
CSE 332 Autumn 2024
Lecture 28: NP-Completeness

Nathan Brunelle, Chandni Rajasekaran

http://www.cs.uw.edu/332

http://www.cs.uw.edu/332

Tractability

• Tractable:
• Feasible to solve in the “real world”

• Intractable:
• Infeasible to solve in the “real world”

• Whether a problem is considered “tractable” or “intractable” depends on
the use case
• For machine learning, big data, etc. tractable might mean O(𝑛) or even 𝑂(log 𝑛)
• For most applications it’s more like 𝑂 𝑛3 or 𝑂(𝑛2)

• A strange pattern:
• Most “natural” problems are either done in small-degree polynomial (e.g. 𝑛2) or

else exponential time (e.g. 2𝑛)
• It’s rare to have problems which require a running time of 𝑛5, for example

Complexity Classes

• A Complexity Class is a set of problems (e.g. sorting, Euler path,
Hamiltonian path)
• The problems included in a complexity class are those whose most efficient

algorithm has a specific upper bound on its running time (or memory use, or…)

• Examples:
• The set of all problems that can be solved by an algorithm with running time 𝑂 𝑛

• Contains: Finding the minimum of a list, finding the maximum of a list, buildheap, summing a
list, etc.

• The set of all problems that can be solved by an algorithm with running time 𝑂 𝑛2

• Contains: everything above as well as sorting, Euler path

• The set of all problems that can be solved by an algorithm with running time 𝑂 𝑛!
• Contains: everything we’ve seen in this class so far

Complexity Classes and Tractability

• To explore what problems are and are not tractable, we give some
complexity classes special names:

• Complexity Class 𝑃:
• Stands for “Polynomial”
• The set of problems which have an algorithm whose running time is 𝑂(𝑛𝑝) for some

choice of 𝑝 ∈ ℝ.
• We say all problems belonging to 𝑃 are “Tractable”

• Complexity Class 𝐸𝑋𝑃:
• Stands for “Exponential”

• The set of problems which have an algorithm whose running time is 𝑂 2𝑛
𝑝

for
some choice of 𝑝 ∈ ℝ

• We say all problems belonging to 𝐸𝑋𝑃 − 𝑃 are “Intractable”
• Disclaimer: Really it’s all problems outside of 𝑃, and there are problems which do not belong

to 𝐸𝑋𝑃, but we’re not going to worry about those in this class

Some problems in 𝐸𝑋𝑃 seem “easier”

• There are some problems that we do not have polynomial time
algorithms to solve, but provided answers are easy to check

• Hamiltonian Path:
• It’s “hard” to look at a graph and determine whether it has a Hamiltonian

Path

• It’s “easy” to look at a graph and a candidate path together and determine
whether THAT path is a Hamiltonian Path
• It’s easy to verify whether a given path is a Hamiltonian path

𝐸𝑋𝑃 ⊃ 𝑁𝑃 ⊇ 𝑃
𝐸𝑋𝑃

Exponential

Upper bounded by 2𝑛
𝑝

𝑃
Polynomial

Upper bounded by 𝑛𝑝

𝑁𝑃
Nondeterministic Polynomial

Verified in 𝑛𝑝 time

Independent Set

• Independent set:
• 𝑆 ⊆ 𝑉 is an independent set if no two nodes in 𝑆 share an edge

• Independent Set Problem:
• Given a graph 𝐺 = (𝑉, 𝐸) and a number 𝑘, determine whether there is an

independent set 𝑆 of size 𝑘

7

Example

8

Independent set of size 6

Vertex Cover

• Vertex Cover:
• 𝐶 ⊆ 𝑉 is a vertex cover if every edge in 𝐸 has one of its endpoints in 𝐶

• Vertex Cover Problem:
• Given a graph 𝐺 = (𝑉, 𝐸) and a number 𝑘, determine if there is a vertex

cover 𝐶 of size 𝑘

9

Example

10

Vertex cover of size 5

It’s easy to convert an Independent Set into a
Vertex Cover!

𝑆 is an independent set of 𝐺 iff 𝑉 − 𝑆 is a vertex cover of 𝐺

11

Independent Set
Vertex Cover

It’s easy to convert a Vertex Cover into an
Independent Set!

𝑆 is an independent set of 𝐺 iff 𝑉 − 𝑆 is a vertex cover of 𝐺

12

Independent SetVertex Cover

Solving Vertex Cover and Independent Set

• Algorithm to solve vertex cover
• Input: 𝐺 = (𝑉, 𝐸) and a number 𝑘

• Output: True if 𝐺 has a vertex cover of size 𝑘
• Check if there is an Independent Set of 𝐺 of size 𝑉 − 𝑘

• Algorithm to solve independent set
• Input: 𝐺 = (𝑉, 𝐸) and a number 𝑘

• Output: True if 𝐺 has an independent set of size 𝑘
• Check if there is a Vertex Cover of 𝐺 of size 𝑉 − 𝑘

Either both problems belong
to 𝑃, or else neither does!

Reduction

• A strategy for creating algorithms

• Solve one problem by converting it into a different problem, then
using an algorithm for that other problem.

Independent Set Reduces To Vertex Cover

15

Use same graph
Set 𝑘 = 𝑉 − 𝑘

Reduction

Relate Independent Set input to
Vertex Cover output

Any Algorithm for
Vertex Cover

Relate Independent Set output to
Vertex Cover output

O(V) TimeIndependent Set Input Vertex Cover Input

Vertex Cover OuputIndependent Set Output

𝑘
𝑘

Give same output

Reductions

16

Shows how two different problems relate to each other

MacGyver’s Reduction

17

Opening a door

Problem we don’t know how to solve

Lighting a fire

Problem we do know how to solve

Alcohol, wood,
matches

Solution for 𝑩

𝐴 𝐵

Keg cannon
battering ram

Solution for 𝑨

Aim duct at door,
insert keg

H
o

w
?

Put fire under the Keg

Reduction

NP-Hard

• How can we try to figure out if P=NP?

• Identify problems at least as “hard” as NP
• If any of these “hard” problems can be solved in

polynomial time, then all NP problems can be solved in
polynomial time.

• Definition: NP-Hard:
• 𝐵 is NP-Hard provided EVERY problem within NP

reduces to 𝐵 in polynomial time

18

𝐸𝑋𝑃

𝑃

𝑁𝑃

NP-Hard Idea

19

Any NP Problem An NP-Hard Problem

Solution for 𝑩

𝐴 𝐵

Solution for 𝑨

Reduction

𝑌𝑋

𝑂(𝑛𝑝)

For every NP problem

There exists a
polynomial-time
reduction to each NP-
Hard Problem

So if this was 𝑂 𝑛𝑝
we can solve any NP
problem in
polynomial time

Showing NP-Hardness

20

A First NP-Hard
 Problem

A new NP-Hard Problem

Solution for 𝑩

𝐴
𝐵

Solution for 𝑨

Reduction

𝑌𝑋

𝑂(𝑛𝑝)

Reduction

𝑂(𝑛𝑝)

𝐶

𝑍

Any NP Problem

Solution for 𝑪

NP-Complete

• A set of “together they stand, together they fall” problems

• The problems in this set either all belong to 𝑃, or none of them do

• Intuitively, the “hardest” problems in NP

• Collection of problems from 𝑁𝑃 that can all be “transformed” into
each other in polynomial time
• Like we could transform independent set to vertex cover, and vice-versa

• We can also transform vertex cover into Hamiltonian path, and Hamiltonian
path into independent set, and …

Another Representation

𝐸𝑋𝑃 ⊃ 𝑁𝑃 − 𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑒 ⊇ 𝑁𝑃 ⊇ 𝑃
𝑃 = 𝑁𝑃 iff some problem from
𝑁𝑃 − 𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑒 belongs to 𝑃 𝐸𝑋𝑃

𝑃

𝑁𝑃

Sorting
Shortest Path
Euler Path

Cryptography
Prime factorization

Checkers
Go
Chess

Vertex Cover
Independent Set
Hamiltonian Path

NP-Complete

• “Together they stand, together they fall”

• Problems solvable in polynomial time iff ALL NP
problems are

• NP-Complete = NP ∩ NP-Hard

• How to show a problem is NP-Complete?
• Show it belongs to NP

• Give a polynomial time verifier

• Show it is NP-Hard
• Give a reduction from another NP-H problem

24

𝐸𝑋𝑃

𝑃

𝑁𝑃

NP-Completeness

25

Any NP-Complete Problem Any other NP-Complete Problem

Solution for 𝑩

𝐴 𝐵

Solution for 𝑨

Reduction

𝑌𝑋

𝑂(𝑛𝑝)

If this could be done
in polynomial time

Then this could be
done in polynomial
time

26

Any NP-Complete Problem Any other NP-Complete Problem

Solution for 𝑩

𝐴 𝐵

Solution for 𝑨

Reduction

𝑌𝑋

𝑂(𝑛𝑝)

Then this cannot be
done in polynomial
time

If this cannot be
done in polynomial
time

NP-Completeness

Overview

• Problems not belonging to 𝑃 are considered intractable

• The problems within 𝑁𝑃 have some properties that make them seem
like they might be tractable, but we’ve been unsuccessful with finding
polynomial time algorithms for many

• The class 𝑁𝑃 − 𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑒 contains problems with the properties:
• All members are also members of 𝑁𝑃
• All members of 𝑁𝑃 can be transformed into every member of 𝑁𝑃 −
𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑒
• Because they are both 𝑁𝑃 and 𝑁𝑃 − 𝐻𝑎𝑟𝑑

• If any one member of 𝑁𝑃 − 𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑒 belongs to 𝑃, then 𝑃 = 𝑁𝑃
• If any one member of 𝑁𝑃 − 𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑒 is outside of 𝑃, then 𝑃 ≠ 𝑁𝑃

Why should YOU care?
• If you can find a polynomial time algorithm for any 𝑁𝑃 − 𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑒 problem then:

• You will win $1million

• You will win a Turing Award

• You will be world famous

• You will have done something that no one else on Earth has been able to do in spite of the
above!

• If you are told to write an algorithm a problem that is 𝑁𝑃 − 𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑒
• You can tell that person everything above to set expectations

• Change the requirements!

• Approximate the solution: Instead of finding a path that visits every node, find a path that visits
at least 75% of the nodes

• Add Assumptions: problem might be tractable if we can assume the graph is acyclic, a tree

• Use Heuristics: Write an algorithm that’s “good enough” for small inputs, ignore edge cases

Why should YOU care?

• The entire field of cryptography relies on it (nearly at least)
• Requires decrypting with a key is easier than decrypting without a key

• This is strongly related to requiring a difference in difficulty between verifying a candidate solution
and finding a solution in the first place

• If 𝑃 ≠ 𝑁𝑃
• Some problems remain intractable

• Cryptography persists

• If 𝑃 = 𝑁𝑃
• We may get efficient solutions for important problems

• Cryptography is potentially doomed.

	Slide 1: CSE 332 Autumn 2024 Lecture 28: NP-Completeness
	Slide 2: Tractability
	Slide 3: Complexity Classes
	Slide 4: Complexity Classes and Tractability
	Slide 5: Some problems in cap E cap X cap P seem “easier”
	Slide 6: cap E cap X cap P superset of cap N cap P superset or equals cap P
	Slide 7: Independent Set
	Slide 8: Example
	Slide 9: Vertex Cover
	Slide 10: Example
	Slide 11: It’s easy to convert an Independent Set into a Vertex Cover!
	Slide 12: It’s easy to convert a Vertex Cover into an Independent Set!
	Slide 13: Solving Vertex Cover and Independent Set
	Slide 14: Reduction
	Slide 15: Independent Set Reduces To Vertex Cover
	Slide 16: Reductions
	Slide 17: MacGyver’s Reduction
	Slide 18: NP-Hard
	Slide 19: NP-Hard Idea
	Slide 20: Showing NP-Hardness
	Slide 21: NP-Complete
	Slide 22: Another Representation
	Slide 23: cap E cap X cap P superset of cap N cap P minus cap C o m p l e t e superset or equals cap N cap P superset or equals cap P
	Slide 24: NP-Complete
	Slide 25: NP-Completeness
	Slide 26: NP-Completeness
	Slide 27: Overview
	Slide 28: Why should YOU care?
	Slide 29: Why should YOU care?

