CSE 332 Autumn 2024
Lecture 13: Hashing 3 & Sorting

Nathan Brunelle
http://www.cs.uw.edu/332

http://www.cs.uw.edu/332

Next topic: Hash Tables

Data Structure Time to find Time to delete

Unsorted Array O(n) O(n) O(n)
Unsorted Linked List O(n) O(n) O(n)
Sorted Array O(n) O(logn) O(n)
Sorted Linked List O(n) O(n) O(n)
Binary Search Tree O (height) O (height) O (height)
AVL Tree O(logn) O(logn) O(logn)
Hash Table (Worst case) O(n) O(n) O(n)
Hash Table (Expected and 01 01 01
amortized)(£ @ @ @

/—._5—_

Dictionary (Map) ADT

* Contents:
» Sets of key+value pairs

+Keys-must-be-comparable

* Operations:

* insert(key, value)
* Adds the (key,value) pair into the dictionary

 If the key already has a value, overwrite the old value
* Consequence: Keys cannot be repeated

 find(key)
* Returns the value associated with the given key

e delete(key)

 Remove the key (and its associated value)

Hash Tables

* |dea:
* Have a small array to store information

* Use a hash function to convert the key into an index
* Hash function should “scatter” the keys, behave as if it randomly assigned keys to indices
» Store key at the index given by the hash function

* Do something if two keys map to the same place (should be very rare)
* Collision resolution

Index Insert / find /
h(k) pbetweenO delete & value
and length-1

Key Object

Rehashing

e If your load factor A gets too large, copy everything over to a larger
hash table
* To do this: make a new, larger array

* Re-insert all items into the new hash table by reapplying the hash function
* We need to reapply the hash function because items should map to a different index

* New array should be “roughly” double the length (but probably still want it to
be prime)

* What does “too large” mean?
* For separate chaining, typically wewantA <2 & —

* For open a ressing, typica e wan
. | g y I yW W @(

Linear Probing: Insert Procedure

* Toinsert k, v
* Calculatei = h(k) % length
If table[i] is occupied then try (i + 1)% length
If that is occupied try (i + 2)% length
If that is occupied try (i + 3)% length

h(k) = k%10

2 ;?5\24 62 | 54

Linear Probing: Find

* To find key k
* Calculatei = h(k) % length
* If table|i] is occupied and does not contain k then look at (i + 1) % length
* If that is occupied and does not contain k then look at (i + 2) % length
* If that is occupied and does not contain k then look at (i + 3) % length
* Repeat until you either find k or else you reach an empty cell in the table

Linear Probing: Delete

 To delete key k, where h(k) =i

* Assume it is present
* Beginning at index i, probe until we find k (call this location index j)

* Mark j as empty (e.g. null), then continue probing while doing the
following until you find another empty index

* If you come across a key which hashes to a value < j then move that item to
index j and update j.

Linear Probing: Delete

e Option 1: Fill in with items that hashed to before the empty slot

* Option 2: “Tombstone” deletion. Leave a special object that indicates
an object was deleted from there

 The tombstone does not act as an open space when finding (so keep looking
after its reached)

* When inserting you can replace a tombstone with a new item
SR
Lok
vik,v

I
k,v k,

Ko

o 1 2 3 4 5 6 7 8 9

Downsides of Linear Probing
e

1 49 7 /
* What happens when A approaches 17
_— . e
e Get longer and longer contiguous blocks
~— —— T 7
* A collision is guaranteed to grow a block \fy\

* Larger blocks experience more collisions
* Feedback loop!

* What happens when A exceeds 17
* Impossible!
* You can’t insert more stuff

Quadratic Probing: Insert Procedure
* Toinsert k, v/_ 6 j¢ ﬂ
* Calculate i @ % Size
If table|i] is occupied then try (i u—_lz_)% size
If that is occupied try (i + 2%)% size
If that is occupied try m%% size
If that is occupied try (i + 4%)% size

~—————

Quadratic Probing: Example

"”,Szg‘ - o = — 2)
* 40
& ST
- R
* 47 KJ/ J/ i /
7
W 15153 [Ydl?0
O 1 2 3 4 5 6

Using Quadratic Probing

* If you probe tablesize times, you start repeating the same indices
/-_\

* If tablesize is prime and/A < Z then you’re guaranteed to find an
pen spot in at/mﬁ%bleﬂ/z probes

* Helps with the clustering problem of linear probing,)but does not help
Cif many things hash to the same value

(Double Hashing: Insert Procedure

() ==
* Given h and g are both good hash functions () 6 /\')
* Toinsert k, v d 0[=S

. CaIcuIate.l.=L£lg_c) .% size - | #(%u

e If table[i] is occupied then try (l + g(k)) % size 7 N Z
If that is occupied try (i + 2 % size

If that is occupied try (i 3-9(k))% size

If that is occupied try (i +4-g)% size

Sorting

e Rearrangement of items into some defined sequence
* Usually: reordering a list from smallest to largest according to some metric

* Why sort things?
* Enable things like binary search
* It makes some algorithms faster
* Nicer for human algorithms too
* Data organization

More Formal Definition

* Input:
* An array A of items
* A comparison function for these items

* Given two items x and y, we can determine whetherx <y, x > y,orx =y
* Output:
* A permutation of A such thatif i < j then A[i] < A[j]
e Permutation: a sequence of the same items but perhaps in a different order

Sorting “Landscape”

* There is no singular best algorithm for sorting

* Some are faster, some are slower

* Some use more memory, some use less

* Some are super extra fast if your data matches particular assumptions
 Some have other special properties that make them valuable

* No sorting algorithm can have only all the “best” attributes

“Moving Day” Sorting Algorithm

11

12

13

14

15

Selection Sort

* |dea: Find the next smallest element, swap it into the

next index in the array

Already In Position

A

Already In Position

A

12

11

1 2 3 4 5

12

11

19

Selection Sort

* Swap the thing at index 0 with the smallest thing in the array
* Swap the thing at index 1 with the smallest thing after index O

* Swap the thing at index i with the smallest thing after indexi — 1

for (i=0; i<a.length; i++){

smallest = i;

Running Time:

for (j=i; j<a.length; j++){

}

temp = a[i];

if (a[jl<a[smallest]){ smallest=j;}

Worst Case: O(+)
Best Case: O(-)

ali] = a[smallest];
a[smallest] = a[i];

10

77 5 15 2 22 64 41 18 19 30 21 3 24 23

33

15

Insertion Sort

* |[dea: Maintain a sorted list prefix, extend that prefix

by “inserting” the next element

Sorted Prefix

Sorted Prefix

I—
N

2 11
2 11
2 11

11

21

Insertion Sort

* If the items at index 0 and 1 are out of order, swap them
* Keep swapping the item at index 2 with the thing to its left as long as the left thing is larger

* Keep swapping the item at index i with the thing to its left as long as the left thing is larger

for (i=1; i<a.length; i++){

prev =i-1;

while(a[i] < a[prev] && prev > -1){
temp = ali];
ali] = a[prev];
alprev] = a[i];
I--;
prev--;

Running Time:
Worst Case: O(+)
Best Case: O(-)

10

77

15

22

64

41

18

19

30

21

24

23

33

10

11

12

13

14

15

Aside: Bubble Sort — we won’t cover it

"the bubble sort seems to have
nothing to recommend it, except a
catchy name and the fact that it leads
to some interesting theoretical
problems” —Donald Knuth, The Art of
Computer Programming

Heap Sort

* |dea: Build a maxHeap, repeatedly delete the max
element from the heap to build sorted list Right-to-Left

10 | 9 6 8 7 5 2 4 1 3

0 1 2 3 4 5 6 7 8 9

Max Heap
Property: Each
node is larger
than its children

Heap Sort
e Remove the Max element (i.e. the root) from the Heap:
replace with last element, call percolateDown(root)

Percolate Down(node): if node satisfies heap
7 3 property, done. Else swap with largest child and
repeat on that subtree

25

Heap Sort
e Remove the Max element (i.e. the root) from the Heap:
replace with last element, call percolateDown(root)

Percolate Down(node): if node satisfies heap
7 3 property, done. Else swap with largest child and
repeat on that subtree

26

Heap Sort
e Remove the Max element (i.e. the root) from the Heap:
replace with last element, call percolateDown(root)

Percolate Down(node): if node satisfies heap
7 3 property, done. Else swap with largest child and
repeat on that subtree

27

Heap Sort
e Remove the Max element (i.e. the root) from the Heap:
replace with last element, call percolateDown(root)

Percolate Down(node): if node satisfies heap
7 3 property, done. Else swap with largest child and
repeat on that subtree

28

Heap Sort

* Build a heap
* Call deleteMax
e Put that at the end of the array

myHeap = buildHeap(a); Running Time:
for (int i = a.length-1; i>=0; i--){
item = myHeap.deleteMax(); Worst Case: G)()

} ali] = item; Best Case: O(+)

“In Place” Sorting Algorithm

* A sorting algorithm which requires no extra data structures
* |dea: It sorts items just by swapping things in the same array given
* Definition: it only uses ©(1) extra space

e Selection sort: In Place!
* Insertion sort: In Place!

* Heap sort: Not In Place!
* But we can fix that!

In Place Heap Sort

* |dea: When “removing” an element from the heap, swap
it with the last item of the heap then “pretend” the heap
is one item shorter

10 | 9 6 8 7 5 2 4 1 3

Heap Sort
* |[dea: When “removing” an element from the heap,
swap it with the last item of the heap then “pretend”
the heap is one item shorter

7 5

Heap Sort
* |[dea: When “removing” an element from the heap,
swap it with the last item of the heap then “pretend”
the heap is one item shorter

9 8 6 4 7 5 2 3 1 | 10

Heap Sort
* |[dea: When “removing” an element from the heap,
swap it with the last item of the heap then “pretend”
the heap is one item shorter

7 5

Heap Sort
* |[dea: When “removing” an element from the heap,
swap it with the last item of the heap then “pretend”
the heap is one item shorter

1 8 6 4 7 5 2 3 9 | 10

Heap Sort
* |[dea: When “removing” an element from the heap,
swap it with the last item of the heap then “pretend”
the heap is one item shorter

7 5

Heap Sort
* |[dea: When “removing” an element from the heap,
swap it with the last item of the heap then “pretend”
the heap is one item shorter

3 8 6 4 7 5 2 8 9 | 10

In Place Heap Sort

* Build a heap using the same array (Floyd’s build heap algorithm works)
 Call deleteMax
e Put that at the end of the array

buildHeap(a); Running Time:

for (int i = a.length-1; i>=0; i--){
i Worst Case: O(+)
il Best Case: O(+)
a[0] = temp;

percolateDown(0);

}

Floyd’s buildHeap method

* Working towards the root, one row at a time, percolate down

buildHeap(){
for(int i = size; i>0; i--){
percolateDown(i);
}
}

	Slide 1: CSE 332 Autumn 2024 Lecture 13: Hashing 3 & Sorting
	Slide 2: Next topic: Hash Tables
	Slide 3: Dictionary (Map) ADT
	Slide 4: Hash Tables
	Slide 5: Rehashing
	Slide 6: Linear Probing: Insert Procedure
	Slide 7: Linear Probing: Find
	Slide 8: Linear Probing: Delete
	Slide 9: Linear Probing: Delete
	Slide 10: Downsides of Linear Probing
	Slide 11: Quadratic Probing: Insert Procedure
	Slide 12: Quadratic Probing: Example
	Slide 13: Using Quadratic Probing
	Slide 14: Double Hashing: Insert Procedure
	Slide 15: Sorting
	Slide 16: More Formal Definition
	Slide 17: Sorting “Landscape”
	Slide 18: “Moving Day” Sorting Algorithm
	Slide 19: Selection Sort
	Slide 20: Selection Sort
	Slide 21: Insertion Sort
	Slide 22: Insertion Sort
	Slide 23: Aside: Bubble Sort – we won’t cover it
	Slide 24: Heap Sort
	Slide 25: Heap Sort
	Slide 26: Heap Sort
	Slide 27: Heap Sort
	Slide 28: Heap Sort
	Slide 29: Heap Sort
	Slide 30: “In Place” Sorting Algorithm
	Slide 31: In Place Heap Sort
	Slide 32: Heap Sort
	Slide 33: Heap Sort
	Slide 34: Heap Sort
	Slide 35: Heap Sort
	Slide 36: Heap Sort
	Slide 37: Heap Sort
	Slide 38: In Place Heap Sort
	Slide 39: Floyd’s buildHeap method

