CSE 332 Autumn 2024
Lecture 12: hashing

Nathan Brunelle
http://www.cs.uw.edu/332

http://www.cs.uw.edu/332

Next topic: Hash Tables

Data Structure Time to find Time to delete

Unsorted Array O(n) O(n) O(n)
Unsorted Linked List O(n) O(n) O(n)
Sorted Array O(n) O(logn) O(n)
Sorted Linked List O(n) O(n) O(n)
Binary Search Tree O (height) O (height) O (height)
AVL Tree O(logn) O(logn) O(logn)
Hash Table (Worst case) O(n) O(n) O(n)

Hash Table (Average) 0(1) 0(1) 0(1)

Dictionary (Map) ADT

* Contents:
» Sets of key+value pairs

+Keys-must-be-comparable

* Operations:

* insert(key, value)
* Adds the (key,value) pair into the dictionary

 If the key already has a value, overwrite the old value
* Consequence: Keys cannot be repeated

 find(key)
* Returns the value associated with the given key

e delete(key)

 Remove the key (and its associated value)

Hash Tables

* |dea:
* Have a small array to store information

* Use a hash function to convert the key into an index
* Hash function should “scatter” the keys, behave as if it randomly assigned keys to indices
» Store key at the index given by the hash function

* Do something if two keys map to the same place (should be very rare)
* Collision resolution

Index Insert / find /
h(k) pbetweenO delete & value
and length-1

Key Object

Properties of a “Good” Hash

Definition: A hash function maps objects to integers

Should be very efficient
* Time to calculate the hash should be negligible

Should “randomly” scatter objects
e Even similar objects should hash to arbitrarily different values

Should use the entire table
* There should not be any indices in the table that nothing can hash to
* Picking a table size that is prime helps with this

Should use things needed to “identify” the object
* Use only fields you would check for a .equals method be included in calculating the hash
» {fields used for hashing} € {fields used for . equals}
* More fields typically leads to fewer collisions, but less efficient calculation

Collision Resolution

* A Collision occurs when we want to insert something into an already-
occupied position in the hash table

* 2 main strategies:

e Separate Chaining
* Use a secondary data structure to contain the items
* E.g. each indexin the hash table is itself a linked list
* Open Addressing

* Use a different spot in the table instead
* Linear Probing

* Quadratic Probing
* Double Hashing

Separate Chaining Insert

e Toinsert k, v:
* Compute the index using i = h(k) % length
* Add the key-value pair to the data structure at table|i]

k,v
k,v k,v
o 1 2 3 4 5

Separate Chaining Find

* To find k:
* Compute the index using i = h(k) % length
* Call find with the key on the data structure at tablel|i]

k,v
k,v k,v
o 1 2 3 4 5

Separate Chaining Delete

* To delete k:
* Compute the index using i = h(k) % length
* Call delete with the key on the data structure at table|i]

k,v
k,v k,v
o 1 2 3 4 5

Formal Running Time Analysis

* The load factor of a hash table represents the average number of

items per “bucket”
n

- length

* Assume we have a hash table that uses a linked-list for separate
chaining
* What is the expected number of comparisons needed in an unsuccessful find?

* What is the expected number of comparisons needed in a successful find?

* How can we make the expected running time 0(1)?

Formal Running Time Analysis

. Tlge II?ad factor of a hash table represents the average number of items per
“bucket”

n

- length

e Assume we have a hash table that uses a linked-list for separate chaining
* What is the expected number of comparisons needed in an unsuccessful find?
* Will hash to an index, then compare to all items in that separate chain
e A
* What is the expected number of comparisons needed in a successful find?

* Will hash to an index, then compare to half of the items in that separate chain.
2

2

* How can we make the expected running time 0(1)?
* Make length < c-nsothatA < ¢

Rehashing

e If your load factor A gets too large, copy everything over to a larger
hash table
* To do this: make a new, larger array

* Re-insert all items into the new hash table by reapplying the hash function
* We need to reapply the hash function because items should map to a different index

* New array should be “roughly” double the length (but probably still want it to
be prime)

* What does “too large” mean?
* For separate chaining, typically we want 1 < 2

* For open addressing, typically we want 1 < %

Hash Tables Running Time

Data Structure Time to find Time to delete

Unsorted Array O(n) O(n) O(n)
Unsorted Linked List O(n) O(n) O(n)
Sorted Array O(n) O(logn) O(n)
Sorted Linked List O(n) O(n) O(n)
Binary Search Tree O (height) O (height) O (height)
AVL Tree O(logn) O(logn) O(logn)
Hash Table (Worst case) O(n) O(n) O(n)
Hash Table (Expected and 0(1) 0(1) 0(1)

Amortized)

Load Factor?

k,v
k,v k,v
0 2 5

Load Factor?

kv k,v

k,v k,v

k,v k,v k,v

0 2 5 9

Load Factor?

k;v k,v k’v

k,v k;v k,v k;v

k,v k,v k,v k,v k,v| |k,v| |k,v
0 2 4 5 /7 8 9

Collision Resolution: Linear Probing

* When there’s a collision, use the next open space in the table

Linear Probing: Insert Procedure

e Toinsert k, v
* Calculatei = h(k) % length
If table[i] is occupied then try (i + 1)% length
If that is occupied try (i + 2)% length
If that is occupied try (i + 3)% length

Linear Probing: Find

Linear Probing: Find

* To find key k
* Calculatei = h(k) % length
* If table|i] is occupied and does not contain k then look at (i + 1) % length
* If that is occupied and does not contain k then look at (i + 2) % length
* If that is occupied and does not contain k then look at (i + 3) % length
* Repeat until you either find k or else you reach an empty cell in the table

Linear Probing: Delete

* Suppose A, B, C, D, and E all hashed to 3
* Now let’s delete B

Before: A B C

After:

Linear Probing: Delete

e Suppose A, B, and E all hashed to 3, and Cand D hashed to 5
* Now let’s delete B

Before: A B C D E

After:

Linear Probing: Delete

e Suppose A and E hashed to 3, and B,C, and D hashed to 4
* Now let’s delete B

Before: A B C D E

After:

Linear Probing: Delete

* Let’s do this together!

Linear Probing: Delete

 To delete key k, where h(k) =i

* Assume it is present
* Beginning at index i, probe until we find k (call this location index j)

* Mark j as empty (e.g. null), then continue probing while doing the
following until you find another empty index

* If you come across a key which hashes to a value < j then move that item to
index j and update j.

Linear Probing: Delete

e Option 1: Fill in with items that hashed to before the empty slot

* Option 2: “Tombstone” deletion. Leave a special object that indicates
an object was deleted from there

 The tombstone does not act as an open space when finding (so keep looking
after its reached)

* When inserting you can replace a tombstone with a new item

Linear Probing + Tombstone: Find

* To find key k
* Calculatei = h(k) % length
* While table[i] has a tombstone or a key otherthan k, i = (i + 1) % length
* If you come across k return table|i]
* |f you come across an empty index, the find was unsuccessful

Linear Probing + Tombstone: Insert

e Toinsert k, v
* Calculatei = h(k) % length
* While table[i] has a key otherthank, i = (i + 1) % length

* If table[i] has a tombstone, set x =i
 That is where we will insert if the find is unsuccessful

* |f you come across k, set tableli] = k,v

* If you come across an empty index, the find was unsuccessful
« Set table[x] = k, v if we saw a tombstone
« Set tableli] = k, v otherwise

Downsides of Linear Probing

* What happens when A approaches 1?
e Get longer and longer contiguous blocks

* A collision is guaranteed to grow a block
* Larger blocks experience more collisions
* Feedback loop!

* What happens when A exceeds 17
* Impossible!
* You can’t insert more stuff

Quadratic Probing: Insert Procedure

e Toinsert k, v
 Calculatei = h(k) % size
e If table[i] is occupied then try (i + 1%)% size
If that is occupied try (i + 2%)% size
If that is occupied try (i + 3%)% size
If that is occupied try (i + 4%)% size

Quadratic Probing: Example

* |Insert:
. 76
* 40
. 48
5
* 55
« 47

Using Quadratic Probing

* If you probe tablesize times, you start repeating the same indices

L 1 , .
e If tablesize is prime and A < > then you’re guaranteed to find an
open spot in at most tablesize /2 probes

* Helps with the clustering problem of linear probing, but does not help
if many things hash to the same value

Double Hashing: Insert Procedure

* Given h and g are both good hash functions

e Toinsert k, v
 Calculatei = h(k) % size
If table[i] is occupied then try (i + g(k)) % size
If that is occupied try (i +2- g(k))% size
If that is occupied try (i +3- g(k))% size
If that is occupied try (i + 4 - g(k))% size

	Slide 1: CSE 332 Autumn 2024 Lecture 12: hashing
	Slide 2: Next topic: Hash Tables
	Slide 3: Dictionary (Map) ADT
	Slide 4: Hash Tables
	Slide 5: Properties of a “Good” Hash
	Slide 6: Collision Resolution
	Slide 7: Separate Chaining Insert
	Slide 8: Separate Chaining Find
	Slide 9: Separate Chaining Delete
	Slide 10: Formal Running Time Analysis
	Slide 11: Formal Running Time Analysis
	Slide 12: Rehashing
	Slide 13: Hash Tables Running Time
	Slide 14: Load Factor?
	Slide 15: Load Factor?
	Slide 16: Load Factor?
	Slide 17: Collision Resolution: Linear Probing
	Slide 18: Linear Probing: Insert Procedure
	Slide 19: Linear Probing: Find
	Slide 20: Linear Probing: Find
	Slide 21: Linear Probing: Delete
	Slide 22: Linear Probing: Delete
	Slide 23: Linear Probing: Delete
	Slide 24: Linear Probing: Delete
	Slide 25: Linear Probing: Delete
	Slide 26: Linear Probing: Delete
	Slide 27: Linear Probing + Tombstone: Find
	Slide 28: Linear Probing + Tombstone: Insert
	Slide 29: Downsides of Linear Probing
	Slide 30: Quadratic Probing: Insert Procedure
	Slide 31: Quadratic Probing: Example
	Slide 32: Using Quadratic Probing
	Slide 33: Double Hashing: Insert Procedure

