CSE 332 Autumn 2024 Lecture 15: Sorting 2

Nathan Brunelle

http://www.cs.uw.edu/332

Properties To Consider

- Worst case running time
- In place:
 - We only need to use the pre-existing array to do sorting
 - Constant extra space (only some additional variables needed)
 - Selection Sort, Insertion Sort, Heap Sort
- Adaptive
 - The running improves as the given list is closer to being sorted
 - It should be linear time for a pre-sorted list, and nearly linear time if the list is nearly sorted
 - Insertion Sort
- Online
 - We can start sorting before we have the entire list.
 - Insertion Sort
- Stable
 - "Tied" elements keep their original order

Sorting Algorithm Summary

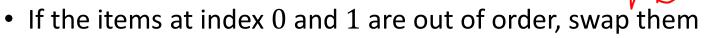
	Algorithm	Running Time	Adaptive?	In-Place?	Stable?	Online?
~	Selection	n^2	No	Yes	Yes_ NS	No
· ·	Insertion	n^2	Yes	Yes	Yes	Yes
	Неар	$n \log n$	No	Yes	No	No
5	Merge					
7	Quick					

Selection Sort

- Swap the thing at index 0 with the smallest thing in the array
- Swap the thing at index 1 with the smallest thing after index 0
- \bullet ...
- Swap the thing at index i with the smallest thing after index i 1

```
for (i=0; i<a.length; i++){
    smallest = i;
                                                                  Running Time:
    for (j=i; j<a.length; j++){</pre>
                                                                            Worst Case: \Theta(n^2)
         if (a[j]<a[smallest]){ smallest=j;}</pre>
                                                                            Best Case: \Theta(n^2)
    temp = a[i];
    a[i] = a[smallest];
    a[smallest] = a[1];
}
                     15
                                       2
              77
                               15
      10
                                               22
                                                       64
                                                               41
                                                                        18
                                                                                19
                                                                                        30
                                                                                                21
       0
               1
                       2
                               3
                                                5
                                                        6
                                                                7
                                                                        8
                                                                                 9
                                                                                        10
                                                                                                11
                                        4
```

Insertion Sort



• Keep swapping the item at index 2 with the thing to its left as long as the left thing is larger

• ...

• Keep swapping the item at index *i* with the thing to its left as long as the left thing is larger

```
for (i=1; i<a.length; i++){
    prev = i-1;
    while(a[i] < a[prev] && prev > -1){
        temp = a[i];
        a[i] = a[prev];
        a[prev] = a[i];
        i--;
        prev--;
}
```

Running Time: Worst Case: $\Theta(n^2)$ Best Case: $\Theta(n)$

	10	77	5	15	2	22	64	41	18	19	30	21	3	24	23	33
_	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15

In Place Heap Sort

- Build a heap using the same array (Floyd's build heap algorithm works)
- For each item in the heap:
 - Call extract
 - Put that at the end of the array

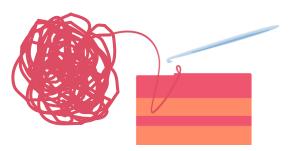
```
buildHeap(a);
for (int i = a.length-1; i>=0; i--){
    temp=a[i]
    a[i] = a[0];
    a[0] = temp;
    percolateDown(0);
}
```

```
Running Time:
Worst Case: \Theta(n \log n)
Best Case: \Theta(n \log n)
```

Divide And Conquer Sorting

- Divide and Conquer:
 - Recursive algorithm design technique
 - Solve a large problem by breaking it up into smaller versions of the same problem

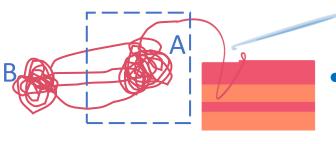
Divide and Conquer



• If the problem is "small" then solve directly and return

• Divide:

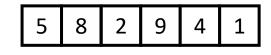
• Break the problem into subproblem(s), each smaller instances



- Conquer:
 - Solve subproblem(s) recursively

• Combine:

• Use solutions to subproblems to solve original problem



Merge Sort

9

5

8

5

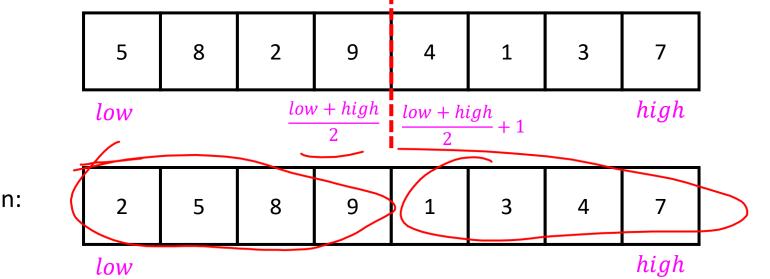
- Base Case:
 - If the list is of length 1 or 0, it's already sorted, so just return it
- <u>4 1</u> **Divide:** Split the list into two "sublists" of (roughly) equal length
- 2 5 8 1 4 9 Conquer: • Sort both lists recursively

Merge Sort In Action!

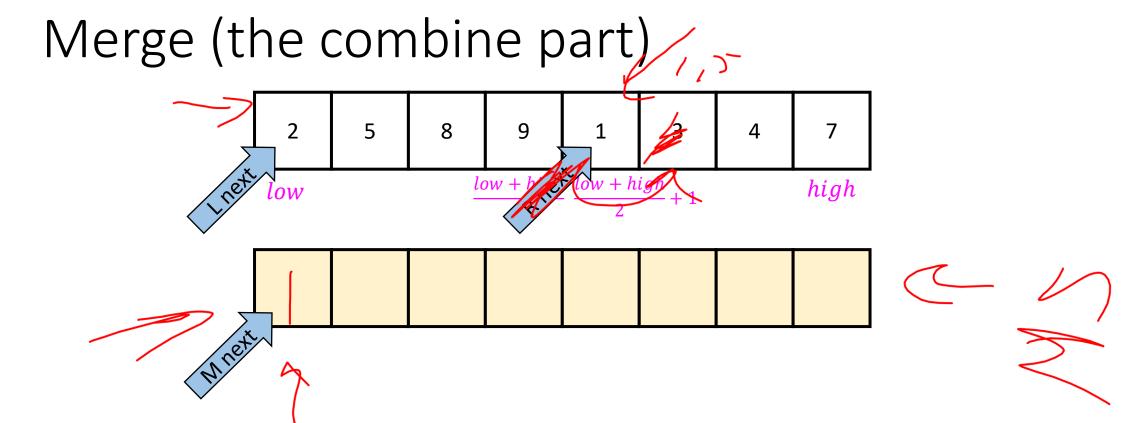
Sort between indices *low* and *high*

Base Case: if *low* == *high* then that range is already sorted!

Divide and Conquer: Otherwise call mergesort on ranges $\left(low, \frac{low+high}{2}\right)$ and $\left(\frac{low+high}{2} + 1, high\right)$



After Recursion:



Create a new array to merge into, and 3 pointers/indices:

- L_next: the smallest "unmerged" thing on the left
- R_next: the smallest "unmerged" thing on the right
- M_next: where the next smallest thing goes in the merged array

One-by-one: put the smallest of L_next and R_next into M_next, then advance both M_next and whichever of L/R was used.

```
Merge Sort Pseudocode
void mergesort(myArray){
      ms helper(myArray, 0, myArray.length());
}
void mshelper(myArray, low, high){
     if (low == high){return;} // Base Case
      mid = (low+high)/2;
      ms helper(low, mid);
      ms helper(mid+1, high);
      merge(myArray, low, mid, high);
```

```
Merge Pseudocode
```

void merge(myArray, low, mid, high){

```
merged = new int[high-low+1]; // or whatever type is in myArray
l next = low;
r next = high;
m next = 0;
while (I next \leq mid && r next \leq high){
        if (myArray[l_next] <= myArray[r_next]){
                merged[m_next++] = myArray[l_next++];
        else{
                merged[m_next++] = myArray[r_next++];
while (l_next <= mid){ merged[m_next++] = myArray[l_next++]; }</pre>
while (r next <= high){ merged[m next++] = myArray[r next++]; }
for(i=0; i<=merged.length; i++){ myArray[i+low] = merged[i];}
```

Analyzing Merge Sort

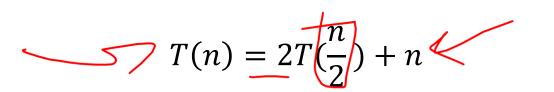
- 1. Identify time required to Divide and Combine
- 2. Identify all subproblems and their sizes
- 3. Use recurrence relation to express recursive running time
- 4. Solve and express running time asymptotically
- **Divide:** 0 comparisons
- **Conquer:** recursively sort two lists of size $\frac{n}{2}$
- Combine: n comparisons
- Recurrence:

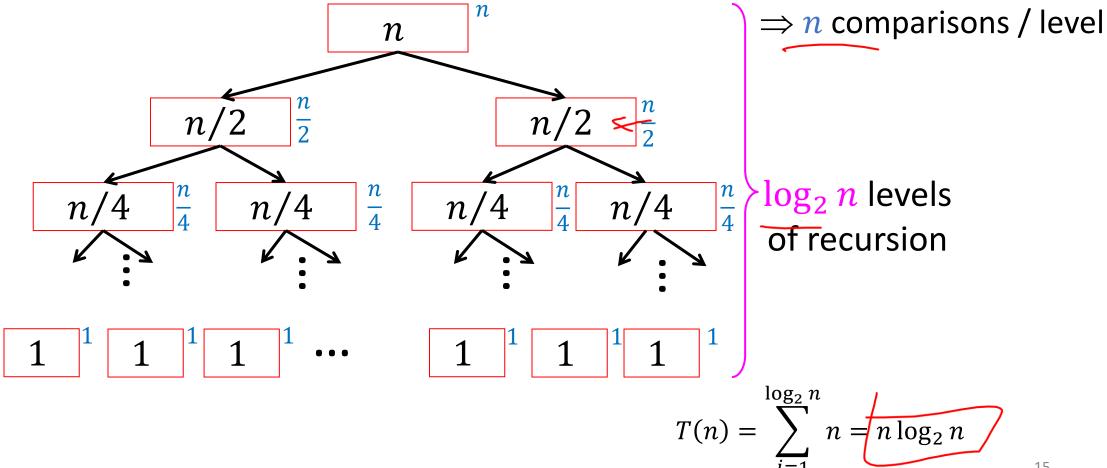
$$T(n) = 0 + T\left(\frac{n}{2}\right) + T\left(\frac{n}{2}\right) + n$$
$$T(n) = 2T\left(\frac{n}{2}\right) + n$$

 $\Gamma(n) = ZT(\underline{G}) +$

Red box represents a problem instance

Blue value represents time spent at that level of recursion





Properties of Merge Sort

- Worst Case Running time:
 - $\Theta(n \log n)$
- In-Place?
 - No!
- Adaptive?
 - No!
- Stable?
 - Yes!
 - As long as in a tie you always pick I_next

Sorting Algorithm Summary

	Algorithm	Running Time	Adaptive?	In-Place?	Stable?	Online?
	Selection	n^2	No	Yes	485	No
~	Insertion	n^2	Yes	Yes	Yes	Yes
	Неар	$n \log n$	No	Yes	No	No
	Merge	$n \log n$	No	No	Yes	No
	Quick					

1

Quicksort

- Like <u>Mergesort</u>:
 - Divide and conquer
 - $O(n \log n)$ run time (kind of...)
- Unlike Mergesort:
 - Divide step is the "hard" part
 - Typically faster than Mergesort

Quicksort

Idea: pick a pivot element, recursively sort two sublists around that element

- Divide: select pivot element p, Partition(p)
 Conquer: recursively sort left and right sublists
 Combine: Nothing!

Partition (Divide step)

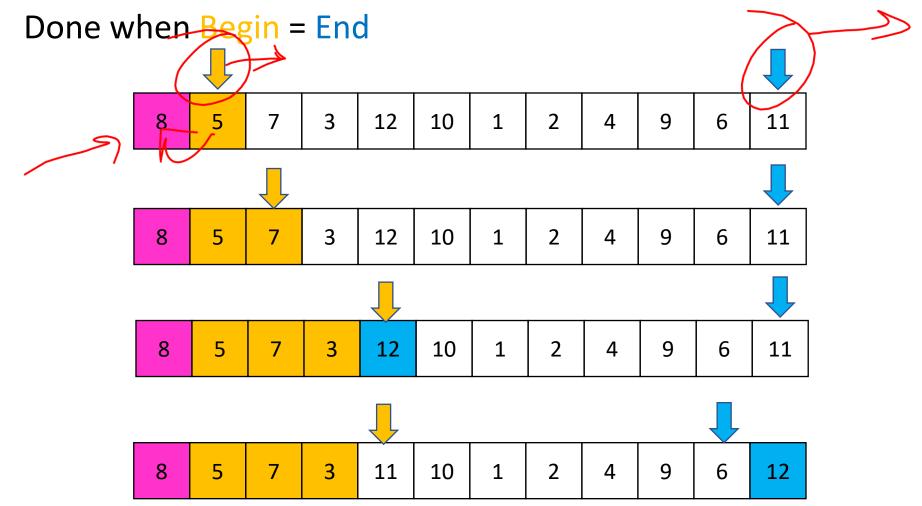
Given: a list, a pivot p Start: unordered list

8	5	7	3	12	10	1	2	4	9	6	11	
---	---	---	---	----	----	---	---	---	---	---	----	--

Goal: All elements < p on left, all > p on right

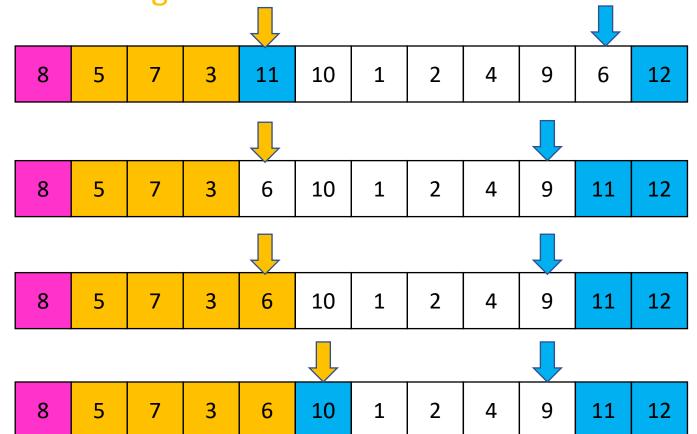
If Begin value < p, move Begin right

Else swap Begin value with End value, move End Left



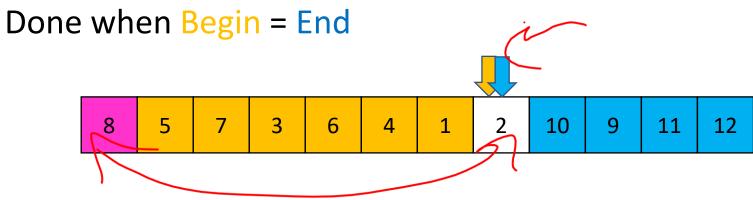
If Begin value < p, move Begin right

Else swap Begin value with End value, move End Left



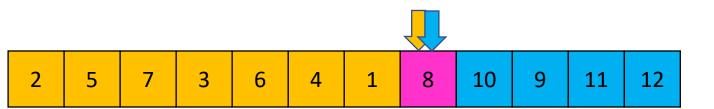
If Begin value < p, move Begin right

Else swap Begin value with End value, move End Left



Case 1: meet at element < p

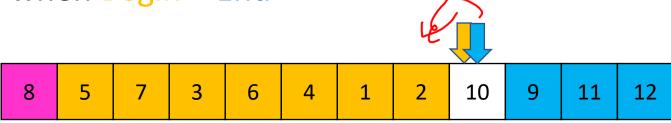
Swap *p* with pointer position (2 in this case)



k Begin value < p, move Begin right

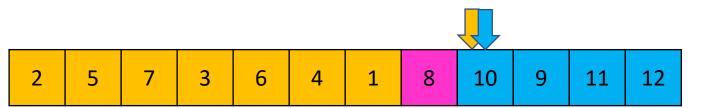
Else swap Begin value with End value, move End Left

Done when **Begin** = **End**



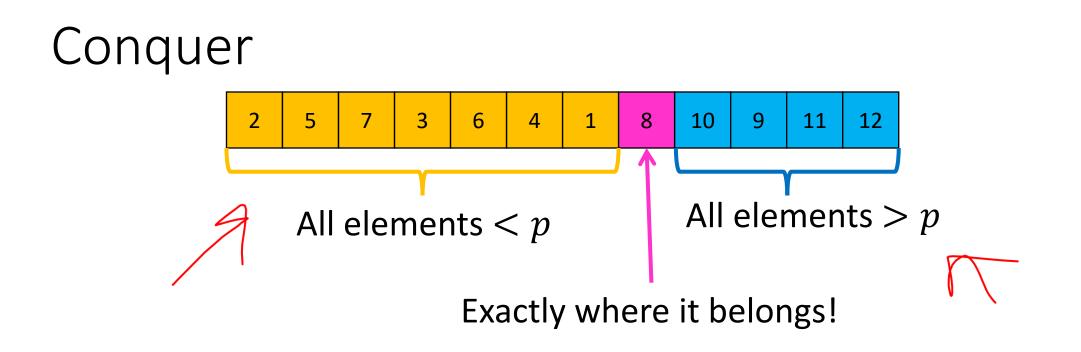
Case 2: meet at element > *p*

Swap *p* with value to the left (2 in this case)



Partition Summary

- 1. Put *p* at beginning of list
- 2. Put a pointer (Begin) just after *p*, and a pointer (End) at the end of the list
- 3. While Begin < End:
 - 1. If Begin value < p, move Begin right
 - 2. Else swap Begin value with End value, move End Left
- 4. If pointers meet at element : Swap <math>p with pointer position
- 5. Else If pointers meet at element > p: Swap p with value to the left



Recursively sort Left and Right sublists

Quicksort Run Time (Best)

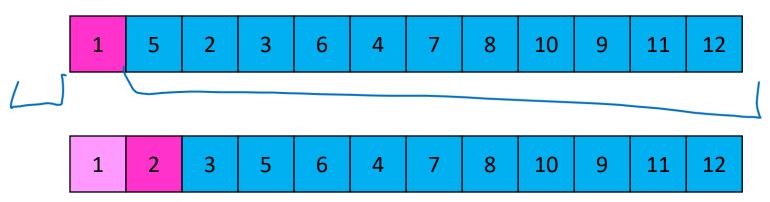
If the pivot is always the median:

Then we divide in half each time

$$T(n) = 2T\left(\frac{n}{2}\right) + n - 4$$

Quicksort Run Time (Worst)

If the pivot is always at the extreme:

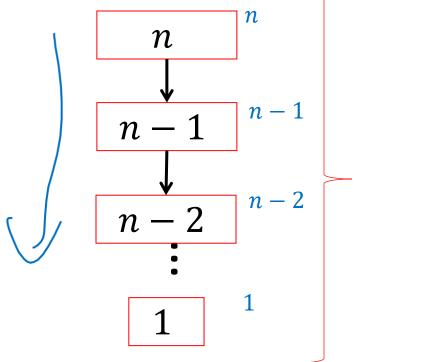


Then we shorten by 1 each time

T(n) = T(n-1) + n

 $T(n) = O(n^2)$

Quicksort Run Time (Worst) T(n) = T(n-1) + n



$$T(n) = 1 + 2 + 3 + \dots + n$$
$$T(n) = \frac{n(n+1)}{2}$$
$$T(n) = O(n^2)$$

Quicksort on a (nearly) Sorted List

First element always yields unbalanced pivot

So we shorten by 1 each time

T(n) = T(n-1) + n

 $T(n) = O(n^2)$

Good Pivot

- What makes a good Pivot?
 - Roughly even split between left and right
 - Ideally: median
- There are ways to find the median in linear time, but it's complicated and slow and you're better off using mergesort
- In Practice:
 - Pick a random value as a pivot
 - Pick the middle of 3 random values as the pivot

Properties of Quick Sort

- Worst Case Running time:
 - $\Theta(n^2)$
 - But $\Theta(n \log n)$ average! And typically faster than mergesort!
- In-Place?
 -Debatable
- Adaptive?
 - No!
- Stable?
 - No!

Sorting Algorithm Summary

Algorithm	Running Time	Adaptive?	In-Place?	Stable?	Online?
Selection	n^2	No	Yes	Yes	No
Insertion	n^2	Yes	Yes	Yes	Yes
Неар	$n\log n$	No	Yes	No	No
Merge	$n\log n$	No	No	Yes	No
Quick	$n\log n$ (expected)	No	No*	No	No

*Quick Sort can be done in-place within each stack frame. Some textbooks do not include the memory occupied by the stack frame in space analysis, which would mean concluding Quick Sort is in-place. Others will include stack frame space, and therefore conclude Quick Sort is not in-place. If you try to implement it iteratively, you'll need another array somewhere (e.g. to store locations of sub-lists)

Improving Running time

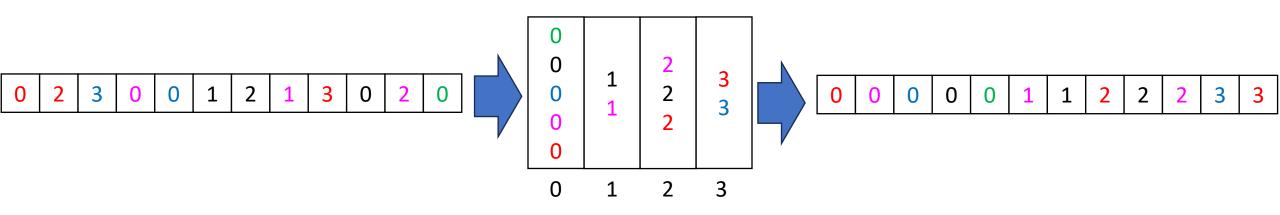
- Recall our definition of the sorting problem:
 - Input:
 - An array A of items
 - A comparison function for these items
 - Given two items x and y, we can determine whether x < y, x > y, or x = y
 - Output:
 - A permutation of A such that if $i \leq j$ then $A[i] \leq A[j]$
- Under this definition, it is impossible to write an algorithm faster than n log n asymptotically.
- Observation:
 - Sometimes there might be ways to determine the position of values without comparisons!

"Linear Time" Sorting Algorithms

- Useable when you are able to make additional assumptions about the contents of your list (beyond the ability to compare)
 - Examples:
 - The list contains only positive integers less than k
 - The number of distinct values in the list is much smaller than the length of the list
- The running time expression will always have a term other than the list's length to account for this assumption
 - Examples:
 - Running time might be $\Theta(k \cdot n)$ where k is the range/count of values

BucketSort

- Assumes the array contains integers between 0 and k 1 (or some other small range)
- Idea:
 - Use each value as an index into an array of size k
 - Add the item into the "bucket" at that index (e.g. linked list)
 - Get sorted array by "appending" all the buckets



BucketSort Running Time

- Create array of k buckets
 - Either $\Theta(k)$ or $\Theta(1)$ depending on some things...
- Insert all n things into buckets
 - $\Theta(n)$
- Empty buckets into an array
 - $\Theta(n+k)$
- Overall:
 - $\Theta(n+k)$
- When is this better than mergesort?

Properties of BucketSort

- In-Place?
 - No
- Adaptive?
 - No
- Stable?
 - Yes!

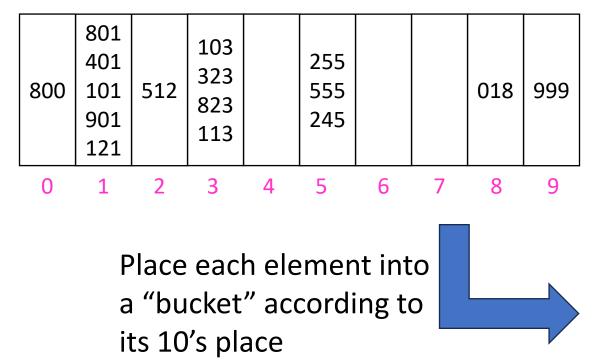
- Radix: The base of a number system
 - We'll use base 10, most implementations will use larger bases
- Idea:
 - BucketSort by each digit, one at a time, from least significant to most significant

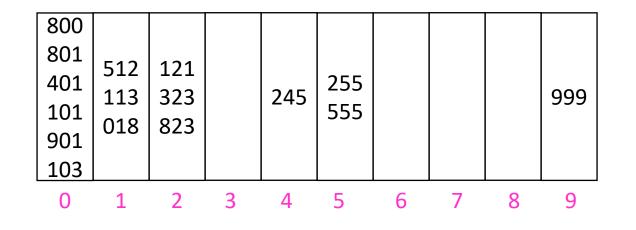
103	801	401	323	255	823	999	101	113	901	555	512	245	800	018	121
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15

Place each element into a "bucket" according to its 1's place

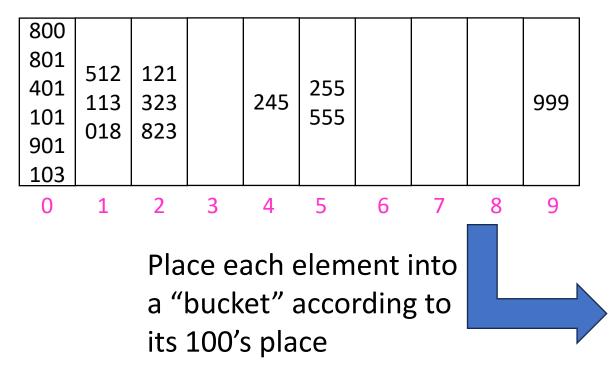
800	801 401 101 901 121	512	103 323 823 113		255 555 245			018	999
0	1	2	3	4	5	6	7	8	9

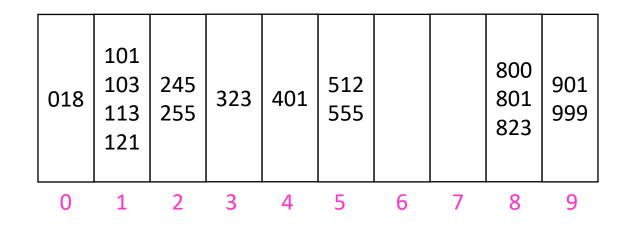
- Radix: The base of a number system
 - We'll use base 10, most implementations will use larger bases
- Idea:
 - BucketSort by each digit, one at a time, from least significant to most significant



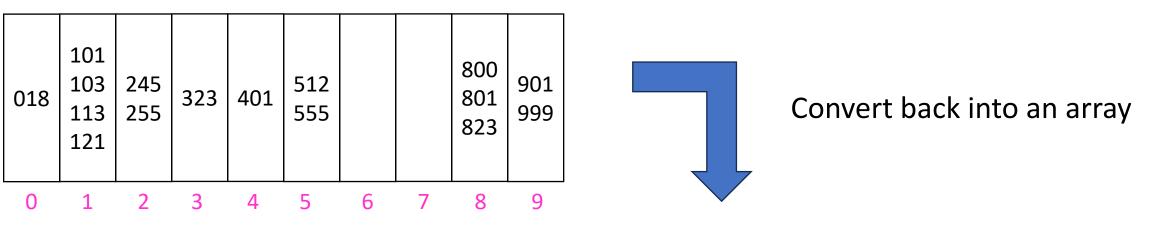


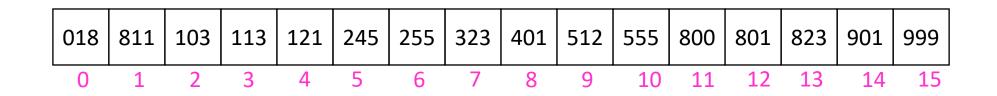
- Radix: The base of a number system
 - We'll use base 10, most implementations will use larger bases
- Idea:
 - BucketSort by each digit, one at a time, from least significant to most significant





- Radix: The base of a number system
 - We'll use base 10, most implementations will use larger bases
- Idea:
 - BucketSort by each digit, one at a time, from least significant to most significant





RadixSort Running Time

- Suppose largest value is m
- Choose a radix (base of representation) *b*
- BucketSort all n things using b buckets
 - $\Theta(n+k)$
- Repeat once per each digit
 - $\log_b m$ iterations
- Overall:
 - $\Theta(n \log_b m + b \log_b m)$
- In practice, you can select the value of b to optimize running time
- When is this better than mergesort?