
CSE 332 Autumn 2024
Lecture 10: AVL Trees 2

Nathan Brunelle

http://www.cs.uw.edu/332

http://www.cs.uw.edu/332

Dictionary (Map) ADT

• Contents:
• Sets of key+value pairs
• Keys must be comparable

• Operations:
• insert(key, value)

• Adds the (key,value) pair into the dictionary
• If the key already has a value, overwrite the old value

• Consequence: Keys cannot be repeated

• find(key)
• Returns the value associated with the given key

• delete(key)
• Remove the key (and its associated value)

Naïve attempts

Data Structure Time to insert Time to find Time to delete

Unsorted Array Θ(1) Θ(𝑛) Θ(𝑛)

Unsorted Linked List Θ(1) Θ(𝑛) Θ(𝑛)

Sorted Array Θ 𝑛 Θ(log 𝑛) Θ(𝑛)

Sorted Linked List Θ 𝑛 Θ 𝑛 Θ 𝑛

Heap Θ(log 𝑛) Θ 𝑛 Θ 𝑛

Binary Search Tree Θ 𝑛 Θ 𝑛 Θ 𝑛

AVL Tree Θ(log 𝑛) Θ(log 𝑛) Θ(log 𝑛)

Binary Search Tree

• Binary Tree
• Definition:

• Tree where each node has at most 2 children

• Order Property
• All keys in the left subtree are smaller than the root

• All keys in the right subtree are larger than the root

• Consequence: cannot have repeated values

7

3 10

1 6 8 16

0 2

Are these BSTs?

7

3 10

1 16

0

7

3

10

1

16

0

7

3 10

1 16

0

7

7

3 10

1 16

0

8

Aside: Why not use an array?

• We represented a heap using an array, finding children/parents by
index

• We will represent BSTs with nodes and references. Why?
• We might have “gaps” in our tree

• Memory!
• 2𝑛

Find Operation (recursive)
find(key, root){

 if (root == Null){

 return Null;

 {

 if (key == root.key){

 return root.value;

 }

 if (key < root.key){

 return find(key, root.left);

 }

 if (key > root.key){

 return find(key, root.right);

 }

 return Null;

}

7

3 10

1 16

0

6

Find Operation (iterative)
find(key, root){

 while (root != Null && key != root.key){

 if (key < root.key){

 root = root.left;

 }

 else if (key > root.key){

 root = root.right;

 }

 }

 if (root == Null){

 return Null;

 }

 return root.value;

}

7

3 10

1 16

0

6

Insert Operation (recursive)
insert(key, value, root){

 root = insertHelper(key, value, root);

}

insertHelper(key, value, root){

 if(root == null)

 return new Node(key, value);

 if (root.key < key)

 root.right = insertHelper(key, value, root.right);

 else

 root.left = insertHelper(key, value, root.left);

 return root;

}

7

3 10

1 16

0

6

Note: Insert happens only at the leaves!

Insert Operation (iterative)
insert(key, value, root){

 if (root == Null){ this.root = new Node(key, value); }

 parent = Null;

 while (root != Null && key != root.key){

 parent = root;

 if (key < root.key){ root = root.left; }

 else if (key > root.key){ root = root.right; }

 }

 if (root != Null){ root.value = value; }

 else if (key < parent.key){ parent.left = new Node(key, value); }

 else{ parent.right = new Node (key, value); }

}

7

3 10

1 16

0

6

Note: Insert happens only at the leaves!

Delete Operation (iterative)
delete(key, root){

 while (root != Null && key != root.key){

 if (key < root.key){ root = root.left; }

 else if (key > root.key){ root = root.right; }

 }

 if (root == Null){ return; }

 // Now root is the node to delete, what happens next?

}

9

3 10

1 16

0

6

5 7

Delete – 3 Cases

• 0 Children (i.e. it’s a leaf)

• 1 Child
• Replace the deleted node with its child

• 2 Children
• Replace the deleted with the largest node to its left or else the smallest node

to its right

9

3 10

1 16

0

6

5 7

Finding the Max and Min

• Max of a BST:
• Right-most Thing

• Min of a BST:
• Left-most Thing

9

3 10

1 16

0

6

5 7

maxNode(root){
 if (root == Null){ return Null; }
 while (root.right != Null){
 root = root.right;
 }
 return root;
}

minNode(root){
 if (root == Null){ return Null; }
 while (root.left != Null){
 root = root.left;
 }
 return root;
}

Delete Operation (iterative)
delete(key, root){

 while (root != Null && key != root.key){

 if (key < root.key){ root = root.left; }

 else if (key > root.key){ root = root.right; }

 }

 if (root == Null){ return; }

 if (root has no children){

 make parent point to Null Instead;

 }

 if (root has one child){

 make parent point to that child instead;

 }

 if (root has two children){

 make parent point to either the max from the left or min from the right

 }

}

9

3 10

1 16

0

6

5 7

Worst Case Analysis

• For each of Find, insert, Delete:
• Worst case running time matches height of the tree

• What is the maximum height of a BST with 𝑛 nodes?
• Θ(𝑛)

Improving the worst case

• How can we get a better worst case running time?
• Add rules about the shape of our BST

• AVL Tree
• A BST with some shape rules

• Algorithms need to change to accommodate those

“Balanced” Binary Search Trees

• We get better running times by having “shorter” trees

• Trees get tall due to them being “sparse” (many one-child nodes)

• Idea: modify how we insert/delete to keep the tree more “full”

Idea 1: Both Subtrees of Root have same #
Nodes

Idea 2: Both Subtrees of Root have same
height

Idea 3: Both Subtrees of every Node have
same # Nodes

Idea 4: Both Subtrees of every Node have
same height

AVL Tree

• A Binary Search tree that maintains that the left and right subtrees of
every node have heights that differ by at most one.
• height of left subtree and height of right subtree off by at most 1

• Not too weak (ensures trees are short)

• Not too strong (works for any number of nodes)

• Idea of AVL Tree:
• When you insert/delete nodes, if tree is “out of balance” then modify the tree

• Modification = “rotation”

Is it an AVL Tree?

9

3 10

1 16

0

6

5 7

9

3 10

1 16

0

6

5

9

3 10

1

0

6

5

9

3 10

166

5

Using AVL Trees

• Each node has:
• Key

• Value

• Height

• Left child

• Right child
9

3 10

1 16

0

6

5 7

Key = 9
Value = “hello”

Height = 3
Left = Node 3

Right = Node 10

Inserting into an AVL Tree

• Starts out the same way as BST:
• “Find” where the new node should go

• Put it in the right place (it will be a leaf)

• Next check the balance
• If the tree is still balanced, you’re done!

• Otherwise we need to do rotations

Insert Example 10

9

3 11

1 16

0

6

2 7

Insert Example

9

3 11

1 16

0

6

2 7

-1

Not Balanced!

-1

Height = 3 Height = 1

Solution: rotate the whole tree to the right

9

3 11

1 16

0

6

2 7

Balanced!

-1

3

91

11
0

6
2

7 16

Right Rotation

• Make the left child the new root

• Make the old root the right child of the new

• Make the new root’s right subtree the old root’s left subtree

𝑎
𝑥

𝑏

𝑦 𝑧𝑐

Right
Rotation

𝑎

𝑥

𝑏

𝑦

𝑧

𝑐

ℎ + 1 ℎ

ℎ + 2

ℎ + 3

ℎ ℎ + 1
ℎ + 1

ℎ + 2

ℎ ℎ

Insert Example 20

9

3 11

1 16

0

6

2 18

10

Not Balanced!

Solution: rotate the deepest
unbalanced root to the left

20

9

3 11

1 16

0

6

2 18

10

Balanced!

9

3 11

1 18

0

6

2 20

10

16

Left Rotation

• Make the right child the new root

• Make the old root the left child of the new

• Make the new root’s left subtree the old root’s right subtree

𝑏
𝑥

𝑎

𝑦 𝑧

𝑐

Left
Rotation

𝑏

𝑥

𝑎

𝑦

𝑧

𝑐

ℎ ℎ

ℎ + 1

ℎ + 2

ℎ + 1ℎ
ℎ + 2

ℎ + 3

ℎ ℎ + 1

Insertion Story So Far

• After insertion, update the heights of the node’s ancestors

• Check for unbalance

• If unbalanced then at the deepest unbalanced root:
• If the left subtree was deeper then rotate right

• If the right subtree was deeper then rotate left

This is incomplete!
There are some cases
where this doesn’t work!

9

5

7

9

5 Insert 7
Right

Rotation

5

9

7

Insertion Story So Far

• After insertion, update the heights of the node’s ancestors

• Check for unbalance

• If unbalanced then at the deepest unbalanced root:
• Case LL: If we inserted in the left subtree of the left child then rotate right

• Case RR: If we inserted in the right subtree of the right child then rotate left

• Case LR: If we inserted into the right subtree of the left child then ???

• Case RL: If we inserted into the left subtree of the right child then ???

Cases LR and RL require 2
rotations!

Case LR

• From deepest unbalanced root:
• Rotate left at the left child

• Rotate right at the root

9

5

7

9

5
Insert 7

9

7

5

Rotate Left
at 5 Rotate

Right at 9

7

5 9

Case LR in General

• Imbalance caused by inserting in the left child’s right subtree

• Rotate left at the left child

• Rotate right at the unbalanced node

Rotate
Left at 𝑏

𝑎

𝑤

𝑏

𝑥

𝑧
ℎ ℎ + 1

ℎ + 2

ℎ + 3

ℎ

𝑐

𝑦

𝑑 𝑑

𝑎

𝑤

𝑐

𝑧

ℎ

ℎ + 2

ℎ + 3

ℎ

𝑥

𝑑

𝑦

𝑑

𝑏
ℎ + 1

𝑤

ℎ

𝑥

𝑑

𝑏

𝑐

𝑎

𝑦

𝑑 𝑧

ℎ + 1

ℎ + 2

ℎ + 1

ℎ

Rotate
Right at 𝑎

Case RL in General

• Imbalance caused by inserting in the right child’s left subtree

• Rotate right at the right child

• Rotate left at the unbalanced node

Rotate
Right at 𝑏

𝑎

𝑤

𝑏

𝑥 𝑧

ℎ

ℎ + 1

ℎ + 2

ℎ + 3

ℎ𝑐

𝑦

𝑑 𝑑

𝑤

ℎ

𝑥

𝑑

𝑎

𝑐

𝑏

𝑦

𝑑 𝑧

ℎ + 1

ℎ + 2

ℎ + 1

ℎ

Rotate
Left at 𝑎

𝑎

𝑤

𝑐

𝑧

ℎ ℎ + 2

ℎ + 3

ℎ
𝑥

𝑑 𝑦

𝑑

𝑏ℎ + 1

Insert Summary

• After a BST insertion, update the heights of the node’s ancestors

• From leaf to root, check if each node is unbalanced

• If a node is unbalanced then at the deepest unbalanced node:
• Case LL: If we inserted in the left subtree of the left child then: rotate right

• Case RR: If we inserted in the right subtree of the right child then: rotate left

• Case LR: If we inserted into the right subtree of the left child then: rotate left at
the left child and then rotate right at the root

• Case RL: If we inserted into the left subtree of the right child then: rotate right at
the right child and then rotate left at the root

• Done after either reaching the root or applying one of the above cases

Delete Summary

• Tldr: same cases, reverse direction of rotation, may need to repeat with
ancestors

• After a BST deletion, update the heights of the node’s ancestors
• From leaf to root, check if each node is unbalanced
• If a node is unbalanced then at the deepest unbalanced node:

• Case LL: If we deleted in the left subtree of the left child then: rotate left
• Case RR: If we deleted in the right subtree of the right child then: rotate right
• Case LR: If we deleted into the right subtree of the left child then: rotate right at the

left child and then rotate left at the root
• Case RL: If we deleted into the left subtree of the right child then: rotate left at the

right child and then rotate right at the root

• Continue checking until reach the root

	Slide 1: CSE 332 Autumn 2024 Lecture 10: AVL Trees 2
	Slide 2: Dictionary (Map) ADT
	Slide 3: Naïve attempts
	Slide 4: Binary Search Tree
	Slide 5: Are these BSTs?
	Slide 6: Aside: Why not use an array?
	Slide 7: Find Operation (recursive)
	Slide 8: Find Operation (iterative)
	Slide 9: Insert Operation (recursive)
	Slide 10: Insert Operation (iterative)
	Slide 11: Delete Operation (iterative)
	Slide 12: Delete – 3 Cases
	Slide 13: Finding the Max and Min
	Slide 14: Delete Operation (iterative)
	Slide 15: Worst Case Analysis
	Slide 16: Improving the worst case
	Slide 17: “Balanced” Binary Search Trees
	Slide 18: Idea 1: Both Subtrees of Root have same # Nodes
	Slide 19: Idea 2: Both Subtrees of Root have same height
	Slide 20: Idea 3: Both Subtrees of every Node have same # Nodes
	Slide 21: Idea 4: Both Subtrees of every Node have same height
	Slide 22: AVL Tree
	Slide 23: Is it an AVL Tree?
	Slide 24: Using AVL Trees
	Slide 25: Inserting into an AVL Tree
	Slide 26: Insert Example
	Slide 27: Insert Example
	Slide 28: Not Balanced!
	Slide 29: Balanced!
	Slide 30: Right Rotation
	Slide 31: Insert Example
	Slide 32: Not Balanced!
	Slide 33: Balanced!
	Slide 34: Left Rotation
	Slide 35: Insertion Story So Far
	Slide 36: Insertion Story So Far
	Slide 37: Case LR
	Slide 38: Case LR in General
	Slide 39: Case RL in General
	Slide 40: Insert Summary
	Slide 41: Delete Summary

