CSE 332 Autumn 2024 Lecture 15: Sorting 2

Nathan Brunelle

http://www.cs.uw.edu/332

Properties To Consider

- Worst case running time
- In place:
 - We only need to use the pre-existing array to do sorting
 - Constant extra space (only some additional variables needed)
 - Selection Sort, Insertion Sort, Heap Sort
- Adaptive
 - The running improves as the given list is closer to being sorted
 - It should be linear time for a pre-sorted list, and nearly linear time if the list is nearly sorted
 - Insertion Sort
- Online
 - We can start sorting before we have the entire list.
 - Insertion Sort
- Stable
 - "Tied" elements keep their original order

Sorting Algorithm Summary

Algorithm	Running Time	Adaptive?	In-Place?	Stable?	Online?
Selection	n^2	No	Yes	Yes	No
Insertion	n^2	Yes	Yes	Yes	Yes
Неар	$n \log n$	No	Yes	No	No
Merge					
Quick					

Selection Sort

- Swap the thing at index 0 with the smallest thing in the array
- Swap the thing at index 1 with the smallest thing after index 0
- ..
- Swap the thing at index i with the smallest thing after index i-1

```
 \begin{array}{ll} \text{for (i=0; i<a.length; i++)} \\ & \text{smallest = i;} \\ & \text{for (j=i; j<a.length; j++)} \\ & \text{if (a[j]<a[smallest])} \\ & \text{smallest=j;} \\ & \text{best Case: } \Theta(n^2) \\ & \text{best Case: } \Theta(n^2) \\ & \text{a[i] = a[smallest];} \\ & \text{a[smallest] = a[i];} \\ \end{array}
```

10	77	5	15	2	22	64	41	18	19	30	21	3	24	23	33
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15

Insertion Sort

- ullet If the items at index 0 and 1 are out of order, swap them
- Keep swapping the item at index 2 with the thing to its left as long as the left thing is larger
- ..
- Keep swapping the item at index i with the thing to its left as long as the left thing is larger

```
 \begin{array}{ll} \text{for (i=1; i<a.length; i++)} \{ \\ & \text{prev = i-1;} \\ & \text{while(a[i] < a[prev] \&\& prev > -1)} \{ \\ & \text{temp = a[i];} \\ & \text{a[i] = a[prev];} \\ & \text{a[prev] = a[i];} \\ & \text{i--;} \\ & \text{prev--;} \\ \} \\ \} \\ \end{array}   \begin{array}{ll} \text{Running Time:} \\ & \text{Worst Case: } \Theta(n^2) \\ & \text{Best Case: } \Theta(n) \\ \end{array}
```

10	77	5	15	2	22	64	41	18	19	30	21	3	24	23	33
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15

In Place Heap Sort

- Build a heap using the same array (Floyd's build heap algorithm works)
- For each item in the heap:
 - Call extract
 - Put that at the end of the array

```
buildHeap(a);
for (int i = a.length-1; i>=0; i--){
    temp=a[i]
    a[i] = a[0];
    a[0] = temp;
    percolateDown(0);
}
```

Running Time:

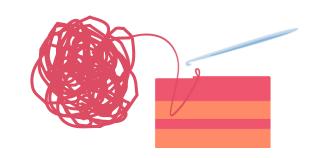
Worst Case: $\Theta(n \log n)$

Best Case: $\Theta(n \log n)$

Divide And Conquer Sorting

- Divide and Conquer:
 - Recursive algorithm design technique
 - Solve a large problem by breaking it up into smaller versions of the same problem

Divide and Conquer



If the problem is "small" then solve directly and return

• Divide:

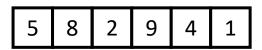
• Break the problem into subproblem(s), each smaller instances

Conquer:

• Solve subproblem(s) recursively

• Combine:

• Use solutions to subproblems to solve original problem



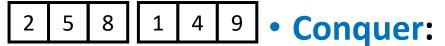
Merge Sort

5

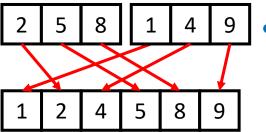
Base Case:

• If the list is of length 1 or 0, it's already sorted, so just return it

• Split the list into two "sublists" of (roughly) equal length



Sort both lists recursively

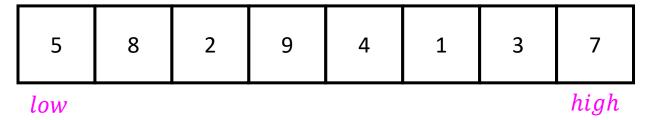


Combine:

• Merge sorted sublists into one sorted list

Merge Sort In Action!

Sort between indices *low* and *high*



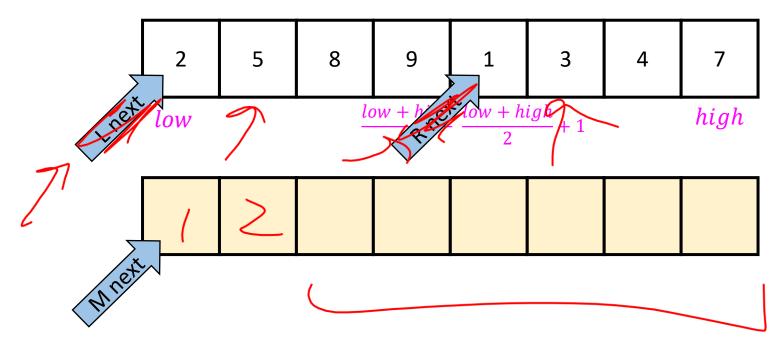
Base Case: if low == high then that range is already sorted!

After Recursion:

2 5 8 9 1 3 4 7

low high

Merge (the combine part)



Create a new array to merge into, and 3 pointers/indices:

- L_next: the smallest "unmerged" thing on the left
- R_next: the smallest "unmerged" thing on the right
- M_next: where the next smallest thing goes in the merged array

One-by-one: put the smallest of L_next and R_next into M_next, then advance both M_next and whichever of L/R was used.

Merge Sort Pseudocode

```
void mergesort(myArray){
      ms helper(myArray, 0, myArray.length());
void mshelper(myArray, low, high){
      if (low == high){return;} // Base Case
      mid = (low+high)/2;
      ms_helper(low, mid);
      ms helper(mid+1, high);
      merge(myArray, low, mid, high);
```

Merge Pseudocode

```
void merge(myArray, low, mid, high){
       merged = new int[high-low+1]; // or whatever type is in myArray
       I next = low;
       r next = high;
       m next = 0;
       while (I next <= mid && r next <= high){
               if (myArray[l next] <= myArray[r next]){</pre>
                       merged[m_next++] = myArray[l_next++];
               else{
                       merged[m_next++] = myArray[r_next++];
       while (I_next <= mid){ merged[m_next++] = myArray[I_next++]; }
       while (r next <= high){ merged[m next++] = myArray[r next++]; }
       for(i=0; i<=merged.length; i++){ myArray[i+low] = merged[i];}
```

Analyzing Merge Sort

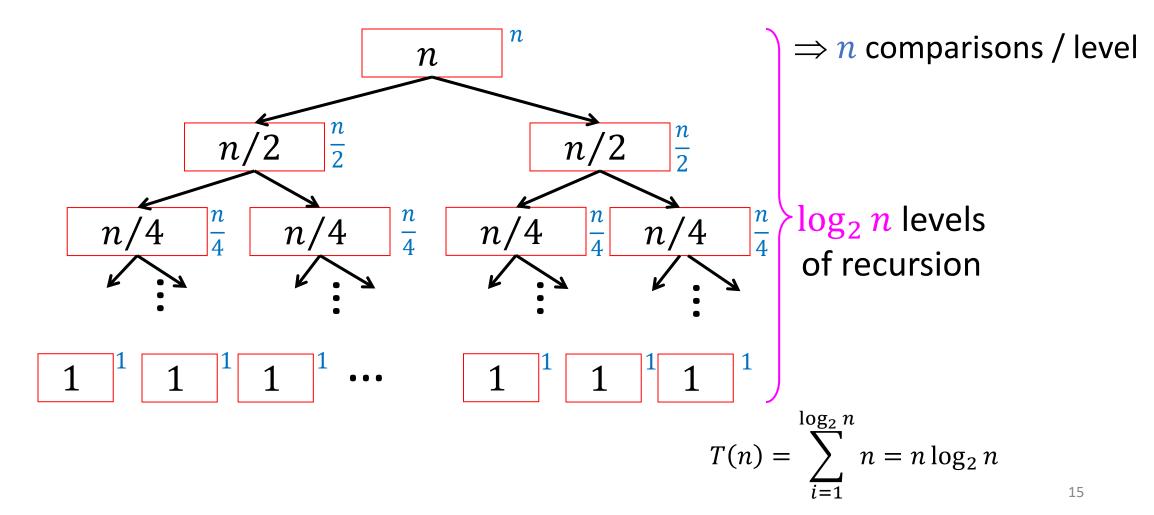
- 1. Identify time required to Divide and Combine
- 2. Identify all subproblems and their sizes
- 3. Use recurrence relation to express recursive running time
- 4. Solve and express running time asymptotically
- Divide: 0 comparisons
- Conquer: recursively sort two lists of size $\frac{n}{2}$
- Combine: *n* comparisons
- Recurrence:

$$T(n) = 0 + T\left(\frac{n}{2}\right) + T\left(\frac{n}{2}\right) + n$$
$$T(n) = 2T\left(\frac{n}{2}\right) + n$$

Red box represents a problem instance

Blue value represents time spent at that level of recursion

$$T(n) = 2T(\frac{n}{2}) + n$$



Properties of Merge Sort

- Worst Case Running time:
 - $\Theta(n \log n)$
- In-Place?
 - No!
- Adaptive?
 - No!
- Stable?
 - Yes!
 - As long as in a tie you always pick l_next

Sorting Algorithm Summary

Algorithm	Running Time	Adaptive?	In-Place?	Stable?	Online?
Selection	n^2	No	Yes	Yes	No
Insertion	n^2	Yes	Yes	Yes	Yes
Неар	$n \log n$	No	Yes	No	No
Merge	$n \log n$	No	No	Yes	No
Quick					

Quicksort

- Like Mergesort:
 - Divide and conquer
 - $O(n \log n)$ run time (kind of...)
- Unlike Mergesort:
 - Divide step is the "hard" part
 - Typically faster than Mergesort

Quicksort

Idea: pick a pivot element, recursively sort two sublists around that element

- Divide: select pivot element p, Partition(p)
- Conquer: recursively sort left and right sublists
- Combine: Nothing!

Partition (Divide step)

Given: a list, a pivot p

Start: unordered list

8	5	7	3	12	10	1	2	4	9	6	11
---	---	---	---	----	----	---	---	---	---	---	----

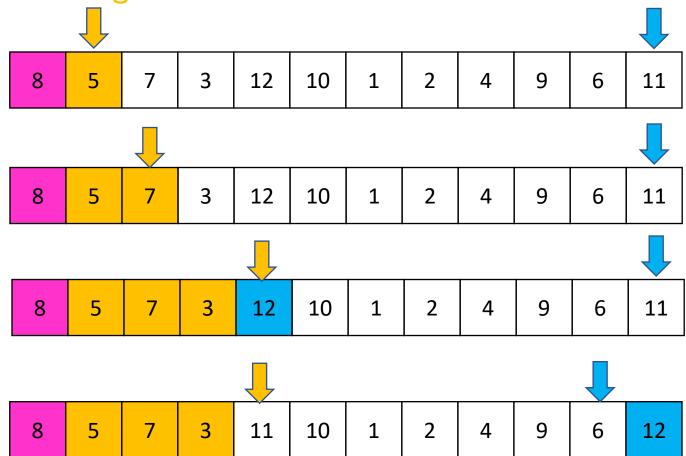
Goal: All elements < p on left, all > p on right

5 7 3 1 2 4 6 8 12 10 9 13	5	7	3	1	2	4	6	8	12	10	9	11
----------------------------	---	---	---	---	---	---	---	---	----	----	---	----

If Begin value < p, move Begin right

Else swap Begin value with End value, move End Left

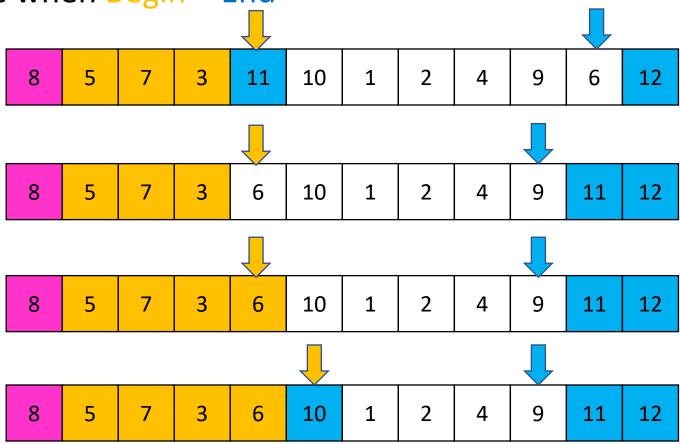
Done when Begin = End



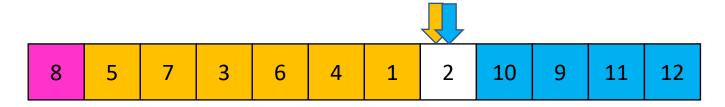
If Begin value < p, move Begin right

Else swap Begin value with End value, move End Left

Done when Begin = End

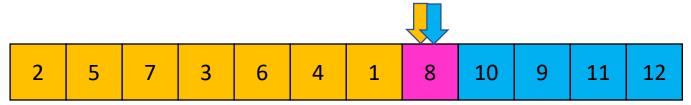


If Begin value < p, move Begin right Else swap Begin value with End value, move End Left Done when Begin = End

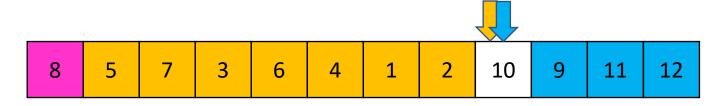


Case 1: meet at element < p

Swap p with pointer position (2 in this case)

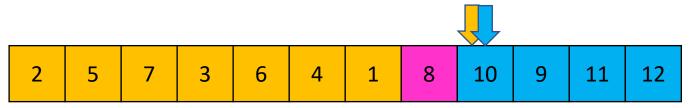


If Begin value < p, move Begin right Else swap Begin value with End value, move End Left Done when Begin = End



Case 2: meet at element > p

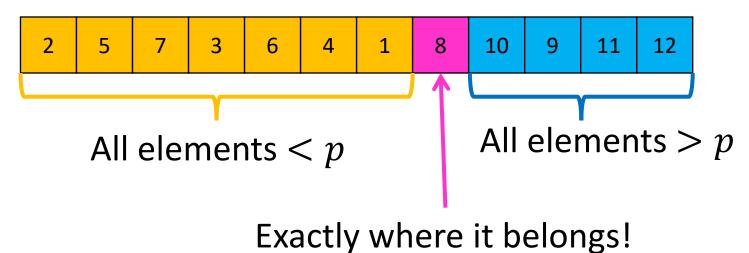
Swap p with value to the left (2 in this case)



Partition Summary

- 1. Put p at beginning of list
- 2. Put a pointer (Begin) just after p, and a pointer (End) at the end of the list
- 3. While Begin < End:
 - 1. If Begin value < p, move Begin right
 - 2. Else swap Begin value with End value, move End Left
- 4. If pointers meet at element < p: Swap p with pointer position
- 5. Else If pointers meet at element > p: Swap p with value to the left

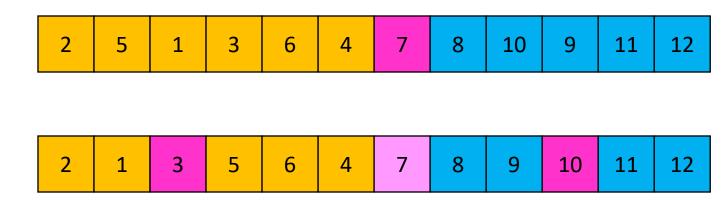
Conquer



Recursively sort Left and Right sublists

Quicksort Run Time (Best)

If the pivot is always the median:

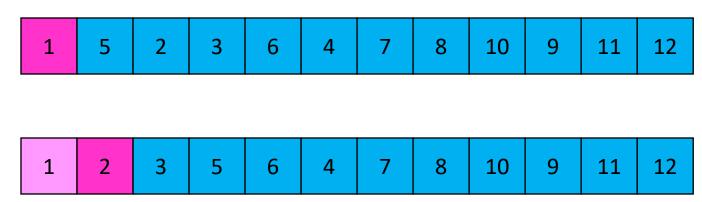


Then we divide in half each time

$$T(n) = 2T\left(\frac{n}{2}\right) + n$$
$$T(n) = O(n\log n)$$

Quicksort Run Time (Worst)

If the pivot is always at the extreme:

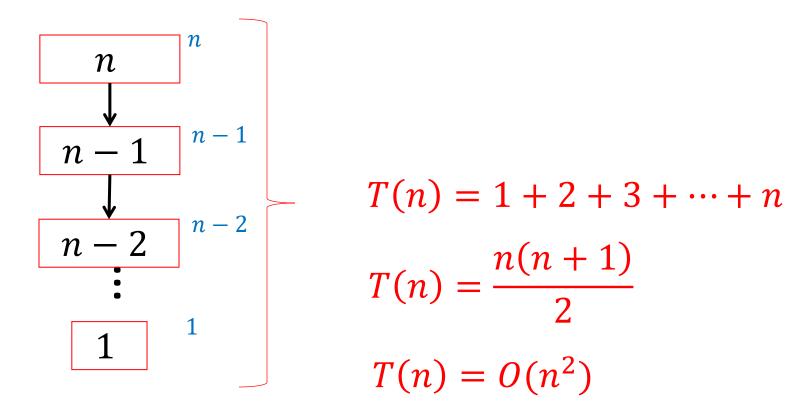


Then we shorten by 1 each time

$$T(n) = T(n-1) + n$$
$$T(n) = O(n^2)$$

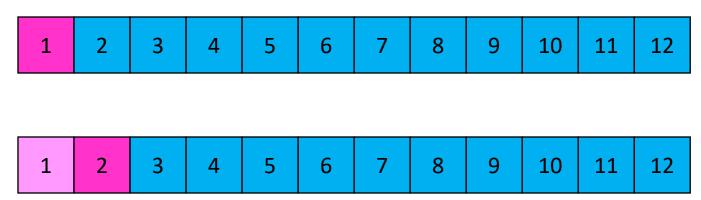
Quicksort Run Time (Worst)

$$T(n) = T(n-1) + n$$



Quicksort on a (nearly) Sorted List

First element always yields unbalanced pivot



So we shorten by 1 each time

$$T(n) = T(n-1) + n$$
$$T(n) = O(n^2)$$

Good Pivot

- What makes a good Pivot?
 - Roughly even split between left and right
 - Ideally: median
- There are ways to find the median in linear time, but it's complicated and slow and you're better off using mergesort
- In Practice:
 - Pick a random value as a pivot
 - Pick the middle of 3 random values as the pivot

Properties of Quick Sort

- Worst Case Running time:
 - $\Theta(n^2)$
 - But $\Theta(n \log n)$ average! And typically faster than mergesort!
- In-Place?
 -Debatable
- Adaptive?
 - No!
- Stable?
 - No!

Sorting Algorithm Summary

Algorithm	Running Time	Adaptive?	In-Place?	Stable?	Online?
Selection	n^2	No	Yes	Yes	No
Insertion	n^2	Yes	Yes	Yes	Yes
Неар	$n \log n$	No	Yes	No	No
Merge	$n \log n$	No	No	Yes	No
Quick	$n \log n$ (expected)	No	No*	No	No

^{*}Quick Sort can be done in-place within each stack frame. Some textbooks do not include the memory occupied by the stack frame in space analysis, which would mean concluding Quick Sort is in-place. Others will include stack frame space, and therefore conclude Quick Sort is not in-place. If you try to implement it iteratively, you'll need another array somewhere (e.g. to store locations of sub-lists)

Improving Running time

- Recall our definition of the sorting problem:
 - Input:
 - An array *A* of items
 - A comparison function for these items
 - Given two items x and y, we can determine whether x < y, x > y, or x = y
 - Output:
 - A permutation of A such that if $i \leq j$ then $A[i] \leq A[j]$
- Under this definition, it is impossible to write an algorithm faster than $n \log n$ asymptotically.
- Observation:
 - Sometimes there might be ways to determine the position of values without comparisons!

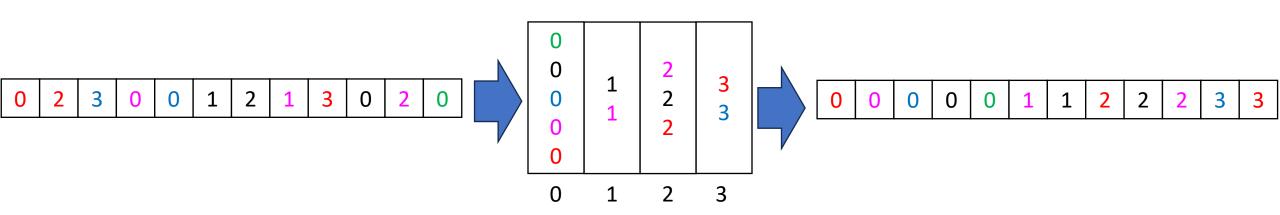
"Linear Time" Sorting Algorithms

- Useable when you are able to make additional assumptions about the contents of your list (beyond the ability to compare)
 - Examples:
 - The list contains only positive integers less than k
 - The number of distinct values in the list is much smaller than the length of the list
- The running time expression will always have a term other than the list's length to account for this assumption
 - Examples:
 - Running time might be $\Theta(k \cdot n)$ where k is the range/count of values

BucketSort

• Assumes the array contains integers between 0 and k-1 (or some other small range)

- Idea:
 - Use each value as an index into an array of size k
 - Add the item into the "bucket" at that index (e.g. linked list)
 - Get sorted array by "appending" all the buckets



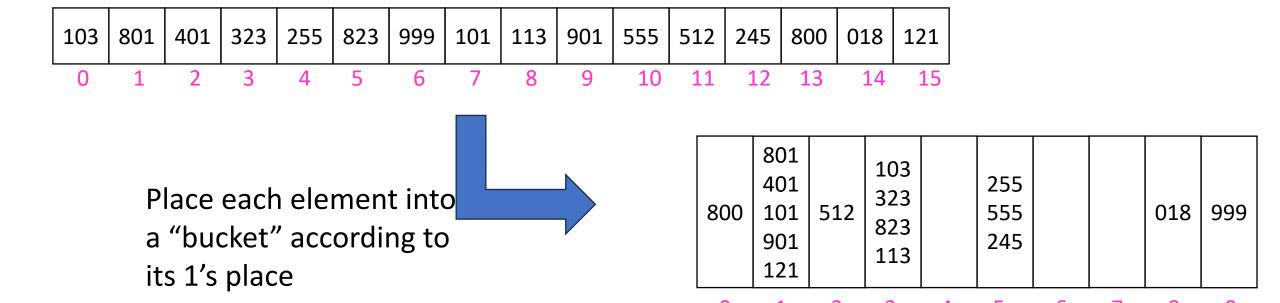
BucketSort Running Time

- Create array of k buckets
 - Either $\Theta(k)$ or $\Theta(1)$ depending on some things...
- Insert all n things into buckets
 - $\Theta(n)$
- Empty buckets into an array
 - $\Theta(n+k)$
- Overall:
 - $\Theta(n+k)$
- When is this better than mergesort?

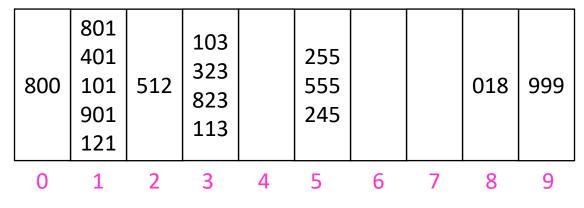
Properties of BucketSort

- In-Place?
 - No
- Adaptive?
 - No
- Stable?
 - Yes!

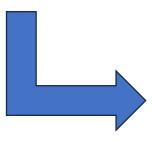
- Radix: The base of a number system
 - We'll use base 10, most implementations will use larger bases
- Idea:
 - BucketSort by each digit, one at a time, from least significant to most significant

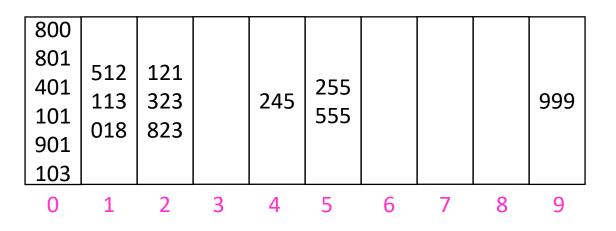


- Radix: The base of a number system
 - We'll use base 10, most implementations will use larger bases
- Idea:
 - BucketSort by each digit, one at a time, from least significant to most significant

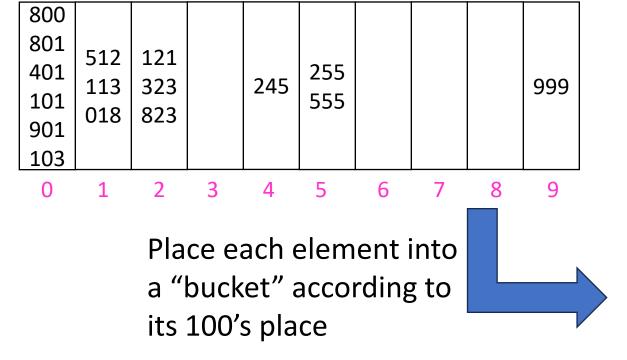


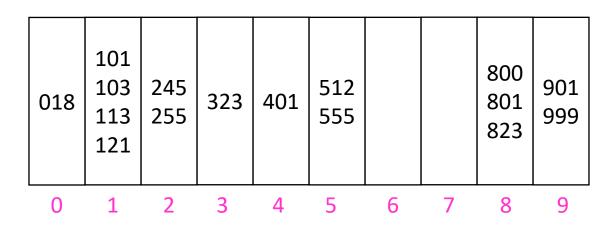
Place each element into a "bucket" according to its 10's place



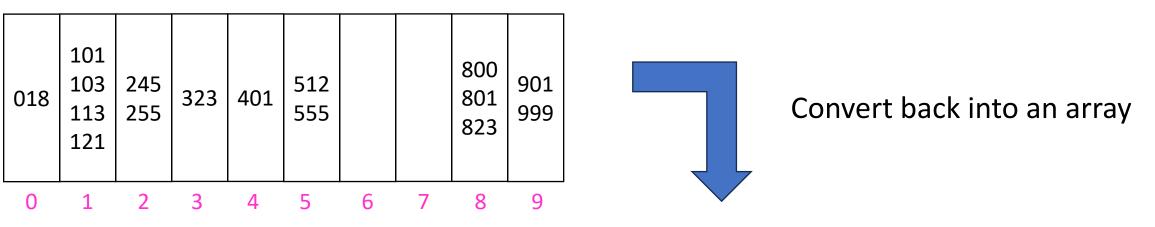


- Radix: The base of a number system
 - We'll use base 10, most implementations will use larger bases
- Idea:
 - BucketSort by each digit, one at a time, from least significant to most significant





- Radix: The base of a number system
 - We'll use base 10, most implementations will use larger bases
- Idea:
 - BucketSort by each digit, one at a time, from least significant to most significant



018	811	103	113	121	245	255	323	401	512	555	800	801	823	901	999	
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	

RadixSort Running Time

- Suppose largest value is *m*
- Choose a radix (base of representation) b
- BucketSort all n things using b buckets
 - $\Theta(n+k)$
- Repeat once per each digit
 - $\log_b m$ iterations
- Overall:
 - $\Theta(n \log_b m + b \log_b m)$
- In practice, you can select the value of b to optimize running time
- When is this better than mergesort?