
CSE 332 Autumn 2024
Lecture 11: hashing

Nathan Brunelle

http://www.cs.uw.edu/332

http://www.cs.uw.edu/332

Dictionary (Map) ADT

• Contents:
• Sets of key+value pairs
• Keys must be comparable

• Operations:
• insert(key, value)

• Adds the (key,value) pair into the dictionary
• If the key already has a value, overwrite the old value

• Consequence: Keys cannot be repeated

• find(key)
• Returns the value associated with the given key

• delete(key)
• Remove the key (and its associated value)

Dictionary Data Structures

Data Structure Time to insert Time to find Time to delete

Unsorted Array Θ(1) Θ(𝑛) Θ(𝑛)

Unsorted Linked List Θ(1) Θ(𝑛) Θ(𝑛)

Sorted Array Θ 𝑛 Θ(log 𝑛) Θ(𝑛)

Sorted Linked List Θ 𝑛 Θ 𝑛 Θ 𝑛

Heap Θ(log 𝑛) Θ 𝑛 Θ 𝑛

Binary Search Tree Θ height Θ height Θ height

AVL Tree Θ(log 𝑛) Θ(log 𝑛) Θ(log 𝑛)

BSTs and AVL Trees
• Binary Search Tree:

• A binary tree where for each node, all keys in its left subtree are smaller and all keys in its right subtree are
larger

• Find:
• If it matches, return the value.
• If the search key is less than the current node, look left. If it’s greater, look right.
• If we reach an empty spot, find was unsuccessful

• Insert:
• Do a find, if it was successful then update the value
• If it was unsuccessful, add a new node to the empty spot we found.

• Delete:
• If the deleted node is a leaf, just remove it
• If the deleted node had one child, replace it with that one child
• If the deleted node had 2 children, replace it with the largest key to the left

• AVL Tree:
• A binary search tree where for each node, the height of its left subtree and the height of its right subtree

are off by at most 1.
• Find:

• Same as BST
• Insert:

• Do a BST insert, then rotate if tree is unbalanced (apply one LL, RR, LR, RL case)
• Delete:

• Do a BST delete, then rotate if the tree is unbalanced (apply LL, RR, LR, RL cases as needed from leaf to root)

Other Tree-based Dictionaries

• Red-Black Trees
• Similar to AVL Trees in that we add shape rules to BSTs
• More “relaxed” shape than an AVL Tree

• Trees can be taller (though not asymptotically so)
• Needs to move nodes less frequently

• This is what Java’s TreeMap uses!

• Tries
• Similar to a Huffman Tree
• Requires keys to be sequences (e.g. Strings)
• Combines shared prefixes among keys to save space
• Often used for text-based searches

• Web search
• Genomes

Next topic: Hash Tables

Data Structure Time to insert Time to find Time to delete

Unsorted Array Θ(𝑛) Θ(𝑛) Θ(𝑛)

Unsorted Linked List Θ(𝑛) Θ(𝑛) Θ(𝑛)

Sorted Array Θ 𝑛 Θ(log 𝑛) Θ(𝑛)

Sorted Linked List Θ 𝑛 Θ 𝑛 Θ 𝑛

Binary Search Tree Θ height Θ height Θ height

AVL Tree Θ(log 𝑛) Θ(log 𝑛) Θ(log 𝑛)

Hash Table (Worst case) Θ(𝑛) Θ(𝑛) Θ(𝑛)

Hash Table (Average) Θ 1 Θ 1 Θ 1

Dictionary (Map) ADT

• Contents:
• Sets of key+value pairs
• Keys must be comparable

• Operations:
• insert(key, value)

• Adds the (key,value) pair into the dictionary
• If the key already has a value, overwrite the old value

• Consequence: Keys cannot be repeated

• find(key)
• Returns the value associated with the given key

• delete(key)
• Remove the key (and its associated value)

The Best Data Structure!

• Think of every key as a number

• Give each key its own index in an array

insert(key, value){

arr[key]=value;
}

find(key){

return arr[key];

}

delete(key){

arr[key] = null;

}

Problem?

Hash Tables

• Idea:
• Have a small array to store information

• Use a hash function to convert the key into an index
• Hash function should “scatter” the keys, behave as if it randomly assigned keys to indices

• Store key at the index given by the hash function

• Do something if two keys map to the same place (should be very rare)
• Collision resolution

ℎ(𝑘)

Key Object

Index
between 0
and length-1

Insert / find /
delete & value

Example

• Key: Phone Number

• Value: People

• Table size: 10

• ℎ 𝑝ℎ𝑜𝑛𝑒 = number as an integer % 10

• ℎ 8675309 = 9

0 1 2 3 4 5 6 7 8 9

What Influences Running time?

• How long hashing itself takes

• Likelihood of collisions
• Size of the array vs number of values in the array

• “quality” of our hash function

• What we do when we have a collision

Properties of a “Good” Hash

• Definition: A hash function maps objects to integers

• Should be very efficient
• Time to calculate the hash should be negligible

• Should “randomly” scatter objects
• Even similar objects should hash to arbitrarily different values

• Should use the entire table
• There should not be any indices in the table that nothing can hash to
• Picking a table size that is prime helps with this

• Should use things needed to “identify” the object
• Use only fields you would check for a .equals method be included in calculating the hash

• fields used for hashing ⊆ fields used for . equals

• More fields typically leads to fewer collisions, but less efficient calculation

A Bad Hash (and phone number trivia)

• ℎ 𝑝ℎ𝑜𝑛𝑒 = the first digit of the phone number
• Assume 10-digit format

• No US phone numbers start with 1 or 0

• If we’re sampling from this class, 2 is by far the most likely

0 1 2 3 4 5 6 7 8 9

Compare These Hash Functions (for strings)

• Let 𝑠 = 𝑠0𝑠1𝑠2 … 𝑠𝑚−1 be a string of length 𝑚
• Let 𝑎(𝑠𝑖) be the ascii encoding of the character 𝑠𝑖

• ℎ1 𝑠 = 𝑎 𝑠0

• ℎ2 𝑠 = σ𝑖=0
𝑚−1 𝑎 𝑠𝑖

• ℎ3 𝑠 = σ𝑖=0
𝑚−1 𝑎 𝑠𝑖 ⋅ 37𝑖

Collision Resolution

• A Collision occurs when we want to insert something into an already-
occupied position in the hash table

• 2 main strategies:
• Separate Chaining

• Use a secondary data structure to contain the items
• E.g. each index in the hash table is itself a linked list

• Open Addressing
• Use a different spot in the table instead

• Linear Probing

• Quadratic Probing

• Double Hashing

0 1 2 3 4 5 6 7 8 9

Separate Chaining Insert

• To insert 𝑘, 𝑣:
• Compute the index using 𝑖 = ℎ 𝑘 % 𝑙𝑒𝑛𝑔𝑡ℎ

• Add the key-value pair to the data structure at 𝑡𝑎𝑏𝑙𝑒 𝑖

0 1 2 3 4 5 6 7 8 9

𝑘, 𝑣 𝑘, 𝑣

𝑘, 𝑣

Separate Chaining Find

• To find 𝑘:
• Compute the index using 𝑖 = ℎ 𝑘 % 𝑙𝑒𝑛𝑔𝑡ℎ

• Call find with the key on the data structure at 𝑡𝑎𝑏𝑙𝑒 𝑖

0 1 2 3 4 5 6 7 8 9

𝑘, 𝑣 𝑘, 𝑣

𝑘, 𝑣

Separate Chaining Delete

• To delete 𝑘:
• Compute the index using 𝑖 = ℎ 𝑘 % 𝑙𝑒𝑛𝑔𝑡ℎ

• Call delete with the key on the data structure at 𝑡𝑎𝑏𝑙𝑒 𝑖

0 1 2 3 4 5 6 7 8 9

𝑘, 𝑣 𝑘, 𝑣

𝑘, 𝑣

Formal Running Time Analysis

• The load factor of a hash table represents the average number of
items per “bucket”

• 𝜆 =
𝑛

𝑙𝑒𝑛𝑔𝑡ℎ

• Assume we have a has table that uses a linked-list for separate
chaining
• What is the expected number of comparisons needed in an unsuccessful find?

• What is the expected number of comparisons needed in a successful find?

• How can we make the expected running time Θ(1)?

Load Factor?

0 1 2 3 4 5 6 7 8 9

𝑘, 𝑣 𝑘, 𝑣

𝑘, 𝑣

Load Factor?

0 1 2 3 4 5 6 7 8 9

𝑘, 𝑣 𝑘, 𝑣

𝑘, 𝑣

𝑘, 𝑣

𝑘, 𝑣

𝑘, 𝑣

𝑘, 𝑣

𝑘, 𝑣

Load Factor?

0 1 2 3 4 5 6 7 8 9

𝑘, 𝑣 𝑘, 𝑣

𝑘, 𝑣

𝑘, 𝑣

𝑘, 𝑣

𝑘, 𝑣

𝑘, 𝑣

𝑘, 𝑣

𝑘, 𝑣

𝑘, 𝑣 𝑘, 𝑣𝑘, 𝑣

𝑘, 𝑣

𝑘, 𝑣

𝑘, 𝑣

Collision Resolution: Linear Probing

• When there’s a collision, use the next open space in the table

0 1 2 3 4 5 6 7 8 9

Linear Probing: Insert Procedure

• To insert 𝑘, 𝑣
• Calculate 𝑖 = ℎ 𝑘 % 𝑙𝑒𝑛𝑔𝑡ℎ

• If 𝑡𝑎𝑏𝑙𝑒[𝑖] is occupied then try 𝑖 + 1 % 𝑙𝑒𝑛𝑔𝑡ℎ

• If that is occupied try 𝑖 + 2 % 𝑙𝑒𝑛𝑔𝑡ℎ

• If that is occupied try 𝑖 + 3 % 𝑙𝑒𝑛𝑔𝑡ℎ

• …

0 1 2 3 4 5 6 7 8 9

Linear Probing: Find

0 1 2 3 4 5 6 7 8 9

Linear Probing: Find

• To find key 𝑘
• Calculate 𝑖 = ℎ 𝑘 % 𝑙𝑒𝑛𝑔𝑡ℎ

• If 𝑡𝑎𝑏𝑙𝑒 𝑖 is occupied and does not contain 𝑘 then look at 𝑖 + 1 % 𝑙𝑒𝑛𝑔𝑡ℎ

• If that is occupied and does not contain 𝑘 then look at 𝑖 + 2 % 𝑙𝑒𝑛𝑔𝑡ℎ

• If that is occupied and does not contain 𝑘 then look at 𝑖 + 3 % 𝑙𝑒𝑛𝑔𝑡ℎ

• Repeat until you either find 𝑘 or else you reach an empty cell in the table

0 1 2 3 4 5 6 7 8 9

Linear Probing: Delete

• Suppose A, B, C, D, and E all hashed to 3

• Now let’s delete B

A B C D E

0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9

Before:

After:

Linear Probing: Delete

• Suppose A, B, and E all hashed to 3, and C and D hashed to 5

• Now let’s delete B

A B C D E

0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9

Before:

After:

Linear Probing: Delete

• Suppose A and E hashed to 3, and B,C, and D hashed to 4

• Now let’s delete B

A B C D E

0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9

Before:

After:

Linear Probing: Delete

• Let’s do this together!

0 1 2 3 4 5 6 7 8 9

Linear Probing: Delete

• To delete key 𝑘, where ℎ 𝑘 = 𝑖
• Assume it is present

• Beginning at index 𝑖, probe until we find 𝑘 (call this location index 𝑗)

• Mark 𝑗 as empty (e.g. null), then continue probing while doing the
following until you find another empty index
• If you come across a key which hashes to a value ≤ 𝑗 then move that item to

index 𝑗 and update 𝑗.

0 1 2 3 4 5 6 7 8 9

Linear Probing: Delete

• Option 1: Fill in with items that hashed to before the empty slot

• Option 2: “Tombstone” deletion. Leave a special object that indicates
an object was deleted from there
• The tombstone does not act as an open space when finding (so keep looking

after its reached)

• When inserting you can replace a tombstone with a new item

𝑘, 𝑣 𝑘, 𝑣 𝑘, 𝑣 𝑘, 𝑣

0 1 2 3 4 5 6 7 8 9

Linear Probing + Tombstone: Find

• To find key 𝑘
• Calculate 𝑖 = ℎ 𝑘 % 𝑙𝑒𝑛𝑔𝑡ℎ

• While 𝑡𝑎𝑏𝑙𝑒[𝑖] has a tombstone or a key other than 𝑘, 𝑖 = 𝑖 + 1 % 𝑙𝑒𝑛𝑔𝑡ℎ

• If you come across 𝑘 return 𝑡𝑎𝑏𝑙𝑒[𝑖]

• If you come across an empty index, the find was unsuccessful

0 1 2 3 4 5 6 7 8 9

Linear Probing + Tombstone: Insert

• To insert 𝑘, 𝑣
• Calculate 𝑖 = ℎ 𝑘 % 𝑙𝑒𝑛𝑔𝑡ℎ

• While 𝑡𝑎𝑏𝑙𝑒[𝑖] has a key other than 𝑘, 𝑖 = 𝑖 + 1 % 𝑙𝑒𝑛𝑔𝑡ℎ
• If 𝑡𝑎𝑏𝑙𝑒[𝑖] has a tombstone, set 𝑥 = 𝑖

• That is where we will insert if the find is unsuccessful

• If you come across 𝑘, set 𝑡𝑎𝑏𝑙𝑒 𝑖 = 𝑘, 𝑣

• If you come across an empty index, the find was unsuccessful
• Set 𝑡𝑎𝑏𝑙𝑒 𝑥 = 𝑘, 𝑣 if we saw a tombstone

• Set 𝑡𝑎𝑏𝑙𝑒 𝑖 = 𝑘, 𝑣 otherwise

0 1 2 3 4 5 6 7 8 9

	Slide 1: CSE 332 Autumn 2024 Lecture 11: hashing
	Slide 2: Dictionary (Map) ADT
	Slide 3: Dictionary Data Structures
	Slide 4: BSTs and AVL Trees
	Slide 5: Other Tree-based Dictionaries
	Slide 6: Next topic: Hash Tables
	Slide 7: Dictionary (Map) ADT
	Slide 8: The Best Data Structure!
	Slide 9: Problem?
	Slide 10: Hash Tables
	Slide 11: Example
	Slide 12: What Influences Running time?
	Slide 13: Properties of a “Good” Hash
	Slide 14: A Bad Hash (and phone number trivia)
	Slide 15: Compare These Hash Functions (for strings)
	Slide 16: Collision Resolution
	Slide 17: Separate Chaining Insert
	Slide 18: Separate Chaining Find
	Slide 19: Separate Chaining Delete
	Slide 20: Formal Running Time Analysis
	Slide 21: Load Factor?
	Slide 22: Load Factor?
	Slide 23: Load Factor?
	Slide 24: Collision Resolution: Linear Probing
	Slide 25: Linear Probing: Insert Procedure
	Slide 26: Linear Probing: Find
	Slide 27: Linear Probing: Find
	Slide 28: Linear Probing: Delete
	Slide 29: Linear Probing: Delete
	Slide 30: Linear Probing: Delete
	Slide 31: Linear Probing: Delete
	Slide 32: Linear Probing: Delete
	Slide 33: Linear Probing: Delete
	Slide 34: Linear Probing + Tombstone: Find
	Slide 35: Linear Probing + Tombstone: Insert

