CSE 332 Autumn 2024
Lecture 15: Sorting 2

Nathan Brunelle
http://www.cs.uw.edu/332

http://www.cs.uw.edu/332

Properties To Consider

Worst case running time

In place:
* We only need to use the pre-existing array to do sorting
* Constant extra space (only some additional variables needed)
» Selection Sort, Insertion Sort, Heap Sort

Adaptive
* The running improves as the given list is closer to being sorted
* |t should be linear time for a pre-sorted list, and nearly linear time if the list is nearly sorted
* Insertion Sort

Online
* We can start sorting before we have the entire list.
* [nsertion Sort

Stable

* “Tied” elements keep their original order

Sorting Algorithm Summary

Selection

Insertion n2 Yes Yes Yes Yes
Heap nlogn No Yes No No
Merge

Quick

Selection Sort

* Swap the thing at index 0 with the smallest thing in the array
* Swap the thing at index 1 with the smallest thing after index O

* Swap the thing at index i with the smallest thing after indexi — 1

for (i=0; i<a.length; i++){

smallest = i;
for (j=i; j<a.length; j++){
if (a[jl<a[smallest]){ smallest=j;}

}

temp = a[i];

Running Time:
Worst Case: ©(n?)
Best Case: O(n?)

ali] = a[smallest];
a[smallest] = a[i];

10

77 5 15 2 22 64 41 18 19 30 21 3 24 23

33

15

Insertion Sort

* If the items at index 0 and 1 are out of order, swap them
* Keep swapping the item at index 2 with the thing to its left as long as the left thing is larger

* Keep swapping the item at index i with the thing to its left as long as the left thing is larger

for (i=1; i<a.length; i++){

prev =i-1;

while(a[i] < a[prev] && prev > -1){
temp = ali];
ali] = a[prev];
alprev] = a[i];
I--;
prev--;

Running Time:
Worst Case: ©(n?)
Best Case: O(n)

10

77

15

22

64

41

18

19

30

21

24

23

33

10

11

12

13

14

15

In Place Heap Sort

* Build a heap using the same array (Floyd’s build heap algorithm works)

* For each item in the heap:
 Call extract
e Put that at the end of the array

buildHeap(a); Running Time:

for (int i = a.length-1; i>=0; i--){
temp=ali] Worst Case: @(Tl 10g Tl)
ali] = a[0]; .
0] - temp: Best Case: O(n logn)

percolateDown(0);

}

Divide And Conquer Sorting

* Divide and Conquer:
* Recursive algorithm design technique

* Solve a large problem by breaking it up into smaller versions of the same
problem

* Base Case:
* |f the problem is “small” then solve directly and return

* Divide:
* Break the problem into subproblem(s), each smaller instances

* Conquer:
* Solve subproblem(s) recursively

* Combine:
* Use solutions to subproblems to solve original problem

Merge Sort

* Base Case:
* |f the list is of length 1 or O, it’s already sorted, so just return it

5{812|[9f4[1]e Divide:

 Split the list into two “sublists” of (roughly) equal length

21518 114109 CCanuer:

* Sort both lists recursively

e Combine:

* Merge sorted sublists into one sorted list

Merge Sort In Action!

Sort between indices low and high

5 8 2 9 4 1 3 7

low high
Base Case: if low == high then that range is already sorted!

. . low+high low+high .

Divide and Conguer: Otherwise call mergesort on ranges (low, 0W+—lg) and (0W+—l‘g + 1, hlgh)

i
5 8 2 9 4 1 3 7
low low + high 1 [ow + high high
I—+1

1 2

After Recursion: 2 5 3 9 1 3 4 7

low high

Merge (the combine part)

2 5 8 9 1 3 4 7

£ low 7\ low + owzhig% high

@“Q}& C — |

Create a new array to merge into, and 3 pointers/indices:

* L _next: the smallest “unmerged” thing on the left

* R _next: the smallest “unmerged” thing on the right

* M _next: where the next smallest thing goes in the merged array

One-by-one: put the smallest of L next and R_next into M_next,
then advance both M_next and whichever of L/R was used.

Merge Sort Pseudocode

void mergesort(myArray){
ms_helper(myArray, 0, myArray.length());
}
void mshelper(myArray, low, high){
if (low == high){return;} // Base Case
mid = (low+high)/2;
ms_helper(low, mid);
ms_helper(mid+1, high);
merge(myArray, low, mid, high);

Merge Pseudocode

void merge(myArray, low, mid, high){
merged = new int[high-low+1]; // or whatever type is in myArray

| _next = low;
r_next = high;
m_next =0;

while (I_next <= mid && r_next <= high){
if (myArray[l_next] <= myArray[r_next]){
merged[m_next++] = myArray[l _next++];
}
else{
merged[m_next++] = myArray[r_next++];

}

while (I_next <= mid){ merged[m_next++] = myArray[l_next++]; }
while (r_next <= high){ merged[m_next++] = myArray[r_next++]; }
for(i=0; i<=merged.length; i++){ myArray[i+low] = merged]i];}

Analyzing Merge Sort

Identify time required to Divide and Combine

|dentify all subproblems and their sizes

Use recurrence relation to express recursive running time
Solve and express running time asymptotically

B whh e

* Divide: 0 comparisons
. . . n
* Conquer: recursively sort two lists of size >

* Combine: n comparisons
* Recurrence:

T(n)=0+T(§)+T(§)+n
T(n) =2T (%) +n

Red box represents a
problem instance

Blue value represents

e T(n) =27) +n
n " "\ = n comparisons / level
n/{\n)/z .
n/mzt % n/m4 % >10g2 n Ie\{els
Y N N AN ‘/:\A of recursion
T M1 111111]

log, n

T(n) = z n =nlog,n

=1 15

Properties of Merge Sort

* Worst Case Running time:
* O(nlogn)

* In-Place?
* Nol!

e Adaptive?
* No!

e Stable?

* Yes!
* Aslong asin a tie you always pick | next

Sorting Algorithm Summary

Selection

Insertion n2 Yes Yes Yes Yes
Heap nlogn No Yes No No
Merge nlogn No No Yes No

Quick

Quicksort

* Like Mergesort:
* Divide and conquer
* O(nlogn) run time (kind of...)

* Unlike Mergesort:
* Divide step is the “hard” part
* Typically faster than Mergesort

Quicksort

ldea: pick a pivot element, recursively sort two sublists around that
element

* Divide: select pivot element p, Partition(p)
* Conquer: recursively sort left and right sublists
* Combine: Nothing!

19

Partition (Divide step)

Given: a list, a pivot p
Start: unordered

K

Ist

7

3

12

10

Goal: Al

elements

on left, all > p on right

5

7

3

1

2

JGEIEIREY

20

Partition, Procedure

If value < p, move right
Else swap value with End value, move End Left
Done when = End

4

1 2 4 9 6 | 11

U

1 2 4 9 6 | 11

4

1 2 4 9 6 | 11

‘H

Partition, Procedure

If value < p, move right
Else swap value with End value, move End Left
Done when = End

7 3&10 1 2 4

{

7 3 6 | 10 | 1 2 4

{

7 3 6 [10 | 1 2 4

7 3 Gﬁl 2 4

Partition, Procedure

If value < p, move right
Else swap value with End value, move End Left
Done when = End

Case 1: meet at element

Swap p with (2 in this case)

el

2 5 7 3 6 4 1

23

Partition, Procedure

If value < p, move right
Else swap value with End value, move End Left
Done when = End

Case 2: meet at element > p

Swap p with (2 in this case)

e[Tale

2 5 7 3 6 4 1

24

Partition Summary

Put p at beginning of list

2. Put a pointer () just after p, and a pointer (End) at the end of
the list

3. While < End:

1. |If value < p, move right

2. Else swap value with End value, move End Left
4. If pointers meet at element : Swap » with

5. Else If pointers meet at element > p: Swap p with

Run time? 0(n)

5

Conquer

2 5 7 3

|

All elements < p All elements > p

Recursively sort

Exactly where it belongs!

and Right sublists

26

Quicksort Run Time (Best)

If the pivot is always the median:

2

5

1

3

6

2

H

Then we divide in ha

6

d AR EIENEEY
AR EIEIE

4

f each time

T(n)=2T(E)+n

2

T(n) = 0(nlogn)

27

Quicksort Run Time (Worst)

If the pivot is always at the extreme:

s felef7]e o] u]n

Then we shorten by 1 each time

Tm)=Tn—-1)+n

T(n) = 0(n%)

28

Quicksort Run Time (Worst)
Tm)=Tn—-1)+n

n—1
! . T(n)=142+3+-+n

n—2
. T'(n) = n(n2+ 1)

- T(n) = 0(n%)

Quicksort on a (nearly) Sorted List

First element always yields unbalanced pivot

s fefslef7]e o r]u]n

So we shorten by 1 each time

Tm)=Tn—-1)+n

T(n) = 0(n%)

30

Good Pivot

 What makes a good Pivot?
* Roughly even split between left and right
* ldeally: median

* There are ways to find the median in linear time, but it’s complicated
and slow and you’re better off using mergesort

* In Practice:
* Pick a random value as a pivot
* Pick the middle of 3 random values as the pivot

Properties of Quick Sort

* Worst Case Running time:
« O(n?)
* But O(nlogn) average! And typically faster than mergesort!
* In-Place?
Debatable
e Adaptive?
* No!
 Stable?
* No!

Sorting Algorithm Summary

Selection

Insertion n2 Yes Yes Yes Yes
Heap nlogn No Yes No No
Merge nlogn No No Yes No
Quick nlogn (expected) No No* No No

*Quick Sort can be done in-place within each stack frame. Some textbooks do not include the memory
occupied by the stack frame in space analysis, which would mean concluding Quick Sort is in-place. Others will
include stack frame space, and therefore conclude Quick Sort is not in-place. If you try to implement it
iteratively, you’ll need another array somewhere (e.g. to store locations of sub-lists)

Improving Running time

* Recall our definition of the sorting problem:
* Input:
* An array A of items

* A comparison function for these items
* Given two items x and y, we can determine whetherx <y, x > y,orx =y

* Output:
A permutation of A such thatif i < j then A[i] < A[J]

* Under this definition, it is impossible to write an algorithm faster than
nlogn asymptotically.

e Observation:

* Sometimes there might be ways to determine the position of values without
comparisons!

“Linear Time” Sorting Algorithms

* Useable when you are able to make additional assumptions about the
contents of your list (beyond the ability to compare)
* Examples:

* The list contains only positive integers less than k
* The number of distinct values in the list is much smaller than the length of the list

* The running time expression will always have a term other than the
list’s length to account for this assumption

e Examples:
* Running time might be @(k - n) where k is the range/count of values

BucketSort

e Assumes the array contains integers between 0 and k — 1 (or some
other small range)

e |dea:

* Use each value as an index into an array of size k
* Add the item into the “bucket” at that index (e.g. linked list)
* Get sorted array by “appending” all the buckets

N

123
301011213 (0]2/{60 o(ojojofo|1j1f2|2
123

O |0 O o o o

BucketSort Running Time

* Create array of k buckets
* Either (k) or ©(1) depending on some things...

* Insert all n things into buckets
* O(n)

* Empty buckets into an array
« O(n + k)

e Overall:
e O(n+ k)

 When is this better than mergesort?

Properties of BucketSort

* In-Place?
* No

e Adaptive?
* No

e Stable?
* Yes!

RadixSort

e Radix: The base of a number system
* We'll use base 10, most implementations will use larger bases

* |dea:
* BucketSort by each digit, one at a time, from least significant to most significant

103 | 801 | 401 | 323 | 255 | 823|999 | 101 | 113 | 901 | 555 | 512 | 245 | 800 | 018 | 121
o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
801 103
Place each element into o1 323 22>
_ 800 (101 | 512 | .°7 555 018 | 999
a “bucket” according to 901 113 245
its 1’s place 121
o 1 2 3 5 8 9

RadixSort

e Radix: The base of a number system
* We'll use base 10, most implementations will use larger bases

* |dea:
* BucketSort by each digit, one at a time, from least significant to most significant
801
401 ;gg 255
800 | 101 | 512 555 018 | 999
823
901 245
191 113
800
o 1 2 3 4 5 6 7 8 9
sl ||
101 | 113323 245 | .. 999
Place each element into 001 | 018 | 823
a “bucket” according to 103

its 10’s place o 1 2 3 4 5 6 7 8 9

e Radix: The base of a number system

RadixSort

 We'll use base 10, most implementations will use larger bases

* BucketSort by each digit, one at a time, from least significant to most significant

e |dea:
800
801
401 >1271121 255
113 | 323 245 999
101 018 | 823 =5
901
103
0 1 2 3 4 5 6 7 9

Place each element into
a “bucket” according to
its 100’s place

101

800
103 | 245 512 901
018 113 | 255 323 1401 555 Zg; 999
121
0 1 2 3 £ 5 8 9

RadixSort

e Radix: The base of a number system
* We'll use base 10, most implementations will use larger bases

* |dea:
* BucketSort by each digit, one at a time, from least significant to most significant
101
800
103 | 245 512 901
0181113 | 255 | 323 | 401 | 555 :gg 999 Convert back into an array
121

018 | 811|103 | 113 (121|245 | 255|323 (401|512 |555|800 (801|823 901|999

RadixSort Running Time

e Suppose largest value is m
* Choose a radix (base of representation) b

* BucketSort all n things using b buckets
- O(n+k)
* Repeat once per each digit
* log, m iterations
* Overall:
* O(nlog, m+ blog, m)
* |n practice, you can select the value of b to optimize running time

* When is this better than mergesort?

	Slide 1: CSE 332 Autumn 2024 Lecture 15: Sorting 2
	Slide 2: Properties To Consider
	Slide 3: Sorting Algorithm Summary
	Slide 4: Selection Sort
	Slide 5: Insertion Sort
	Slide 6: In Place Heap Sort
	Slide 7: Divide And Conquer Sorting
	Slide 8: Divide and Conquer
	Slide 9: Merge Sort
	Slide 10: Merge Sort In Action!
	Slide 11: Merge (the combine part)
	Slide 12: Merge Sort Pseudocode
	Slide 13: Merge Pseudocode
	Slide 14: Analyzing Merge Sort
	Slide 15
	Slide 16: Properties of Merge Sort
	Slide 17: Sorting Algorithm Summary
	Slide 18: Quicksort
	Slide 19: Quicksort
	Slide 20: Partition (Divide step)
	Slide 21: Partition, Procedure
	Slide 22
	Slide 23: Partition, Procedure
	Slide 24: Partition, Procedure
	Slide 25: Partition Summary
	Slide 26: Conquer
	Slide 27: Quicksort Run Time (Best)
	Slide 28: Quicksort Run Time (Worst)
	Slide 29: Quicksort Run Time (Worst)
	Slide 30: Quicksort on a (nearly) Sorted List
	Slide 31: Good Pivot
	Slide 32: Properties of Quick Sort
	Slide 33: Sorting Algorithm Summary
	Slide 34: Improving Running time
	Slide 35: “Linear Time” Sorting Algorithms
	Slide 36: BucketSort
	Slide 37: BucketSort Running Time
	Slide 38: Properties of BucketSort
	Slide 39: RadixSort
	Slide 40: RadixSort
	Slide 41: RadixSort
	Slide 42: RadixSort
	Slide 43: RadixSort Running Time

