
CSE 332 Autumn 2024
Lecture 12: hashing

Nathan Brunelle

http://www.cs.uw.edu/332

http://www.cs.uw.edu/332

Next topic: Hash Tables

Data Structure Time to insert Time to find Time to delete

Unsorted Array Θ(𝑛) Θ(𝑛) Θ(𝑛)

Unsorted Linked List Θ(𝑛) Θ(𝑛) Θ(𝑛)

Sorted Array Θ 𝑛 Θ(log 𝑛) Θ(𝑛)

Sorted Linked List Θ 𝑛 Θ 𝑛 Θ 𝑛

Binary Search Tree Θ height Θ height Θ height

AVL Tree Θ(log 𝑛) Θ(log 𝑛) Θ(log 𝑛)

Hash Table (Worst case) Θ(𝑛) Θ(𝑛) Θ(𝑛)

Hash Table (Average) Θ 1 Θ 1 Θ 1

Dictionary (Map) ADT

• Contents:
• Sets of key+value pairs
• Keys must be comparable

• Operations:
• insert(key, value)

• Adds the (key,value) pair into the dictionary
• If the key already has a value, overwrite the old value

• Consequence: Keys cannot be repeated

• find(key)
• Returns the value associated with the given key

• delete(key)
• Remove the key (and its associated value)

Hash Tables

• Idea:
• Have a small array to store information

• Use a hash function to convert the key into an index
• Hash function should “scatter” the keys, behave as if it randomly assigned keys to indices

• Store key at the index given by the hash function

• Do something if two keys map to the same place (should be very rare)
• Collision resolution

ℎ(𝑘)

Key Object

Index
between 0
and length-1

Insert / find /
delete & value

Properties of a “Good” Hash

• Definition: A hash function maps objects to integers

• Should be very efficient
• Time to calculate the hash should be negligible

• Should “randomly” scatter objects
• Even similar objects should hash to arbitrarily different values

• Should use the entire table
• There should not be any indices in the table that nothing can hash to
• Picking a table size that is prime helps with this

• Should use things needed to “identify” the object
• Use only fields you would check for a .equals method be included in calculating the hash

• fields used for hashing ⊆ fields used for . equals

• More fields typically leads to fewer collisions, but less efficient calculation

Collision Resolution

• A Collision occurs when we want to insert something into an already-
occupied position in the hash table

• 2 main strategies:
• Separate Chaining

• Use a secondary data structure to contain the items
• E.g. each index in the hash table is itself a linked list

• Open Addressing
• Use a different spot in the table instead

• Linear Probing

• Quadratic Probing

• Double Hashing

0 1 2 3 4 5 6 7 8 9

Separate Chaining Insert

• To insert 𝑘, 𝑣:
• Compute the index using 𝑖 = ℎ 𝑘 % 𝑙𝑒𝑛𝑔𝑡ℎ

• Add the key-value pair to the data structure at 𝑡𝑎𝑏𝑙𝑒 𝑖

0 1 2 3 4 5 6 7 8 9

𝑘, 𝑣 𝑘, 𝑣

𝑘, 𝑣

Separate Chaining Find

• To find 𝑘:
• Compute the index using 𝑖 = ℎ 𝑘 % 𝑙𝑒𝑛𝑔𝑡ℎ

• Call find with the key on the data structure at 𝑡𝑎𝑏𝑙𝑒 𝑖

0 1 2 3 4 5 6 7 8 9

𝑘, 𝑣 𝑘, 𝑣

𝑘, 𝑣

Separate Chaining Delete

• To delete 𝑘:
• Compute the index using 𝑖 = ℎ 𝑘 % 𝑙𝑒𝑛𝑔𝑡ℎ

• Call delete with the key on the data structure at 𝑡𝑎𝑏𝑙𝑒 𝑖

0 1 2 3 4 5 6 7 8 9

𝑘, 𝑣 𝑘, 𝑣

𝑘, 𝑣

Formal Running Time Analysis

• The load factor of a hash table represents the average number of items per
“bucket”
• 𝜆 =

𝑛

𝑙𝑒𝑛𝑔𝑡ℎ

• Assume we have a hash table that uses a linked-list for separate chaining
• What is the expected number of comparisons needed in an unsuccessful find?

• Procedure: Apply the hash function to the given key. This provides an index. Next, do a find
on the linked list found at that index.
• Time to run the hash function (small) + time to do a find on the LL, which is 𝜆

• What is the expected number of comparisons needed in a successful find?

•
𝜆

2

• How can we make the expected running time Θ(1)?
• Right now: Θ(𝜆)
• 𝜆 ≤ 𝑐 meaning 𝑙𝑒𝑛𝑔𝑡ℎ ≤ 𝑐 ⋅ 𝑛

Formal Running Time Analysis

• The load factor of a hash table represents the average number of items per
“bucket”
• 𝜆 =

𝑛

𝑙𝑒𝑛𝑔𝑡ℎ

• Assume we have a hash table that uses a linked-list for separate chaining
• What is the expected number of comparisons needed in an unsuccessful find?

• Will hash to an index, then compare to all items in that separate chain
• 𝜆

• What is the expected number of comparisons needed in a successful find?
• Will hash to an index, then compare to half of the items in that separate chain.

•
𝜆

2

• How can we make the expected running time Θ(1)?
• Make 𝑙𝑒𝑛𝑔𝑡ℎ ≤ 𝑐 ⋅ 𝑛 so that 𝜆 ≤ 𝑐

Rehashing

• If your load factor 𝜆 gets too large, copy everything over to a larger
hash table
• To do this: make a new, larger array

• Re-insert all items into the new hash table by reapplying the hash function
• We need to reapply the hash function because items should map to a different index

• New array should be “roughly” double the length (but probably still want it to
be prime)

• What does “too large” mean?
• For separate chaining, typically we want 𝜆 < 2

• For open addressing, typically we want 𝜆 <
1

2

Hash Tables Running Time

Data Structure Time to insert Time to find Time to delete

Unsorted Array Θ(𝑛) Θ(𝑛) Θ(𝑛)

Unsorted Linked List Θ(𝑛) Θ(𝑛) Θ(𝑛)

Sorted Array Θ 𝑛 Θ(log 𝑛) Θ(𝑛)

Sorted Linked List Θ 𝑛 Θ 𝑛 Θ 𝑛

Binary Search Tree Θ height Θ height Θ height

AVL Tree Θ(log 𝑛) Θ(log 𝑛) Θ(log 𝑛)

Hash Table (Worst case) Θ(𝑛) Θ(𝑛) Θ(𝑛)

Hash Table (Expected and
Amortized)

Θ 1 Θ 1 Θ 1

Load Factor?

0 1 2 3 4 5 6 7 8 9

𝑘, 𝑣 𝑘, 𝑣

𝑘, 𝑣

Load Factor?

0 1 2 3 4 5 6 7 8 9

𝑘, 𝑣 𝑘, 𝑣

𝑘, 𝑣

𝑘, 𝑣

𝑘, 𝑣

𝑘, 𝑣

𝑘, 𝑣

𝑘, 𝑣

Load Factor?

0 1 2 3 4 5 6 7 8 9

𝑘, 𝑣 𝑘, 𝑣

𝑘, 𝑣

𝑘, 𝑣

𝑘, 𝑣

𝑘, 𝑣

𝑘, 𝑣

𝑘, 𝑣

𝑘, 𝑣

𝑘, 𝑣 𝑘, 𝑣𝑘, 𝑣

𝑘, 𝑣

𝑘, 𝑣

𝑘, 𝑣

Collision Resolution: Linear Probing

• When there’s a collision, use the next open space in the table

0 1 2 3 4 5 6 7 8 9

Linear Probing: Insert Procedure

• To insert 𝑘, 𝑣
• Calculate 𝑖 = ℎ 𝑘 % 𝑙𝑒𝑛𝑔𝑡ℎ

• If 𝑡𝑎𝑏𝑙𝑒[𝑖] is occupied then try 𝑖 + 1 % 𝑙𝑒𝑛𝑔𝑡ℎ

• If that is occupied try 𝑖 + 2 % 𝑙𝑒𝑛𝑔𝑡ℎ

• If that is occupied try 𝑖 + 3 % 𝑙𝑒𝑛𝑔𝑡ℎ

• …

0 1 2 3 4 5 6 7 8 9

Linear Probing: Find

0 1 2 3 4 5 6 7 8 9

Linear Probing: Find

• To find key 𝑘
• Calculate 𝑖 = ℎ 𝑘 % 𝑙𝑒𝑛𝑔𝑡ℎ

• If 𝑡𝑎𝑏𝑙𝑒 𝑖 is occupied and does not contain 𝑘 then look at 𝑖 + 1 % 𝑙𝑒𝑛𝑔𝑡ℎ

• If that is occupied and does not contain 𝑘 then look at 𝑖 + 2 % 𝑙𝑒𝑛𝑔𝑡ℎ

• If that is occupied and does not contain 𝑘 then look at 𝑖 + 3 % 𝑙𝑒𝑛𝑔𝑡ℎ

• Repeat until you either find 𝑘 or else you reach an empty cell in the table

0 1 2 3 4 5 6 7 8 9

Linear Probing: Delete

• Suppose A, B, C, D, and E all hashed to 3

• Now let’s delete B

A B C D E

0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9

Before:

After:

Linear Probing: Delete

• Suppose A, B, and E all hashed to 3, and C and D hashed to 5

• Now let’s delete B

A B C D E

0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9

Before:

After:

Linear Probing: Delete

• Suppose A and E hashed to 3, and B,C, and D hashed to 4

• Now let’s delete B

A B C D E

0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9

Before:

After:

Linear Probing: Delete

• Let’s do this together!

0 1 2 3 4 5 6 7 8 9

Linear Probing: Delete

• To delete key 𝑘, where ℎ 𝑘 = 𝑖
• Assume it is present

• Beginning at index 𝑖, probe until we find 𝑘 (call this location index 𝑗)

• Mark 𝑗 as empty (e.g. null), then continue probing while doing the
following until you find another empty index
• If you come across a key which hashes to a value ≤ 𝑗 then move that item to

index 𝑗 and update 𝑗.

0 1 2 3 4 5 6 7 8 9

Linear Probing: Delete

• Option 1: Fill in with items that hashed to before the empty slot

• Option 2: “Tombstone” deletion. Leave a special object that indicates
an object was deleted from there
• The tombstone does not act as an open space when finding (so keep looking

after its reached)

• When inserting you can replace a tombstone with a new item

𝑘, 𝑣 𝑘, 𝑣 𝑘, 𝑣 𝑘, 𝑣

0 1 2 3 4 5 6 7 8 9

Linear Probing + Tombstone: Find

• To find key 𝑘
• Calculate 𝑖 = ℎ 𝑘 % 𝑙𝑒𝑛𝑔𝑡ℎ

• While 𝑡𝑎𝑏𝑙𝑒[𝑖] has a tombstone or a key other than 𝑘, 𝑖 = 𝑖 + 1 % 𝑙𝑒𝑛𝑔𝑡ℎ

• If you come across 𝑘 return 𝑡𝑎𝑏𝑙𝑒[𝑖]

• If you come across an empty index, the find was unsuccessful

0 1 2 3 4 5 6 7 8 9

Linear Probing + Tombstone: Insert

• To insert 𝑘, 𝑣
• Calculate 𝑖 = ℎ 𝑘 % 𝑙𝑒𝑛𝑔𝑡ℎ

• While 𝑡𝑎𝑏𝑙𝑒[𝑖] has a key other than 𝑘, 𝑖 = 𝑖 + 1 % 𝑙𝑒𝑛𝑔𝑡ℎ
• If 𝑡𝑎𝑏𝑙𝑒[𝑖] has a tombstone, set 𝑥 = 𝑖

• That is where we will insert if the find is unsuccessful

• If you come across 𝑘, set 𝑡𝑎𝑏𝑙𝑒 𝑖 = 𝑘, 𝑣

• If you come across an empty index, the find was unsuccessful
• Set 𝑡𝑎𝑏𝑙𝑒 𝑥 = 𝑘, 𝑣 if we saw a tombstone

• Set 𝑡𝑎𝑏𝑙𝑒 𝑖 = 𝑘, 𝑣 otherwise

0 1 2 3 4 5 6 7 8 9

Downsides of Linear Probing

• What happens when 𝜆 approaches 1?
• Get longer and longer contiguous blocks

• A collision is guaranteed to grow a block
• Larger blocks experience more collisions

• Feedback loop!

• What happens when 𝜆 exceeds 1?
• Impossible!

• You can’t insert more stuff

Quadratic Probing: Insert Procedure

• To insert 𝑘, 𝑣
• Calculate 𝑖 = ℎ 𝑘 % 𝑠𝑖𝑧𝑒

• If 𝑡𝑎𝑏𝑙𝑒[𝑖] is occupied then try 𝑖 + 12 % 𝑠𝑖𝑧𝑒

• If that is occupied try 𝑖 + 22 % 𝑠𝑖𝑧𝑒

• If that is occupied try 𝑖 + 32 % 𝑠𝑖𝑧𝑒

• If that is occupied try 𝑖 + 42 % 𝑠𝑖𝑧𝑒

• …

0 1 2 3 4 5 6 7 8 9

Quadratic Probing: Example

• Insert:
• 76

• 40

• 48

• 5

• 55

• 47

0 1 2 3 4 5 6

Using Quadratic Probing

• If you probe 𝑡𝑎𝑏𝑙𝑒𝑠𝑖𝑧𝑒 times, you start repeating the same indices

• If 𝑡𝑎𝑏𝑙𝑒𝑠𝑖𝑧𝑒 is prime and 𝜆 <
1

2
 then you’re guaranteed to find an

open spot in at most 𝑡𝑎𝑏𝑙𝑒𝑠𝑖𝑧𝑒/2 probes

• Helps with the clustering problem of linear probing, but does not help
if many things hash to the same value

Double Hashing: Insert Procedure

• Given ℎ and 𝑔 are both good hash functions

• To insert 𝑘, 𝑣
• Calculate 𝑖 = ℎ 𝑘 % 𝑠𝑖𝑧𝑒

• If 𝑡𝑎𝑏𝑙𝑒[𝑖] is occupied then try 𝑖 + 𝑔 𝑘 % 𝑠𝑖𝑧𝑒

• If that is occupied try 𝑖 + 2 ⋅ 𝑔 𝑘 % 𝑠𝑖𝑧𝑒

• If that is occupied try 𝑖 + 3 ⋅ 𝑔 𝑘 % 𝑠𝑖𝑧𝑒

• If that is occupied try 𝑖 + 4 ⋅ 𝑔 𝑘 % 𝑠𝑖𝑧𝑒

• …

0 1 2 3 4 5 6 7 8 9

	Slide 1: CSE 332 Autumn 2024 Lecture 12: hashing
	Slide 2: Next topic: Hash Tables
	Slide 3: Dictionary (Map) ADT
	Slide 4: Hash Tables
	Slide 5: Properties of a “Good” Hash
	Slide 6: Collision Resolution
	Slide 7: Separate Chaining Insert
	Slide 8: Separate Chaining Find
	Slide 9: Separate Chaining Delete
	Slide 10: Formal Running Time Analysis
	Slide 11: Formal Running Time Analysis
	Slide 12: Rehashing
	Slide 13: Hash Tables Running Time
	Slide 14: Load Factor?
	Slide 15: Load Factor?
	Slide 16: Load Factor?
	Slide 17: Collision Resolution: Linear Probing
	Slide 18: Linear Probing: Insert Procedure
	Slide 19: Linear Probing: Find
	Slide 20: Linear Probing: Find
	Slide 21: Linear Probing: Delete
	Slide 22: Linear Probing: Delete
	Slide 23: Linear Probing: Delete
	Slide 24: Linear Probing: Delete
	Slide 25: Linear Probing: Delete
	Slide 26: Linear Probing: Delete
	Slide 27: Linear Probing + Tombstone: Find
	Slide 28: Linear Probing + Tombstone: Insert
	Slide 29: Downsides of Linear Probing
	Slide 30: Quadratic Probing: Insert Procedure
	Slide 31: Quadratic Probing: Example
	Slide 32: Using Quadratic Probing
	Slide 33: Double Hashing: Insert Procedure

