CSE 332 Autumn 2024
Lecture 14: Sorting

Nathan Brunelle
http://www.cs.uw.edu/332

http://www.cs.uw.edu/332

Sorting

e Rearrangement of items into some defined sequence
* Usually: reordering a list from smallest to largest according to some metric

* Why sort things?
* Enable things like binary search
* It makes some algorithms faster
* Nicer for human algorithms too
* Data organization

More Formal Definition

* Input:
* An array A of items
* A comparison function for these items

* Given two items x and y, we can determine whetherx <y, x > y,orx =y
* Output:
* A permutation of A such thatif i < j then A[i] < A[j]
e Permutation: a sequence of the same items but perhaps in a different order

Sorting “Landscape”

* There is no singular best algorithm for sorting

* Some are faster, some are slower

* Some use more memory, some use less

* Some are super extra fast if your data matches particular assumptions
 Some have other special properties that make them valuable

* No sorting algorithm can have only all the “best” attributes

“Moving Day” Sorting Algorithm

11

12

13

14

15

Selection Sort

* |dea: Find the next smallest element, swap it into the
next index in the array

Already In Position

A

Already In Position

A

1 2 3 4 5 12 | 11

Selection Sort

* Swap the thing at index 0 with the smallest thing in the array
* Swap the thing at index 1 with the smallest thing after index O

* Swap the thing at index i with the smallest thing after indexi — 1

for (i=0; i<a.length; i++){

smallest = i;

Running Time:

for (j=i; j<a.length; j++){

}

temp = a[i];

if (a[jl<a[smallest]){ smallest=j;}

Worst Case: O(+)
Best Case: O(-)

ali] = a[smallest];
a[smallest] = a[i];

10

77 5 15 2 22 64 41 18 19 30 21 3 24 23

33

15

Insertion Sort

* |[dea: Maintain a sorted list prefix, extend that prefix
by “inserting” the next element

Sorted Prefix

Sorted Prefix

11

I—
N9
N
(@)}
[N

Insertion Sort

* If the items at index 0 and 1 are out of order, swap them
* Keep swapping the item at index 2 with the thing to its left as long as the left thing is larger

* Keep swapping the item at index i with the thing to its left as long as the left thing is larger

for (i=1; i<a.length; i++){

prev =i-1;

while(a[i] < a[prev] && prev > -1){
temp = ali];
ali] = a[prev];
alprev] = a[i];
I--;
prev--;

Running Time:
Worst Case: O(+)
Best Case: O(-)

10

77

15

22

64

41

18

19

30

21

24

23

33

10

11

12

13

14

15

Aside: Bubble Sort — we won’t cover it

"the bubble sort seems to have
nothing to recommend it, except a
catchy name and the fact that it leads
to some interesting theoretical
problems” —Donald Knuth, The Art of
Computer Programming

Heap Sort

* |dea: Build a maxHeap, repeatedly delete the max
element from the heap to build sorted list Right-to-Left

10 | 9 6 8 7 5 2 4 1 3

0 1 2 3 4 5 6 7 8 9

Max Heap
Property: Each
node is larger
than its children

Heap Sort
e Remove the Max element (i.e. the root) from the Heap:
replace with last element, call percolateDown(root)

Percolate Down(node): if node satisfies heap
7 3 property, done. Else swap with largest child and
repeat on that subtree

12

Heap Sort
e Remove the Max element (i.e. the root) from the Heap:
replace with last element, call percolateDown(root)

Percolate Down(node): if node satisfies heap
7 3 property, done. Else swap with largest child and
repeat on that subtree

13

Heap Sort
 Remove the Max element (i.e. the root) from the Heap:
replace with last element, call percolateDown(root)

Percolate Down(node): if node satisfies heap
7 3 property, done. Else swap with largest child and
repeat on that subtree

14

Heap Sort
e Remove the Max element (i.e. the root) from the Heap:
replace with last element, call percolateDown(root)

Percolate Down(node): if node satisfies heap
7 3 property, done. Else swap with largest child and
repeat on that subtree

15

Heap Sort

* Build a heap
* Call deleteMax
e Put that at the end of the array

myHeap = buildHeap(a); Running Time:
for (int i = a.length-1; i>=0; i--){
item = myHeap.deleteMax(); Worst Case: G)()

} ali] = item; Best Case: O(+)

“In Place” Sorting Algorithm

* A sorting algorithm which requires no extra data structures
* |dea: It sorts items just by swapping things in the same array given
* Definition: it only uses ©(1) extra space

e Selection sort: In Place!
* Insertion sort: In Place!

* Heap sort: Not In Place!
* But we can fix that!

In Place Heap Sort

* |dea: When “removing” an element from the heap, swap
it with the last item of the heap then “pretend” the heap
is one item shorter

10 | 9 6 8 7 5 2 4 1 3

Heap Sort
* |[dea: When “removing” an element from the heap,
swap it with the last item of the heap then “pretend”
the heap is one item shorter

7 5

Heap Sort
* |[dea: When “removing” an element from the heap,
swap it with the last item of the heap then “pretend”
the heap is one item shorter

9 8 6 4 7 5 2 3 1 | 10

Heap Sort
* |[dea: When “removing” an element from the heap,
swap it with the last item of the heap then “pretend”
the heap is one item shorter

7 5

Heap Sort
* |[dea: When “removing” an element from the heap,
swap it with the last item of the heap then “pretend”
the heap is one item shorter

1 8 6 4 7 5 2 3 9 | 10

Heap Sort
* |[dea: When “removing” an element from the heap,
swap it with the last item of the heap then “pretend”
the heap is one item shorter

7 5

Heap Sort
* |[dea: When “removing” an element from the heap,
swap it with the last item of the heap then “pretend”
the heap is one item shorter

3 8 6 4 7 5 2 8 9 | 10

In Place Heap Sort

* Build a heap using the same array (Floyd’s build heap algorithm works)
 Call deleteMax
e Put that at the end of the array

buildHeap(a); Running Time:

for (int i = a.length-1; i>=0; i--){
i Worst Case: O(+)
il Best Case: O(+)
a[0] = temp;

percolateDown(0);

}

Floyd’s buildHeap method

* Working towards the root, one row at a time, percolate down

buildHeap(){
for(int i = size; i>0; i--){
percolateDown(i);
}
}

Divide And Conquer Sorting

* Divide and Conquer:
* Recursive algorithm design technique

* Solve a large problem by breaking it up into smaller versions of the same
problem

* Base Case:
* |f the problem is “small” then solve directly and return

* Divide:
* Break the problem into subproblem(s), each smaller instances

* Conquer:
* Solve subproblem(s) recursively

* Combine:
* Use solutions to subproblems to solve original problem

28

Divide and Conquer Template Pseudocode

def my_DandC(problem){
// Base Case

if (problem.size() <= small_value){
return solve(problem); // directly solve (e.g., brute force)
}
// Divide
List subproblems = divide(problem);

// Conquer

solutions = new List();

for (sub : subproblems){
subsolution = my_DandC(sub);
solutions.add(subsolution);

}

// Combine

return combine(solutions);

Merge Sort

* Base Case:
* |f the list is of length 1 or O, it’s already sorted, so just return it

211914 1| Divide:

 Split the list into two “sublists” of (roughly) equal length

811114191 Conquer:

* Sort both lists recursively

e Combine:

* Merge sorted sublists into one sorted list

30

Merge Sort In Action!

Sort between indices low and high

5 8 2 9 4 1 3 7

low high
Base Case: if low == high then that range is already sorted!

. . low+high low+high .

Divide and Conguer: Otherwise call mergesort on ranges (low, 0W+—lg) and (0W+—l‘g + 1, hlgh)

i
5 8 2 9 4 1 3 7
low low + high 1 [ow + high high
I—+1

1 2

After Recursion: 2 5 3 9 1 3 4 7

low high

Merge (the combine part)

+ high :
fow + high | high

S
&

Q

Create a new array to merge into, and 3 pointers/indices:

* L _next: the smallest “unmerged” thing on the left

* R _next: the smallest “unmerged” thing on the right

* M _next: where the next smallest thing goes in the merged array

One-by-one: put the smallest of L next and R_next into M_next,
then advance both M_next and whichever of L/R was used.

Merge Sort Pseudocode

void mergesort(myArray){
ms_helper(myArray, 0, myArray.length());
}
void mshelper(myArray, low, high){
if (low == high){return;} // Base Case
mid = (low+high)/2;
ms_helper(low, mid);
ms_helper(mid+1, high);
merge(myArray, low, mid, high);

Merge Pseudocode

void merge(myArray, low, mid, high){
merged = new int[high-low+1]; // or whatever type is in myArray

| _next = low;
r_next = high;
m_next =0;

while (I_next <= mid && r_next <= high){
if (myArray[l_next] <= myArray[r_next]){
merged[m_next++] = myArray[l _next++];
}
else{
merged[m_next++] = myArray[r_next++];

}

while (I_next <= mid){ merged[m_next++] = myArray[l_next++]; }
while (r_next <= high){ merged[m_next++] = myArray[r_next++]; }
for(i=0; i<=merged.length; i++){ myArray[i+low] = merged]i];}

Analyzing Merge Sort

Identify time required to Divide and Combine

|dentify all subproblems and their sizes

Use recurrence relation to express recursive running time
Solve and express running time asymptotically

B whh e

* Divide: 0 comparisons
. . . n
* Conquer: recursively sort two lists of size >

* Combine: n comparisons
* Recurrence:

T(n)=0+T(§)+T(§)+n
T(n) =2T (%) +n

Red box represents a
problem instance

Blue value represents

e T(n) =27) +n
n " "\ = n comparisons / level
n/{\n)/z .
n/mzt % n/m4 % >10g2 n Ie\{els
Y N N AN ‘/:\A of recursion
T M1 111111]

log, n

T(n) = z n =nlog,n

=1 36

Properties of Merge Sort

* Worst Case Running time:
* O(nlogn)

* In-Place?
* Nol!

e Adaptive?
* No!

e Stable?

* Yes!
* Aslong asin a tie you always pick | next

Quicksort

* Like Mergesort:
* Divide and conquer
* O(nlogn) run time (kind of...)

* Unlike Mergesort:
* Divide step is the “hard” part
* Typically faster than Mergesort

Quicksort

ldea: pick a pivot element, recursively sort two sublists around that
element

* Divide: select pivot element p, Partition(p)
* Conquer: recursively sort left and right sublists
* Combine: Nothing!

39

Partition (Divide step)

Given: a list, a pivot p
Start: unordered

K

Ist

7

3

12

10

Goal: Al

elements

on left, all > p on right

5

7

3

1

2

JGEIEIREY

40

Partition, Procedure

If value < p, move right
Else swap value with End value, move End Left
Done when = End

4

1 2 4 9 6 | 11

U

1 2 4 9 6 | 11

4

1 2 4 9 6 | 11

‘H

Partition, Procedure

If value < p, move right
Else swap value with End value, move End Left
Done when = End

7 3&10 1 2 4

{

7 3 6 | 10 | 1 2 4

{

7 3 6 [10 | 1 2 4

7 3 Gﬁl 2 4

Partition, Procedure

If value < p, move right
Else swap value with End value, move End Left
Done when = End

Case 1: meet at element

Swap p with (2 in this case)

el

2 5 7 3 6 4 1

43

Partition, Procedure

If value < p, move right
Else swap value with End value, move End Left
Done when = End

Case 2: meet at element > p

Swap p with (2 in this case)

e[Tale

2 5 7 3 6 4 1

44

Partition Summary

Put p at beginning of list

2. Put a pointer () just after p, and a pointer (End) at the end of
the list

3. While < End:

1. |If value < p, move right

2. Else swap value with End value, move End Left
4. If pointers meet at element : Swap » with

5. Else If pointers meet at element > p: Swap p with

Run time? 0(n)

5

Conquer

2 5 7 3

|

All elements < p All elements > p

Recursively sort

Exactly where it belongs!

and Right sublists

46

Quicksort Run Time (Best)

If the pivot is always the median:

2

5

1

3

6

2

H

Then we divide in ha

6

d AR EIENEEY
AR EIEIE

4

f each time

T(n)=2T(E)+n

2

T(n) = 0(nlogn)

a7

Quicksort Run Time (Worst)

If the pivot is always at the extreme:

s felef7]e o] u]n

Then we shorten by 1 each time

Tm)=Tn—-1)+n

T(n) = 0(n%)

48

Quicksort Run Time (Worst)
Tm)=Tn—-1)+n

n—1
! . T(n)=142+3+-+n

n—2
. T'(n) = n(n2+ 1)

- T(n) = 0(n%)

Quicksort on a (nearly) Sorted List

First element always yields unbalanced pivot

s fefslef7]e o r]u]n

So we shorten by 1 each time

Tm)=Tn—-1)+n

T(n) = 0(n%)

50

Good Pivot

 What makes a good Pivot?
* Roughly even split between left and right
* ldeally: median

* There are ways to find the median in linear time, but it’s complicated
and slow and you’re better off using mergesort

* In Practice:
* Pick a random value as a pivot
* Pick the middle of 3 random values as the pivot

Properties of Quick Sort

* Worst Case Running time:
« O(n?)
* But O(nlogn) average! And typically faster than mergesort!
* In-Place?
Debatable
e Adaptive?
* No!
 Stable?
* No!

Improving Running time

* Recall our definition of the sorting problem:
* Input:
* An array A of items

* A comparison function for these items
* Given two items x and y, we can determine whetherx <y, x > y,orx =y

* Output:
A permutation of A such thatif i < j then A[i] < A[J]

* Under this definition, it is impossible to write an algorithm faster than
nlogn asymptotically.

e Observation:

* Sometimes there might be ways to determine the position of values without
comparisons!

	Slide 1: CSE 332 Autumn 2024 Lecture 14: Sorting
	Slide 2: Sorting
	Slide 3: More Formal Definition
	Slide 4: Sorting “Landscape”
	Slide 5: “Moving Day” Sorting Algorithm
	Slide 6: Selection Sort
	Slide 7: Selection Sort
	Slide 8: Insertion Sort
	Slide 9: Insertion Sort
	Slide 10: Aside: Bubble Sort – we won’t cover it
	Slide 11: Heap Sort
	Slide 12: Heap Sort
	Slide 13: Heap Sort
	Slide 14: Heap Sort
	Slide 15: Heap Sort
	Slide 16: Heap Sort
	Slide 17: “In Place” Sorting Algorithm
	Slide 18: In Place Heap Sort
	Slide 19: Heap Sort
	Slide 20: Heap Sort
	Slide 21: Heap Sort
	Slide 22: Heap Sort
	Slide 23: Heap Sort
	Slide 24: Heap Sort
	Slide 25: In Place Heap Sort
	Slide 26: Floyd’s buildHeap method
	Slide 27: Divide And Conquer Sorting
	Slide 28: Divide and Conquer
	Slide 29: Divide and Conquer Template Pseudocode
	Slide 30: Merge Sort
	Slide 31: Merge Sort In Action!
	Slide 32: Merge (the combine part)
	Slide 33: Merge Sort Pseudocode
	Slide 34: Merge Pseudocode
	Slide 35: Analyzing Merge Sort
	Slide 36
	Slide 37: Properties of Merge Sort
	Slide 38: Quicksort
	Slide 39: Quicksort
	Slide 40: Partition (Divide step)
	Slide 41: Partition, Procedure
	Slide 42
	Slide 43: Partition, Procedure
	Slide 44: Partition, Procedure
	Slide 45: Partition Summary
	Slide 46: Conquer
	Slide 47: Quicksort Run Time (Best)
	Slide 48: Quicksort Run Time (Worst)
	Slide 49: Quicksort Run Time (Worst)
	Slide 50: Quicksort on a (nearly) Sorted List
	Slide 51: Good Pivot
	Slide 52: Properties of Quick Sort
	Slide 53: Improving Running time

