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Sorting

• Rearrangement of items into some defined sequence
• Usually: reordering a list from smallest to largest according to some metric

• Why sort things?
• Enable things like binary search

• It makes some algorithms faster

• Nicer for human algorithms too

• Data organization



More Formal Definition

• Input:
• An array 𝐴 of items

• A comparison function for these items
• Given two items 𝑥 and 𝑦, we can determine whether 𝑥 < 𝑦, 𝑥 > 𝑦, or 𝑥 = 𝑦

• Output:
• A permutation of 𝐴 such that if 𝑖 ≤ 𝑗 then 𝐴 𝑖 ≤ 𝐴[𝑗]

• Permutation: a sequence of the same items but perhaps in a different order



Sorting “Landscape”

• There is no singular best algorithm for sorting

• Some are faster, some are slower

• Some use more memory, some use less

• Some are super extra fast if your data matches particular assumptions

• Some have other special properties that make them valuable

• No sorting algorithm can have only all the “best” attributes



“Moving Day” Sorting Algorithm
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Selection Sort

• Idea: Find the next smallest element, swap it into the 
next index in the array
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Selection Sort
• Swap the thing at index 0 with the smallest thing in the array
• Swap the thing at index 1 with the smallest thing after index 0
• …
• Swap the thing at index 𝑖 with the smallest thing after index 𝑖 − 1

for (i=0; i<a.length; i++){
        smallest = i;
        for (j=i; j<a.length; j++){
                if (a[j]<a[smallest]){ smallest=j;}
        }
        temp = a[i];
        a[i] = a[smallest];
        a[smallest] = a[i];
}

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

10 77 5 15 2 22 64 41 18 19 30 21 3 24 23 33

Running Time:
 Worst Case: Θ(⋅)
 Best Case: Θ(⋅)



Insertion Sort

• Idea: Maintain a sorted list prefix, extend that prefix 
by “inserting” the next element
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Insertion Sort
• If the items at index 0 and 1 are out of order, swap them

• Keep swapping the item at index 2 with the thing to its left as long as the left thing is larger

• …

• Keep swapping the item at index 𝑖 with the thing to its left as long as the left thing is larger

for (i=1; i<a.length; i++){
        prev = i-1;
        while(a[i] < a[prev] && prev > -1){
                temp = a[i];
                a[i] = a[prev];
                a[prev] = a[i];
                i--;
                prev--;
        }
}

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

10 77 5 15 2 22 64 41 18 19 30 21 3 24 23 33

Running Time:
 Worst Case: Θ(⋅)
 Best Case: Θ(⋅)



Aside: Bubble Sort – we won’t cover it

"the bubble sort seems to have 
nothing to recommend it, except a 
catchy name and the fact that it leads 
to some interesting theoretical 
problems” –Donald Knuth, The Art of 
Computer Programming



Heap Sort
• Idea: Build a maxHeap, repeatedly delete the max 

element from the heap to build sorted list Right-to-Left
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Heap Sort
• Remove the Max element (i.e. the root) from the Heap: 

replace with last element, call percolateDown(root)
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Percolate Down(node): if node satisfies heap 
property, done. Else swap with largest child and 
repeat on that subtree



Heap Sort
• Remove the Max element (i.e. the root) from the Heap: 

replace with last element, call percolateDown(root)
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Heap Sort
• Remove the Max element (i.e. the root) from the Heap: 

replace with last element, call percolateDown(root)
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Heap Sort
• Remove the Max element (i.e. the root) from the Heap: 

replace with last element, call percolateDown(root)
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Heap Sort
• Build a heap

• Call deleteMax

• Put that at the end of the array

myHeap = buildHeap(a);
for (int i = a.length-1; i>=0; i--){
        item = myHeap.deleteMax();
        a[i] = item;
} 

Running Time:
 Worst Case: Θ(⋅)
 Best Case: Θ(⋅)



“In Place” Sorting Algorithm

• A sorting algorithm which requires no extra data structures

• Idea: It sorts items just by swapping things in the same array given

• Definition: it only uses Θ(1) extra space

• Selection sort: In Place!

• Insertion sort: In Place!

• Heap sort: Not In Place!
• But we can fix that!



In Place Heap Sort
• Idea: When “removing” an element from the heap, swap 

it with the last item of the heap then “pretend” the heap 
is one item shorter
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Heap Sort
• Idea: When “removing” an element from the heap, 

swap it with the last item of the heap then “pretend” 
the heap is one item shorter
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Heap Sort
• Idea: When “removing” an element from the heap, 

swap it with the last item of the heap then “pretend” 
the heap is one item shorter
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Heap Sort
• Idea: When “removing” an element from the heap, 

swap it with the last item of the heap then “pretend” 
the heap is one item shorter
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Heap Sort
• Idea: When “removing” an element from the heap, 

swap it with the last item of the heap then “pretend” 
the heap is one item shorter
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Heap Sort
• Idea: When “removing” an element from the heap, 

swap it with the last item of the heap then “pretend” 
the heap is one item shorter
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Heap Sort
• Idea: When “removing” an element from the heap, 

swap it with the last item of the heap then “pretend” 
the heap is one item shorter
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In Place Heap Sort
• Build a heap using the same array (Floyd’s build heap algorithm works)

• Call deleteMax

• Put that at the end of the array

buildHeap(a);
for (int i = a.length-1; i>=0; i--){
        temp=a[i]
        a[i] = a[0];
        a[0] = temp;
        percolateDown(0);
} 

Running Time:
 Worst Case: Θ(⋅)
 Best Case: Θ(⋅)



Floyd’s buildHeap method

• Working towards the root, one row at a time, percolate down

buildHeap(){
    for(int i = size; i>0; i--){
        percolateDown(i);
    }
}



Divide And Conquer Sorting

• Divide and Conquer:
• Recursive algorithm design technique

• Solve a large problem by breaking it up into smaller versions of the same 
problem



Divide and Conquer
• Base Case: 

• If the problem is “small” then solve directly and return

• Divide: 
• Break the problem into subproblem(s), each smaller instances

• Conquer:
• Solve subproblem(s) recursively

• Combine:
• Use solutions to subproblems to solve original problem

28
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Divide and Conquer Template Pseudocode
def my_DandC(problem){
    // Base Case

    if (problem.size() <= small_value){

        return solve(problem);  // directly solve (e.g., brute force)

    }

    // Divide

    List subproblems = divide(problem);

    // Conquer

    solutions = new List();

    for (sub : subproblems){

        subsolution = my_DandC(sub);

        solutions.add(subsolution);

    }

    // Combine

    return combine(solutions);

} 29



Merge Sort
• Base Case: 

• If the list is of length 1 or 0, it’s already sorted, so just return it

• Divide: 
• Split the list into two “sublists” of (roughly) equal length

• Conquer:
• Sort both lists recursively

• Combine:
• Merge sorted sublists into one sorted list

30
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Merge Sort In Action!

5 8 2 9 4 1 3 7

Sort between indices 𝑙𝑜𝑤 and ℎ𝑖𝑔ℎ 

𝑙𝑜𝑤 ℎ𝑖𝑔ℎ

Base Case: if 𝑙𝑜𝑤 == ℎ𝑖𝑔ℎ then that range is already sorted!

Divide and Conquer: Otherwise call mergesort on ranges 𝑙𝑜𝑤,
𝑙𝑜𝑤+ℎ𝑖𝑔ℎ

2
 and 

𝑙𝑜𝑤+ℎ𝑖𝑔ℎ

2
+ 1, ℎ𝑖𝑔ℎ

5 8 2 9 4 1 3 7

𝑙𝑜𝑤 ℎ𝑖𝑔ℎ𝑙𝑜𝑤 + ℎ𝑖𝑔ℎ

2
𝑙𝑜𝑤 + ℎ𝑖𝑔ℎ

2
+ 1

2 5 8 9 1 3 4 7

𝑙𝑜𝑤 ℎ𝑖𝑔ℎ

After Recursion:



Merge (the combine part)

2 5 8 9 1 3 4 7

𝑙𝑜𝑤 ℎ𝑖𝑔ℎ𝑙𝑜𝑤 + ℎ𝑖𝑔ℎ

2

𝑙𝑜𝑤 + ℎ𝑖𝑔ℎ

2
+ 1

Create a new array to merge into, and 3 pointers/indices:
• L_next: the smallest “unmerged” thing on the left
• R_next: the smallest “unmerged” thing on the right
• M_next: where the next smallest thing goes in the merged array

One-by-one: put the smallest of L_next and R_next into M_next, 
then advance both M_next and whichever of L/R was used.



Merge Sort Pseudocode
void mergesort(myArray){

 ms_helper(myArray, 0, myArray.length());
}

void mshelper(myArray, low, high){

 if (low == high){return;}  // Base Case

 mid = (low+high)/2;

 ms_helper(low, mid);

 ms_helper(mid+1, high);

 merge(myArray, low, mid, high); 

}
33



Merge Pseudocode
void merge(myArray, low, mid, high){

 merged = new int[high-low+1]; // or whatever type is in myArray

 l_next = low;

 r_next = high;

 m_next = 0;

 while (l_next <= mid && r_next <= high){

  if (myArray[l_next] <= myArray[r_next]){

   merged[m_next++] = myArray[l_next++];

  }

  else{

   merged[m_next++] = myArray[r_next++];

  } 

 }

 while (l_next <= mid){ merged[m_next++] = myArray[l_next++]; }

 while (r_next <= high){  merged[m_next++] = myArray[r_next++]; } 

 for(i=0; i<=merged.length; i++){ myArray[i+low] = merged[i];}

}



Analyzing Merge Sort
1. Identify time required to Divide and Combine

2. Identify all subproblems and their sizes

3. Use recurrence relation to express recursive running time

4. Solve and express running time asymptotically

• Divide: 0 comparisons 

• Conquer: recursively sort two lists of size 
𝑛

2
• Combine: 𝑛 comparisons
• Recurrence: 

𝑇 𝑛 = 0 + 𝑇
𝑛

2
+ 𝑇

𝑛

2
+ 𝑛 

𝑇(𝑛) = 2𝑇
𝑛

2
+ 𝑛 

35
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problem instance
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recursion



Properties of Merge Sort

• Worst Case Running time:
• Θ(𝑛 log 𝑛)

• In-Place?
• No!

• Adaptive?
• No!

• Stable?
• Yes! 

• As long as in a tie you always pick l_next



Quicksort

• Like Mergesort:
• Divide and conquer

• 𝑂(𝑛 log 𝑛) run time (kind of…)

• Unlike Mergesort:
• Divide step is the “hard” part

• Typically faster than Mergesort

38



Quicksort

Idea: pick a pivot element, recursively sort two sublists around that 
element

• Divide: select pivot element 𝑝, Partition(𝑝)

• Conquer: recursively sort left and right sublists

• Combine: Nothing!

39



Partition (Divide step)

Given: a list, a pivot 𝑝

40

8 5 7 3 12 10 1 2 4 9 6 11

Goal: All elements < 𝑝 on left, all > 𝑝 on right

Start: unordered list

5 7 3 1 2 4 6 8 12 10 9 11



Partition, Procedure

41

8 5 7 3 12 10 1 2 4 9 6 11

If Begin value <  𝑝, move Begin right

Else swap Begin value with End value, move End Left

Done when Begin = End

8 5 7 3 12 10 1 2 4 9 6 11

8 5 7 3 12 10 1 2 4 9 6 11

8 5 7 3 11 10 1 2 4 9 6 12



42

8 5 7 3 11 10 1 2 4 9 6 12

8 5 7 3 6 10 1 2 4 9 11 12

8 5 7 3 6 10 1 2 4 9 11 12

8 5 7 3 6 10 1 2 4 9 11 12

If Begin value <  𝑝, move Begin right

Else swap Begin value with End value, move End Left

Done when Begin = End

Partition, Procedure



43

8 5 7 3 6 4 1 2 10 9 11 12

Case 1: meet at element < 𝑝

 Swap 𝑝 with pointer position (2 in this case)

2 5 7 3 6 4 1 8 10 9 11 12

If Begin value <  𝑝, move Begin right

Else swap Begin value with End value, move End Left

Done when Begin = End

Partition, Procedure
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8 5 7 3 6 4 1 2 10 9 11 12

Case 2: meet at element > 𝑝

 Swap 𝑝 with value to the left (2 in this case)

2 5 7 3 6 4 1 8 10 9 11 12

If Begin value <  𝑝, move Begin right

Else swap Begin value with End value, move End Left

Done when Begin = End

Partition, Procedure



Partition Summary

1. Put 𝑝 at beginning of list

2. Put a pointer (Begin) just after 𝑝, and a pointer (End) at the end of 
the list

3. While Begin < End:
1. If Begin value <  𝑝, move Begin right

2. Else swap Begin value with End value, move End Left

4. If pointers meet at element < 𝑝: Swap 𝑝 with pointer position

5. Else If pointers meet at element > 𝑝: Swap 𝑝 with value to the left

45

Run time? 𝑂(𝑛)



Conquer

Recursively sort Left and Right sublists

46

2 5 7 3 6 4 1 8 10 9 11 12

All elements < 𝑝 All elements > 𝑝

Exactly where it belongs!



Quicksort Run Time (Best)

Then we divide in half each time

47

2 5 1 3 6 4 7 8 10 9 11 12

2 1 3 5 6 4 7 8 9 10 11 12

𝑇 𝑛 = 2𝑇
𝑛

2
+ 𝑛

If the pivot is always the median:

𝑇 𝑛 = 𝑂(𝑛 log 𝑛)



Quicksort Run Time (Worst)

Then we shorten by 1 each time

48

1 5 2 3 6 4 7 8 10 9 11 12

1 2 3 5 6 4 7 8 10 9 11 12

𝑇 𝑛 = 𝑇 𝑛 − 1 + 𝑛

If the pivot is always at the extreme:

𝑇 𝑛 = 𝑂(𝑛2)



Quicksort Run Time (Worst)

49

𝑇 𝑛 = 𝑇 𝑛 − 1 + 𝑛

𝑇 𝑛 = 𝑂(𝑛2)

𝑛

𝑛 − 1

…

1

𝑛 − 2

𝑛

𝑛 − 1

𝑛 − 2

1

𝑇 𝑛 = 1 + 2 + 3 + ⋯ + 𝑛

𝑇 𝑛 =
𝑛 𝑛 + 1

2



Quicksort on a (nearly) Sorted List

So we shorten by 1 each time

50

1 2 3 4 5 6 7 8 9 10 11 12

1 2 3 4 5 6 7 8 9 10 11 12

𝑇 𝑛 = 𝑇 𝑛 − 1 + 𝑛

First element always yields unbalanced pivot

𝑇 𝑛 = 𝑂(𝑛2)



Good Pivot

• What makes a good Pivot?
• Roughly even split between left and right

• Ideally: median

• There are ways to find the median in linear time, but it’s complicated 
and slow and you’re better off using mergesort

• In Practice:
• Pick a random value as a pivot

• Pick the middle of 3 random values as the pivot

51



Properties of Quick Sort

• Worst Case Running time:
• Θ(𝑛2)

• But Θ(𝑛 log 𝑛) average! And typically faster than mergesort!

• In-Place?
• ….Debatable

• Adaptive?
• No!

• Stable?
• No! 



Improving Running time

• Recall our definition of the sorting problem:
• Input:

• An array 𝐴 of items
• A comparison function for these items

• Given two items 𝑥 and 𝑦, we can determine whether 𝑥 < 𝑦, 𝑥 > 𝑦, or 𝑥 = 𝑦

• Output:
• A permutation of 𝐴 such that if 𝑖 ≤ 𝑗 then 𝐴 𝑖 ≤ 𝐴[𝑗]

• Under this definition, it is impossible to write an algorithm faster than 
𝑛 log 𝑛 asymptotically.

• Observation:
• Sometimes there might be ways to determine the position of values without 

comparisons!
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