CSE 332 Autumn 2024 Lecture 13: Hashing 3

Nathan Brunelle

http://www.cs.uw.edu/332

Next topic: Hash Tables

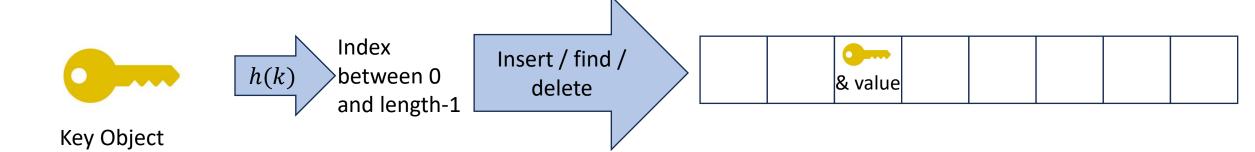
Data Structure	Time to insert	Time to find	Time to delete			
Unsorted Array	$\Theta(n)$	$\Theta(n)$	$\Theta(n)$			
Unsorted Linked List	$\Theta(n)$	$\Theta(n)$	$\Theta(n)$			
Sorted Array	$\Theta(n)$	$\Theta(\log n)$	$\Theta(n)$			
Sorted Linked List	$\Theta(n)$	$\Theta(n)$	$\Theta(n)$			
Binary Search Tree	Θ(height)	Θ(height)	Θ(height)			
AVL Tree	$\Theta(\log n)$	$\Theta(\log n)$	$\Theta(\log n)$			
Hash Table (Worst case)	$\Theta(n)$	$\Theta(n)$	$\Theta(n)$			
Hash Table (Expected and amortized)	Θ(1)	Θ(1)	Θ(1)			

Dictionary (Map) ADT

- Contents:
 - Sets of key+value pairs
 - Keys must be comparable
- Operations:
 - insert(key, value)
 - Adds the (key,value) pair into the dictionary
 - If the key already has a value, overwrite the old value
 - Consequence: Keys cannot be repeated
 - find(key)
 - Returns the value associated with the given key
 - delete(key)
 - Remove the key (and its associated value)

Hash Tables

- Idea:
 - Have a small array to store information
 - Use a **hash function** to convert the key into an index
 - Hash function should "scatter" the keys, behave as if it randomly assigned keys to indices
 - Store key at the index given by the hash function
 - Do something if two keys map to the same place (should be very rare)
 - Collision resolution

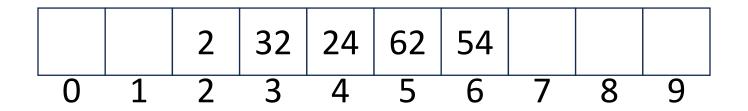


Rehashing

- If your load factor λ gets too large, copy everything over to a larger hash table
 - To do this: make a new, larger array
 - Re-insert all items into the new hash table by reapplying the hash function
 - We need to reapply the hash function because items should map to a different index
 - New array should be "roughly" double the length (but probably still want it to be prime)
- What does "too large" mean?
 - For separate chaining, typically we want $\lambda < 2$
 - For open addressing, typically we want $\lambda < \frac{1}{2}$

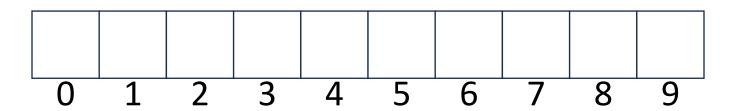
Linear Probing: Insert Procedure

- To insert k, v
 - Calculate i = h(k) % length
 - If table[i] is occupied then try (i + 1)% length
 - If that is occupied try (i + 2)% length
 - If that is occupied try (i + 3)% length
 - ...
 - h(k) = k%10



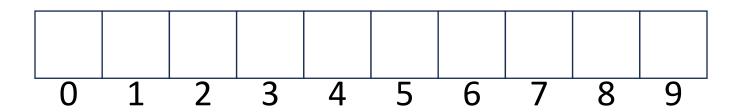
Linear Probing: Find

- To find key k
 - Calculate i = h(k) % length
 - If table[i] is occupied and does not contain k then look at (i + 1) % length
 - If that is occupied and does not contain k then look at (i+2) % length
 - If that is occupied and does not contain k then look at (i + 3) % length
 - ullet Repeat until you either find k or else you reach an empty cell in the table



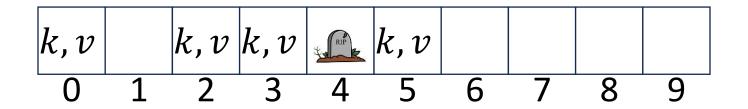
Linear Probing: Delete

- To delete key k, where h(k) = i
 - Assume it is present
- Beginning at index i, probe until we find k (call this location index j)
- Mark *j* as empty (e.g. null), then continue probing while doing the following until you find another empty index
 - If you come across a key which hashes to a value ≤ j then move that item to index j and update j.



Linear Probing: Delete

- Option 1: Fill in with items that hashed to before the empty slot
- Option 2: "Tombstone" deletion. Leave a special object that indicates an object was deleted from there
 - The tombstone does not act as an open space when finding (so keep looking after its reached)
 - When inserting you can replace a tombstone with a new item



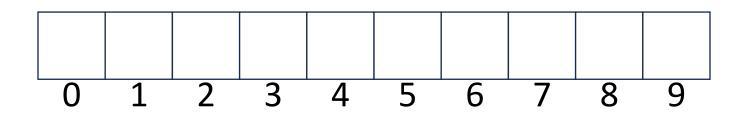
Downsides of Linear Probing

- What happens when λ approaches 1?
 - Get longer and longer contiguous blocks
 - A collision is guaranteed to grow a block
 - Larger blocks experience more collisions
 - Feedback loop!
- What happens when λ exceeds 1?
 - Impossible!
 - You can't insert more stuff

Quadratic Probing: Insert Procedure

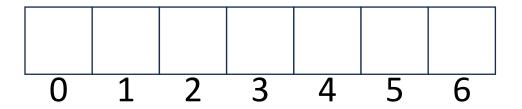
- To insert k, v
 - Calculate i = h(k) % size
 - If table[i] is occupied then try $(i + 1^2)\%$ size
 - If that is occupied try $(i + 2^2)\%$ size
 - If that is occupied try $(i + 3^2)\%$ size
 - If that is occupied try $(i + 4^2)\%$ size

• ...



Quadratic Probing: Example

- Insert:
 - 76
 - 40
 - 48
 - 5
 - 55
 - 47



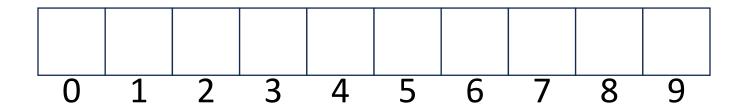
Using Quadratic Probing

- If you probe tablesize times, you start repeating the same indices
- If tablesize is prime and $\lambda < \frac{1}{2}$ then you're guaranteed to find an open spot in at most tablesize/2 probes

 Helps with the clustering problem of linear probing, but does not help if many things hash to the same value

Double Hashing: Insert Procedure

- Given h and g are both good hash functions
- To insert k, v
 - Calculate i = h(k) % size
 - If table[i] is occupied then try (i + g(k)) % size
 - If that is occupied try $(i + 2 \cdot g(k))\%$ size
 - If that is occupied try $(i + 3 \cdot g(k))\%$ size
 - If that is occupied try $(i + 4 \cdot g(k))\%$ size
 - ...



Sorting

- Rearrangement of items into some defined sequence
 - Usually: reordering a list from smallest to largest according to some metric
- Why sort things?

More Formal Definition

• Input:

- An array *A* of items
- A comparison function for these items
 - Given two items x and y, we can determine whether x < y, x > y, or x = y

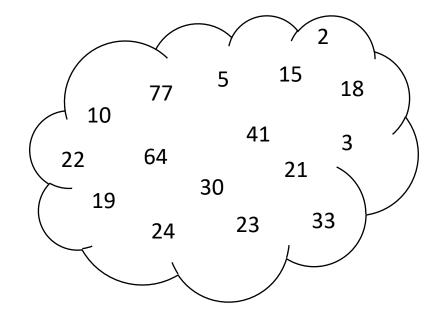
• Output:

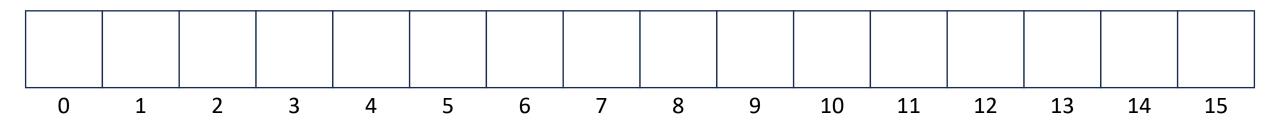
- A permutation of A such that if $i \leq j$ then $A[i] \leq A[j]$
- Permutation: a sequence of the same items but perhaps in a different order

Sorting "Landscape"

- There is no singular best algorithm for sorting
- Some are faster, some are slower
- Some use more memory, some use less
- Some are super extra fast if your data matches particular assumptions
- Some have other special properties that make them valuable
- No sorting algorithm can have only all the "best" attributes

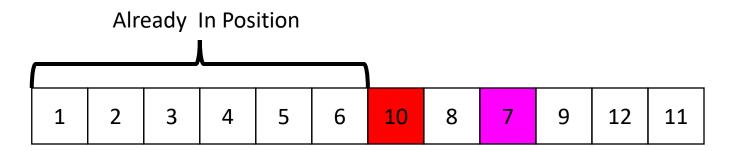
"Moving Day" Sorting Algorithm

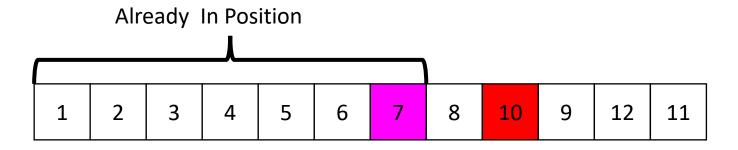




Selection Sort

 Idea: Find the next smallest element, swap it into the next index in the array





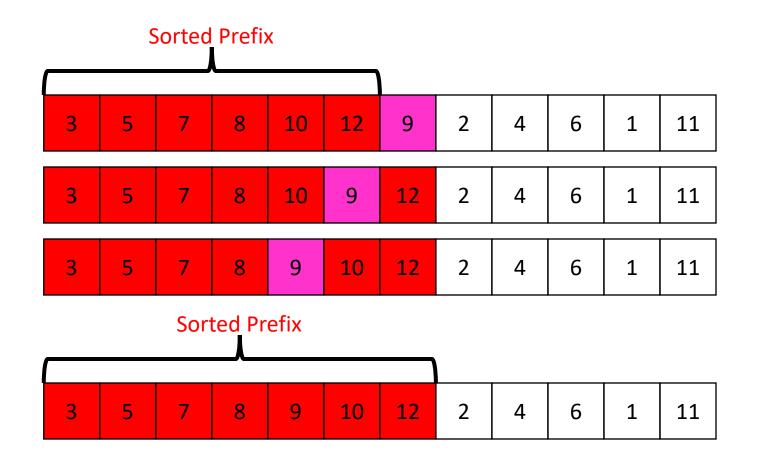
Selection Sort

- Swap the thing at index 0 with the smallest thing in the array
- Swap the thing at index 1 with the smallest thing after index 0
- ..
- Swap the thing at index i with the smallest thing after index i-1

10	77	5	15	2	22	64	41	18	19	30	21	3	24	23	33
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15

Insertion Sort

 Idea: Maintain a sorted list prefix, extend that prefix by "inserting" the next element



Insertion Sort

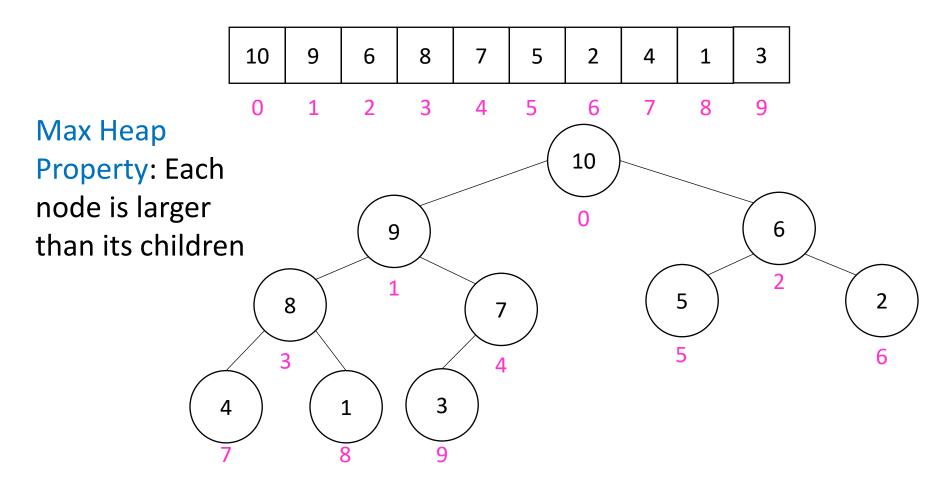
- ullet If the items at index 0 and 1 are out of order, swap them
- Keep swapping the item at index 2 with the thing to its left as long as the left thing is larger
- ..
- Keep swapping the item at index i with the thing to its left as long as the left thing is larger

10	77	5	15	2	22	64	41	18	19	30	21	3	24	23	33
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15

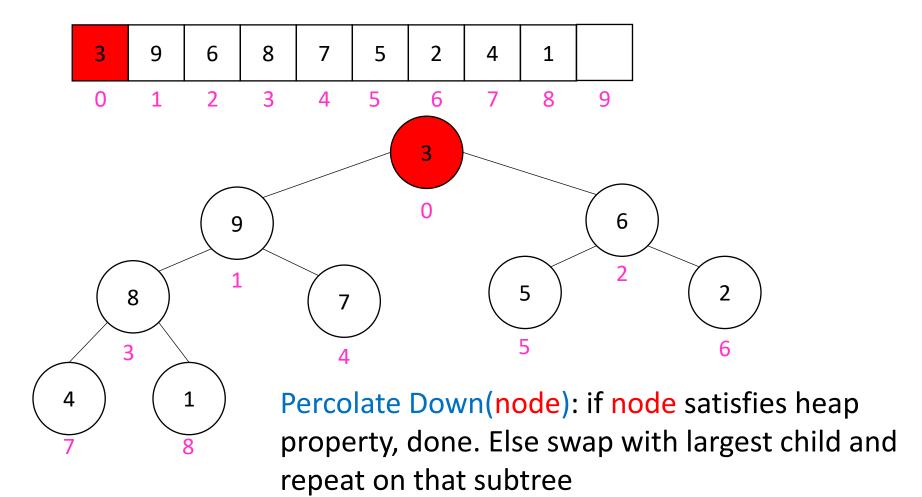
Aside: Bubble Sort – we won't cover it

"the bubble sort seems to have nothing to recommend it, except a catchy name and the fact that it leads to some interesting theoretical problems" –Donald Knuth, The Art of Computer Programming

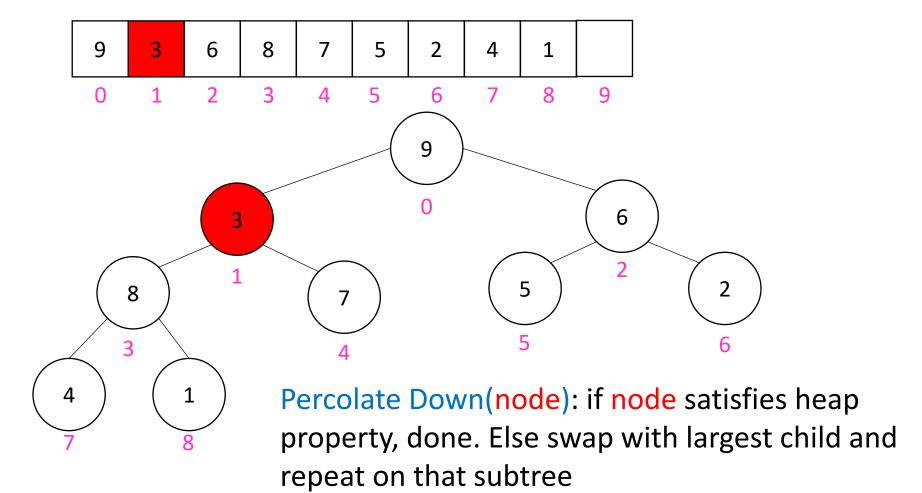
• Idea: Build a maxHeap, repeatedly delete the max element from the heap to build sorted list Right-to-Left



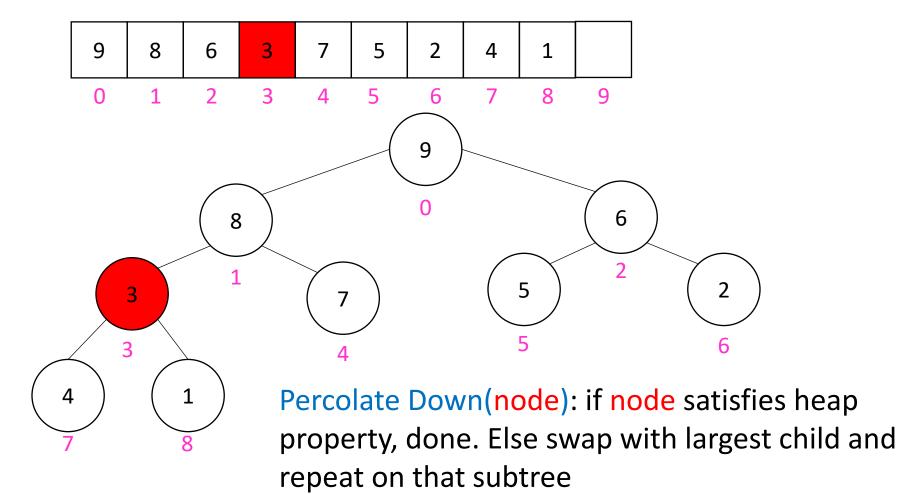
 Remove the Max element (i.e. the root) from the Heap: replace with last element, call percolateDown(root)



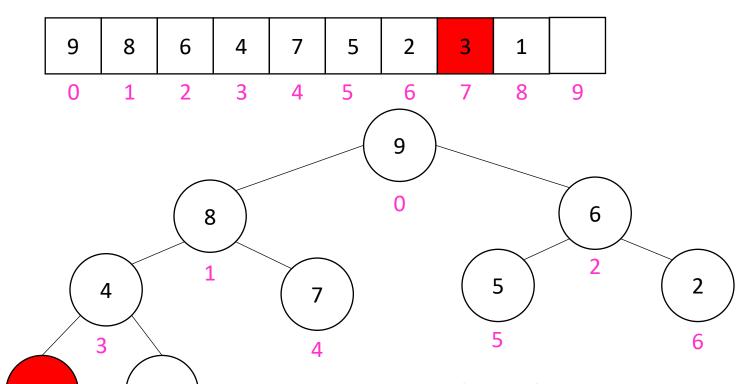
 Remove the Max element (i.e. the root) from the Heap: replace with last element, call percolateDown(root)



 Remove the Max element (i.e. the root) from the Heap: replace with last element, call percolateDown(root)



 Remove the Max element (i.e. the root) from the Heap: replace with last element, call percolateDown(root)



Percolate Down(node): if node satisfies heap property, done. Else swap with largest child and repeat on that subtree

- Build a heap
- Call deleteMax
- Put that at the end of the array

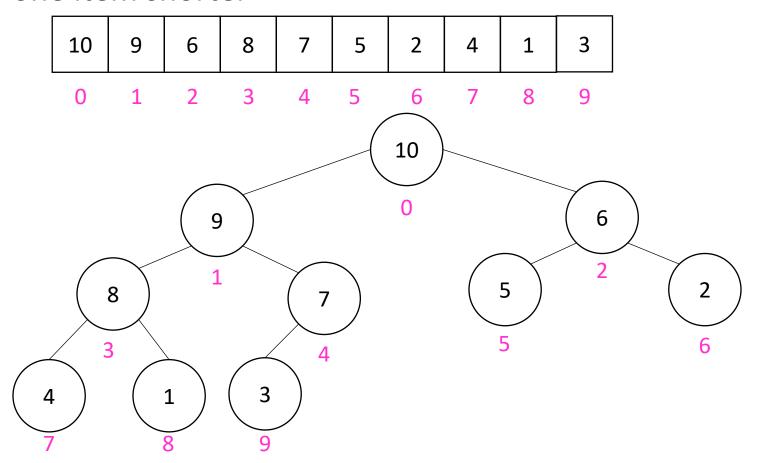
```
\begin{array}{ll} \text{myHeap = buildHeap(a);} \\ \text{for (int i = a.length-1; i>=0; i--)} \\ \text{item = myHeap.deleteMax();} \\ \text{a[i] = item;} \\ \end{array} \\ \begin{array}{ll} \text{Running Time:} \\ \text{Worst Case: } \Theta(\cdot) \\ \text{Best Case: } \Theta(\cdot) \end{array}
```

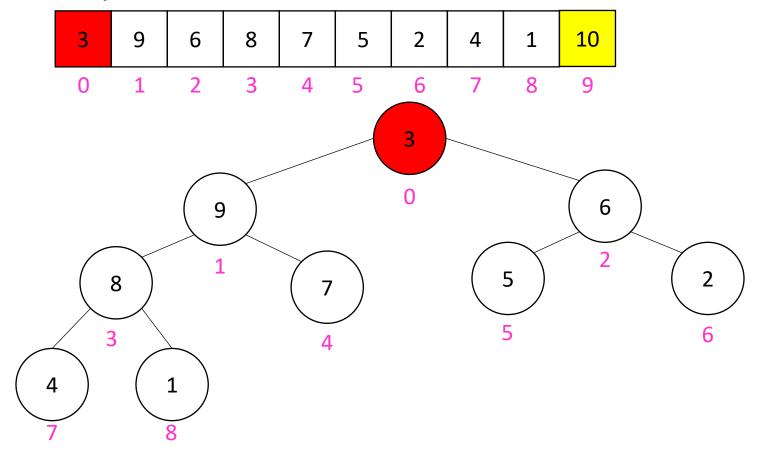
"In Place" Sorting Algorithm

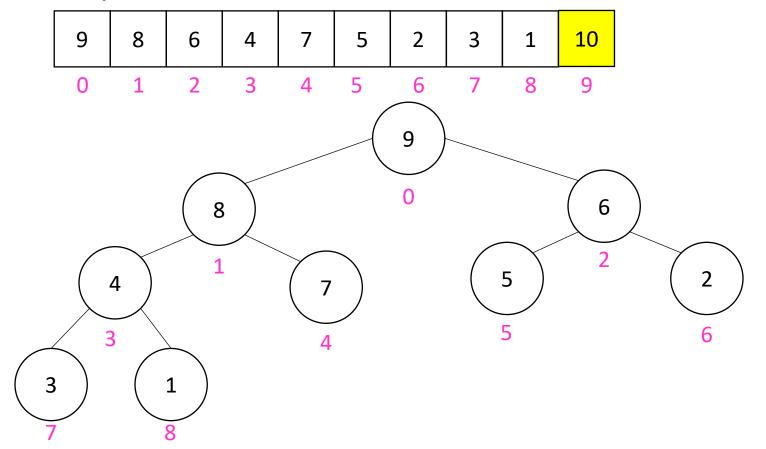
- A sorting algorithm which requires no extra data structures
- Idea: It sorts items just by swapping things in the same array given
- Definition: it only uses $\Theta(1)$ extra space

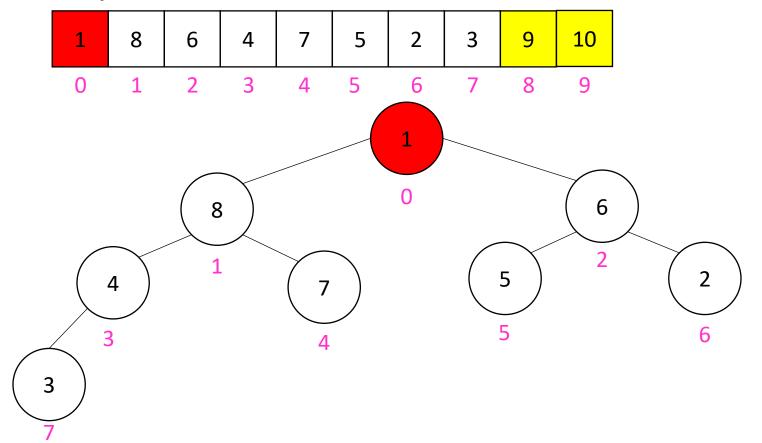
- Selection sort: In Place!
- Insertion sort: In Place!
- Heap sort: Not In Place!
 - But we can fix that!

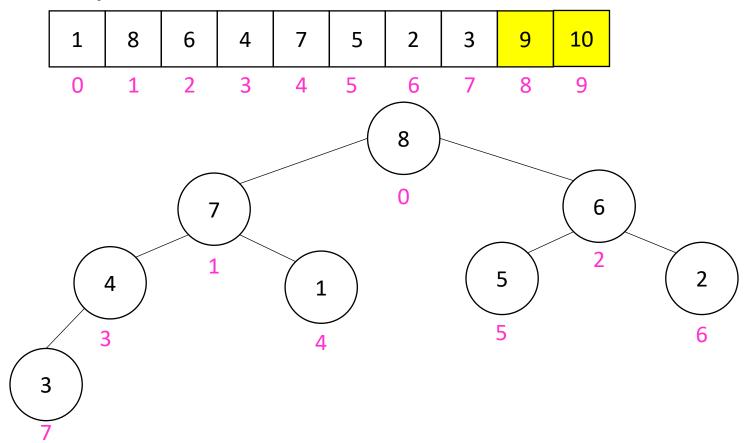
In Place Heap Sort

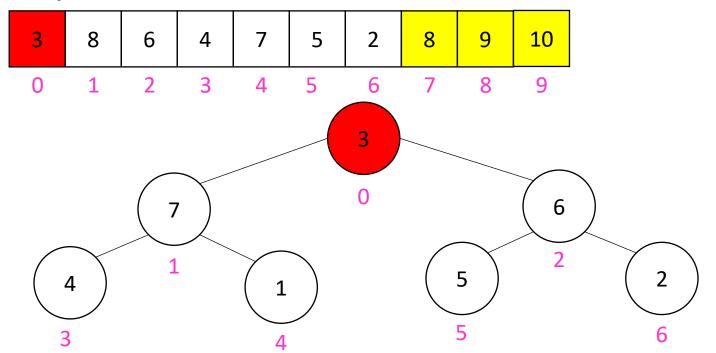


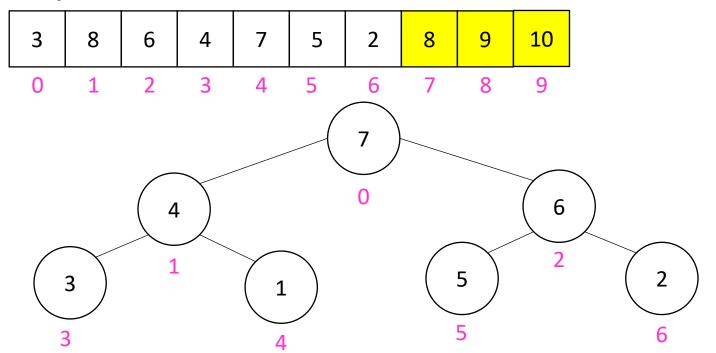












In Place Heap Sort

- Build a heap using the same array (Floyd's build heap algorithm works)
- Call deleteMax
- Put that at the end of the array

```
buildHeap(a);
for (int i = a.length-1; i>=0; i--){
    temp=a[i]
    a[i] = a[0];
    a[0] = temp;
    percolateDown(0);
```

Running Time:

Worst Case: $\Theta(\cdot)$

Best Case: $\Theta(\cdot)$

Floyd's buildHeap method

Working towards the root, one row at a time, percolate down

```
buildHeap(){
  for(int i = size; i>0; i--){
    percolateDown(i);
  }
}
```