at a time, from least significant to most significant

Convert back into an array
901
999

800
801
823

512
555

401323
245
255

0 1 2 3 4 5 6 7

101
103
113
121

018

8 9

018 811 103 113 121 245 255 323

0 1 2 3 4 5 6 7

401 512 555 800 801 823 901 999

8 9 10 11 12 13 14 15



RadixSort Running Time

• Suppose largest value is 𝑚

• Choose a radix (base of representation) 𝑏

• BucketSort all 𝑛 things using 𝑏 buckets
• Θ(𝑛 + 𝑘)

• Repeat once per each digit
• log𝑏 𝑚 iterations

• Overall:
• Θ 𝑛 log𝑏 𝑚 + 𝑏 log𝑏 𝑚

• In practice, you can select the value of 𝑏 to optimize running time

• When is this better than mergesort?
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