CSE 332 Autumn 2024 Lecture 12: hashing

Nathan Brunelle

http://www.cs.uw.edu/332

Next topic: Hash Tables

Data Structure	Time to insert	Time to find	Time to delete
Unsorted Array	$\Theta(n)$	$\Theta(n)$	$\Theta(n)$
Unsorted Linked List	$\Theta(n)$	$\Theta(n)$	$\Theta(n)$
Sorted Array	$\Theta(n)$	$\Theta(\log n)$	$\Theta(n)$
Sorted Linked List	$\Theta(n)$	$\Theta(n)$	$\Theta(n)$
Binary Search Tree	Θ(height)	Θ(height)	Θ(height)
AVL Tree	$\Theta(\log n)$	$\Theta(\log n)$ _	$\Theta(\log n)$
Hash Table (Worst case)	$\Theta(n)$	$\Theta(n)$	$\Theta(n)$
Hash Table (Average)	Θ(1)	Θ(1)	Θ(1)
a			

Dictionary (Map) ADT

- Contents:
 - Sets of key+value pairs

Keys must be comparable

- Operations:
 - insert(key, value)
 - Adds the (key,value) pair into the dictionary
 - If the key already has a value, overwrite the old value
 - Consequence: Keys cannot be repeated
 - find(key)
 - Returns the value associated with the given key
 - delete(key)
 - Remove the key (and its associated value)

Hash Tables

- Idea:
 - Have a small array to store information
 - Use a hash function to convert the key into an index
 - Hash function should "scatter" the keys, behave as if it randomly assigned keys to indices
 - Store key at the index given by the hash function
 - Do something if two keys map to the same place (should be very rare)

Properties of a "Good" Hash

- Definition: A hash function maps objects to integers
- Should be very efficient
 - Time to calculate the hash should be negligible
- Should "randomly" scatter objects
 - Even similar objects should hash to arbitrarily different values
- Should use the entire table
 - There should not be any indices in the table that nothing can hash to
 - Picking a table size that is prime helps with this
- Should use things needed to "identify" the object
 - Use only fields you would check for a .equals method be included in calculating the hash
 - {fields used for hashing} \subseteq {fields used for . equals}
 - More fields typically leads to fewer collisions, but less efficient calculation

Collision Resolution

- A Collision occurs when we want to insert something into an alreadyoccupied position in the hash table
- 2 main strategies:
 - Separate Chaining
 - Use a secondary data structure to contain the items
 - E.g. each index in the hash table is itself a linked list
 - Open Addressing
 - Use a different spot in the table instead
 - Linear Probing
 - Quadratic Probing
 - Double Hashing

Separate Chaining Insert

- To insert *k*, *v*:
 - Compute the index using i = h(k) % length
 - Add the key-value pair to the data structure at *table*[*i*]

Separate Chaining Find

- To find *k*:
 - Compute the index using i = h(k) % length
 - Call find with the key on the data structure at *table*[*i*]

Separate Chaining Delete

- To delete k:
 - Compute the index using i = h(k) % length
 - Call delete with the key on the data structure at *table*[*i*]

Formal Running Time Analysis

- The load factor of a hash table represents the average number of items per "bucket"
 - $\lambda = \frac{n}{length}$
- Assume we have a hash table that uses a linked-list for separate chaining
 - What is the expected number of comparisons needed in an unsuccessful find?
 - Procedure: Apply the hash function to the given key. This provides an index. Next, do a find on the linked list found at that index.
 - Time to run the hash function (small) + time to do a find on the LL, which is λ
 - What is the expected number of comparisons needed in a successful find?
 - $\frac{\lambda}{2}$
- How can we make the expected running time $\Theta(1)$?
 - Right now: $\Theta(\lambda)$
 - $\lambda \leq c$ meaning $length \leq c \cdot n$

Formal Running Time Analysis

- The load factor of a hash table represents the average number of items per "bucket"
 - $\lambda = \frac{n}{length}$
- Assume we have a hash table that uses a linked-list for separate chaining
 - What is the expected number of comparisons needed in an unsuccessful find?
 - Will hash to an index, then compare to all items in that separate chain
 - λ
 - What is the expected number of comparisons needed in a successful find?
 - Will hash to an index, then compare to half of the items in that separate chain.
 - $\cdot \frac{\lambda}{2}$
- How can we make the expected running time $\Theta(1)$?
 - Make $length \leq c \cdot n$ so that $\lambda \leq c$

• If your load factor λ gets too large, copy everything over to a larger hash table

- To do this: make a new, larger array
- Re-insert all items into the new hash table by reapplying the hash function
 - We need to reapply the hash function because items should map to a different index
- New array should be "roughly" double the length (but probably still want it to be prime)
- What does "too large" mean?

Rehashing

- For separate chaining, typically we want $\lambda < 2$
- For open addressing, typically we want $\lambda < \frac{1}{2}$

Hash Tables Running Time

Data Structure	Time to insert	Time to find	Time to delete
Unsorted Array	$\Theta(n)$	$\Theta(n)$	$\Theta(n)$
Unsorted Linked List	$\Theta(n)$	$\Theta(n)$	$\Theta(n)$
Sorted Array	$\Theta(n)$	$\Theta(\log n)$	$\Theta(n)$
Sorted Linked List	$\Theta(n)$	$\Theta(n)$	$\Theta(n)$
Binary Search Tree	Θ(height)	Θ(height)	Θ(height)
AVL Tree	$\Theta(\log n)$	$\Theta(\log n)$	$\Theta(\log n)$
Hash Table (Worst case)	$\Theta(n)$	$\Theta(n)$	$\Theta(n)$
Hash Table (Expected and Amortized)	Θ(1)	Θ(1)	Θ(1)

Load Factor?

Collision Resolution: Linear Probing

• When there's a collision, use the next open space in the table

Linear Probing: Insert Procedure

• To insert k, v

• ...

- Calculate i = h(k) % length
- If table[i] is occupied then try (i + 1)% length

- If that is occupied try (i + 2)% length
- If that is occupied try (i + 3)% length

Linear Probing: Find

Linear Probing: Find

- To find key k
 - Calculate i = h(k) % length
 - If table[i] is occupied and does not contain k then look at $(i \pm 1)$ % length/
 - If that is occupied and does not contain k then look at (i + 2) % length
 - If that is occupied and does not contain k then look at (i + 3) % length
 - Repeat until you either find k or else you reach an empty cell in the table

- Suppose A, B, C, D, and E all hashed to 3
- Now let's delete B

- Suppose A, B, and E all hashed to 3, and C and D hashed to 5
- Now let's delete B

- Suppose A and E hashed to 3, and B,C, and D hashed to 4
- Now let's delete B

• Let's do this together!

- To delete key k, where h(k) = i
 - Assume it is present
- Beginning at index *i*, probe until we find *k* (call this location index *j*)
- Mark *j* as empty (e.g. null), then continue probing while doing the following until you find another empty index
 - If you come across a key which hashes to a value ≤ j then move that item to index j and update j.

- Option 1: Fill in with items that hashed to before the empty slot
- Option 2: "Tombstone" deletion. Leave a special object that indicates an object was deleted from there
 - The tombstone does not act as an open space when finding (so keep looking after its reached)
 - When inserting you can replace a tombstone with a new item

Linear Probing + Tombstone: Find

- To find key k
 - Calculate i = h(k) % length
 - While table[i] has a tombstone or a key other than k, i = (i + 1) % length
 - If you come across k return table[i]
 - If you come across an empty index, the find was unsuccessful

Linear Probing + Tombstone: Insert

- To insert *k*, *v*
 - Calculate i = h(k) % length
 - While table[i] has a key other than k, i = (i + 1) % length
 - If table[i] has a tombstone, set x = i
 - That is where we will insert if the find is unsuccessful
 - If you come across k, set table[i] = k, v
 - If you come across an empty index, the find was unsuccessful
 - Set table[x] = k, v if we saw a tombstone
 - Set *table*[*i*] = *k*, *v* otherwise

Downsides of Linear Probing

- What happens when λ approaches 1?
 - Get longer and longer contiguous blocks
 - A collision is guaranteed to grow a block
 - Larger blocks experience more collisions
 - Feedback loop!
- What happens when λ exceeds 1?
 - Impossible!
 - You can't insert more stuff

Quadratic Probing: Insert Procedure

- To insert *k*, *v*
 - Calculate i = h(k) % size
 - If table[i] is occupied then try $(i + 1^2)$ % size
 - If that is occupied try $(i + 2^2)\%$ size
 - If that is occupied try $(i + 3^2)\%$ size
 - If that is occupied try $(i + 4^2)\%$ size

• ...

Quadratic Probing: Example

- Insert:
 - 76
 - 40
 - 48
 - 5
 - 55
 - 47

Using Quadratic Probing

- If you probe *tablesize* times, you start repeating the same indices
- If *tablesize* is prime and $\lambda < \frac{1}{2}$ then you're guaranteed to find an open spot in at most *tablesize*/2 probes
- Helps with the clustering problem of linear probing, but does not help if many things hash to the same value

Double Hashing: Insert Procedure

- Given h and g are both good hash functions
- To insert k, v

• ...

- Calculate i = h(k) % size
- If table[i] is occupied then try (i + g(k)) % size
- If that is occupied try $(i + 2 \cdot g(k))$ % size
- If that is occupied try $(i + 3 \cdot g(k))$ % size
- If that is occupied try $(i + 4 \cdot g(k))$ % size

