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Properties To Consider

• Worst case running time

• In place:
• We only need to use the pre-existing array to do sorting
• Constant extra space (only some additional variables needed)
• Selection Sort, Insertion Sort, Heap Sort

• Adaptive
• The running improves as the given list is closer to being sorted
• It should be linear time for a pre-sorted list, and nearly linear time if the list is nearly sorted
• Insertion Sort

• Online
• We can start sorting before we have the entire list.
• Insertion Sort

• Stable
• “Tied” elements keep their original order



Sorting Algorithm Summary

Algorithm Running Time Adaptive? In-Place? Stable? Online?

Selection 𝑛2 No Yes Yes No

Insertion 𝑛2 Yes Yes Yes Yes

Heap 𝑛 log 𝑛 No Yes No No

Merge

Quick



Selection Sort
• Swap the thing at index 0 with the smallest thing in the array
• Swap the thing at index 1 with the smallest thing after index 0
• …
• Swap the thing at index 𝑖 with the smallest thing after index 𝑖 − 1

for (i=0; i<a.length; i++){
        smallest = i;
        for (j=i; j<a.length; j++){
                if (a[j]<a[smallest]){ smallest=j;}
        }
        temp = a[i];
        a[i] = a[smallest];
        a[smallest] = a[i];
}

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

10 77 5 15 2 22 64 41 18 19 30 21 3 24 23 33

Running Time:
 Worst Case: Θ(𝑛2)
 Best Case: Θ(𝑛2)



Insertion Sort
• If the items at index 0 and 1 are out of order, swap them

• Keep swapping the item at index 2 with the thing to its left as long as the left thing is larger

• …

• Keep swapping the item at index 𝑖 with the thing to its left as long as the left thing is larger

for (i=1; i<a.length; i++){
        prev = i-1;
        while(a[i] < a[prev] && prev > -1){
                temp = a[i];
                a[i] = a[prev];
                a[prev] = a[i];
                i--;
                prev--;
        }
}

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

10 77 5 15 2 22 64 41 18 19 30 21 3 24 23 33

Running Time:
 Worst Case: Θ(𝑛2)
 Best Case: Θ(𝑛)



In Place Heap Sort
• Build a heap using the same array (Floyd’s build heap algorithm works)

• For each item in the heap:
• Call extract
• Put that at the end of the array

buildHeap(a);
for (int i = a.length-1; i>=0; i--){
        temp=a[i]
        a[i] = a[0];
        a[0] = temp;
        percolateDown(0);
} 

Running Time:
 Worst Case: Θ(𝑛 log 𝑛)
 Best Case: Θ(𝑛 log 𝑛)



Divide And Conquer Sorting

• Divide and Conquer:
• Recursive algorithm design technique

• Solve a large problem by breaking it up into smaller versions of the same 
problem



Divide and Conquer
• Base Case: 

• If the problem is “small” then solve directly and return

• Divide: 
• Break the problem into subproblem(s), each smaller instances

• Conquer:
• Solve subproblem(s) recursively

• Combine:
• Use solutions to subproblems to solve original problem

8
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Merge Sort
• Base Case: 

• If the list is of length 1 or 0, it’s already sorted, so just return it

• Divide: 
• Split the list into two “sublists” of (roughly) equal length

• Conquer:
• Sort both lists recursively

• Combine:
• Merge sorted sublists into one sorted list

9

5

5 8 2 9 4 1

5 8 2 9 4 1

2 5 8 1 4 9

1 2 4 5 8 9

2 5 8 1 4 9



Merge Sort In Action!

5 8 2 9 4 1 3 7

Sort between indices 𝑙𝑜𝑤 and ℎ𝑖𝑔ℎ 

𝑙𝑜𝑤 ℎ𝑖𝑔ℎ

Base Case: if 𝑙𝑜𝑤 == ℎ𝑖𝑔ℎ then that range is already sorted!

Divide and Conquer: Otherwise call mergesort on ranges 𝑙𝑜𝑤,
𝑙𝑜𝑤+ℎ𝑖𝑔ℎ

2
 and 

𝑙𝑜𝑤+ℎ𝑖𝑔ℎ

2
+ 1, ℎ𝑖𝑔ℎ

5 8 2 9 4 1 3 7

𝑙𝑜𝑤 ℎ𝑖𝑔ℎ𝑙𝑜𝑤 + ℎ𝑖𝑔ℎ

2
𝑙𝑜𝑤 + ℎ𝑖𝑔ℎ

2
+ 1

2 5 8 9 1 3 4 7

𝑙𝑜𝑤 ℎ𝑖𝑔ℎ

After Recursion:



Merge (the combine part)

2 5 8 9 1 3 4 7

𝑙𝑜𝑤 ℎ𝑖𝑔ℎ𝑙𝑜𝑤 + ℎ𝑖𝑔ℎ

2

𝑙𝑜𝑤 + ℎ𝑖𝑔ℎ

2
+ 1

Create a new array to merge into, and 3 pointers/indices:
• L_next: the smallest “unmerged” thing on the left
• R_next: the smallest “unmerged” thing on the right
• M_next: where the next smallest thing goes in the merged array

One-by-one: put the smallest of L_next and R_next into M_next, 
then advance both M_next and whichever of L/R was used.



Merge Sort Pseudocode
void mergesort(myArray){

 ms_helper(myArray, 0, myArray.length());
}

void mshelper(myArray, low, high){

 if (low == high){return;}  // Base Case

 mid = (low+high)/2;

 ms_helper(low, mid);

 ms_helper(mid+1, high);

 merge(myArray, low, mid, high); 

}
12



Merge Pseudocode
void merge(myArray, low, mid, high){

 merged = new int[high-low+1]; // or whatever type is in myArray

 l_next = low;

 r_next = high;

 m_next = 0;

 while (l_next <= mid && r_next <= high){

  if (myArray[l_next] <= myArray[r_next]){

   merged[m_next++] = myArray[l_next++];

  }

  else{

   merged[m_next++] = myArray[r_next++];

  } 

 }

 while (l_next <= mid){ merged[m_next++] = myArray[l_next++]; }

 while (r_next <= high){  merged[m_next++] = myArray[r_next++]; } 

 for(i=0; i<=merged.length; i++){ myArray[i+low] = merged[i];}

}



Analyzing Merge Sort
1. Identify time required to Divide and Combine

2. Identify all subproblems and their sizes

3. Use recurrence relation to express recursive running time

4. Solve and express running time asymptotically

• Divide: 0 comparisons 

• Conquer: recursively sort two lists of size 
𝑛

2
• Combine: 𝑛 comparisons
• Recurrence: 

𝑇 𝑛 = 0 + 𝑇
𝑛

2
+ 𝑇

𝑛

2
+ 𝑛 

𝑇(𝑛) = 2𝑇
𝑛

2
+ 𝑛 
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 𝑛 comparisons / level

log2 𝑛 levels
of recursion

𝑛

𝑇 𝑛 = 2𝑇(
𝑛

2
 ) + 𝑛
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log2 𝑛
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2

𝑛
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𝑛
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𝑛

4

𝑛
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4
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problem instance

Blue value represents 
time spent at that level of 

recursion



Properties of Merge Sort

• Worst Case Running time:
• Θ(𝑛 log 𝑛)

• In-Place?
• No!

• Adaptive?
• No!

• Stable?
• Yes! 

• As long as in a tie you always pick l_next



Sorting Algorithm Summary

Algorithm Running Time Adaptive? In-Place? Stable? Online?

Selection 𝑛2 No Yes Yes No

Insertion 𝑛2 Yes Yes Yes Yes

Heap 𝑛 log 𝑛 No Yes No No

Merge 𝑛 log 𝑛 No No Yes No

Quick



Quicksort

• Like Mergesort:
• Divide and conquer

• 𝑂(𝑛 log 𝑛) run time (kind of…)

• Unlike Mergesort:
• Divide step is the “hard” part

• Typically faster than Mergesort

18



Quicksort

Idea: pick a pivot element, recursively sort two sublists around that 
element

• Divide: select pivot element 𝑝, Partition(𝑝)

• Conquer: recursively sort left and right sublists

• Combine: Nothing!

19



Partition (Divide step)

Given: a list, a pivot 𝑝

20

8 5 7 3 12 10 1 2 4 9 6 11

Goal: All elements < 𝑝 on left, all > 𝑝 on right

Start: unordered list

5 7 3 1 2 4 6 8 12 10 9 11



Partition, Procedure

21

8 5 7 3 12 10 1 2 4 9 6 11

If Begin value <  𝑝, move Begin right

Else swap Begin value with End value, move End Left

Done when Begin = End

8 5 7 3 12 10 1 2 4 9 6 11

8 5 7 3 12 10 1 2 4 9 6 11

8 5 7 3 11 10 1 2 4 9 6 12



22

8 5 7 3 11 10 1 2 4 9 6 12

8 5 7 3 6 10 1 2 4 9 11 12

8 5 7 3 6 10 1 2 4 9 11 12

8 5 7 3 6 10 1 2 4 9 11 12

If Begin value <  𝑝, move Begin right

Else swap Begin value with End value, move End Left

Done when Begin = End

Partition, Procedure



23

8 5 7 3 6 4 1 2 10 9 11 12

Case 1: meet at element < 𝑝

 Swap 𝑝 with pointer position (2 in this case)

2 5 7 3 6 4 1 8 10 9 11 12

If Begin value <  𝑝, move Begin right

Else swap Begin value with End value, move End Left

Done when Begin = End

Partition, Procedure



24

8 5 7 3 6 4 1 2 10 9 11 12

Case 2: meet at element > 𝑝

 Swap 𝑝 with value to the left (2 in this case)

2 5 7 3 6 4 1 8 10 9 11 12

If Begin value <  𝑝, move Begin right

Else swap Begin value with End value, move End Left

Done when Begin = End

Partition, Procedure



Partition Summary

1. Put 𝑝 at beginning of list

2. Put a pointer (Begin) just after 𝑝, and a pointer (End) at the end of 
the list

3. While Begin < End:
1. If Begin value <  𝑝, move Begin right

2. Else swap Begin value with End value, move End Left

4. If pointers meet at element < 𝑝: Swap 𝑝 with pointer position

5. Else If pointers meet at element > 𝑝: Swap 𝑝 with value to the left

25

Run time? 𝑂(𝑛)



Conquer

Recursively sort Left and Right sublists

26

2 5 7 3 6 4 1 8 10 9 11 12

All elements < 𝑝 All elements > 𝑝

Exactly where it belongs!



Quicksort Run Time (Best)

Then we divide in half each time

27

2 5 1 3 6 4 7 8 10 9 11 12

2 1 3 5 6 4 7 8 9 10 11 12

𝑇 𝑛 = 2𝑇
𝑛

2
+ 𝑛

If the pivot is always the median:

𝑇 𝑛 = 𝑂(𝑛 log 𝑛)



Quicksort Run Time (Worst)

Then we shorten by 1 each time

28

1 5 2 3 6 4 7 8 10 9 11 12

1 2 3 5 6 4 7 8 10 9 11 12

𝑇 𝑛 = 𝑇 𝑛 − 1 + 𝑛

If the pivot is always at the extreme:

𝑇 𝑛 = 𝑂(𝑛2)



Quicksort Run Time (Worst)

29

𝑇 𝑛 = 𝑇 𝑛 − 1 + 𝑛

𝑇 𝑛 = 𝑂(𝑛2)

𝑛

𝑛 − 1

…

1

𝑛 − 2

𝑛

𝑛 − 1

𝑛 − 2

1

𝑇 𝑛 = 1 + 2 + 3 + ⋯ + 𝑛

𝑇 𝑛 =
𝑛 𝑛 + 1

2



Quicksort on a (nearly) Sorted List

So we shorten by 1 each time

30

1 2 3 4 5 6 7 8 9 10 11 12

1 2 3 4 5 6 7 8 9 10 11 12

𝑇 𝑛 = 𝑇 𝑛 − 1 + 𝑛

First element always yields unbalanced pivot

𝑇 𝑛 = 𝑂(𝑛2)



Good Pivot

• What makes a good Pivot?
• Roughly even split between left and right

• Ideally: median

• There are ways to find the median in linear time, but it’s complicated 
and slow and you’re better off using mergesort

• In Practice:
• Pick a random value as a pivot

• Pick the middle of 3 random values as the pivot

31



Properties of Quick Sort

• Worst Case Running time:
• Θ(𝑛2)

• But Θ(𝑛 log 𝑛) average! And typically faster than mergesort!

• In-Place?
• ….Debatable

• Adaptive?
• No!

• Stable?
• No! 



Sorting Algorithm Summary

Algorithm Running Time Adaptive? In-Place? Stable? Online?

Selection 𝑛2 No Yes Yes No

Insertion 𝑛2 Yes Yes Yes Yes

Heap 𝑛 log 𝑛 No Yes No No

Merge 𝑛 log 𝑛 No No Yes No

Quick 𝑛 log 𝑛 (expected) No No* No No

*Quick Sort can be done in-place within each stack frame. Some textbooks do not include the memory 
occupied by the stack frame in space analysis, which would mean concluding Quick Sort is in-place. Others will 
include stack frame space, and therefore conclude Quick Sort is not in-place. If you try to implement it 
iteratively, you’ll need another array somewhere (e.g. to store locations of sub-lists)



Improving Running time

• Recall our definition of the sorting problem:
• Input:

• An array 𝐴 of items
• A comparison function for these items

• Given two items 𝑥 and 𝑦, we can determine whether 𝑥 < 𝑦, 𝑥 > 𝑦, or 𝑥 = 𝑦

• Output:
• A permutation of 𝐴 such that if 𝑖 ≤ 𝑗 then 𝐴 𝑖 ≤ 𝐴[𝑗]

• Under this definition, it is impossible to write an algorithm faster than 
𝑛 log 𝑛 asymptotically.

• Observation:
• Sometimes there might be ways to determine the position of values without 

comparisons!



“Linear Time” Sorting Algorithms

• Useable when you are able to make additional assumptions about the 
contents of your list (beyond the ability to compare)
• Examples:

• The list contains only positive integers less than 𝑘

• The number of distinct values in the list is much smaller than the length of the list

• The running time expression will always have a term other than the 
list’s length to account for this assumption
• Examples:

• Running time might be Θ(𝑘 ⋅ 𝑛) where 𝑘 is the range/count of values



BucketSort

• Assumes the array contains integers between 0 and 𝑘 − 1 (or some 
other small range)

• Idea:
• Use each value as an index into an array of size 𝑘

• Add the item into the “bucket” at that index (e.g. linked list)

• Get sorted array by “appending” all the buckets

3
3

2
2
2

0 1 2 3

1
1

0
0
0
0
0

0 2 3 0 0 1 2 1 3 0 2 0 0 0 0 0 0 1 1 2 2 2 3 3



BucketSort Running Time

• Create array of 𝑘 buckets
• Either Θ(𝑘) or Θ(1) depending on some things…

• Insert all 𝑛 things into buckets
• Θ(𝑛)

• Empty buckets into an array
• Θ(𝑛 + 𝑘)

• Overall:
• Θ 𝑛 + 𝑘

• When is this better than mergesort?



Properties of BucketSort

• In-Place?
• No

• Adaptive?
• No

• Stable?
• Yes! 



RadixSort
• Radix: The base of a number system

• We’ll use base 10, most implementations will use larger bases

• Idea: 
• BucketSort by each digit, one at a time, from least significant to most significant

Place each element into 
a “bucket” according to 
its 1’s place

103 801 401 323 255 823 999 101

0 1 2 3 4 5 6 7

113 901 555 512 245 800 018 121

8 9 10 11 12 13 14 15

999018
255
555
245

103
323
823
113

512

0 1 2 3 4 5 6 7

801
401
101
901
121

800

8 9



RadixSort
• Radix: The base of a number system

• We’ll use base 10, most implementations will use larger bases

• Idea: 
• BucketSort by each digit, one at a time, from least significant to most significant

Place each element into 
a “bucket” according to 
its 10’s place

999018
255
555
245

103
323
823
113

512

0 1 2 3 4 5 6 7

801
401
101
901
121

800

8 9

999
255
555

245
121
323
823

0 1 2 3 4 5 6 7

512
113
018

800
801
401
101
901
103

8 9



RadixSort
• Radix: The base of a number system

• We’ll use base 10, most implementations will use larger bases

• Idea: 
• BucketSort by each digit, one at a time, from least significant to most significant

Place each element into 
a “bucket” according to 
its 100’s place

999
255
555

245
121
323
823

0 1 2 3 4 5 6 7

512
113
018

800
801
401
101
901
103

8 9
901
999

800
801
823

512
555

401323
245
255

0 1 2 3 4 5 6 7

101
103
113
121

018

8 9



RadixSort
• Radix: The base of a number system

• We’ll use base 10, most implementations will use larger bases

• Idea: 
• BucketSort by each digit, one at a time, from least significant to most significant

Convert back into an array
901
999

800
801
823

512
555

401323
245
255

0 1 2 3 4 5 6 7

101
103
113
121

018

8 9

018 811 103 113 121 245 255 323

0 1 2 3 4 5 6 7

401 512 555 800 801 823 901 999

8 9 10 11 12 13 14 15



RadixSort Running Time

• Suppose largest value is 𝑚

• Choose a radix (base of representation) 𝑏

• BucketSort all 𝑛 things using 𝑏 buckets
• Θ(𝑛 + 𝑘)

• Repeat once per each digit
• log𝑏 𝑚 iterations

• Overall:
• Θ 𝑛 log𝑏 𝑚 + 𝑏 log𝑏 𝑚

• In practice, you can select the value of 𝑏 to optimize running time

• When is this better than mergesort?
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