
CSE 332 Autumn 2024
Lecture 28: NP-Completeness

Nathan Brunelle, Chandni Rajasekaran

http://www.cs.uw.edu/332

http://www.cs.uw.edu/332


Tractability

• Tractable: 
• Feasible to solve in the “real world” 

• Intractable: 
• Infeasible to solve in the “real world” 

• Whether a problem is considered “tractable” or “intractable” depends on 
the use case
• For machine learning, big data, etc. tractable might mean O(𝑛) or even 𝑂(log 𝑛)
• For most applications it’s more like 𝑂 𝑛3 or 𝑂(𝑛2)

• A strange pattern: 
• Most “natural” problems are either done in small-degree polynomial (e.g. 𝑛2 ) or 

else exponential time (e.g. 2𝑛)
• It’s rare to have problems which require a running time of 𝑛5, for example



Complexity Classes

• A Complexity Class is a set of problems (e.g. sorting, Euler path, 
Hamiltonian path)
• The problems included in a complexity class are those whose most efficient 

algorithm has a specific upper bound on its running time (or memory use, or…)

• Examples:
• The set of all problems that can be solved by an algorithm with running time 𝑂 𝑛

• Contains: Finding the minimum of a list, finding the maximum of a list, buildheap, summing a 
list, etc.

• The set of all problems that can be solved by an algorithm with running time 𝑂 𝑛2

• Contains: everything above as well as sorting, Euler path

• The set of all problems that can be solved by an algorithm with running time 𝑂 𝑛!
• Contains: everything we’ve seen in this class so far



Complexity Classes and Tractability

• To explore what problems are and are not tractable, we give some 
complexity classes special names:

• Complexity Class 𝑃:
• Stands for “Polynomial”
• The set of problems which have an algorithm whose running time is 𝑂(𝑛𝑝) for some 

choice of 𝑝 ∈ ℝ.
• We say all problems belonging to 𝑃 are “Tractable”

• Complexity Class 𝐸𝑋𝑃:
• Stands for “Exponential”

• The set of problems which have an algorithm whose running time is 𝑂 2𝑛
𝑝

for 
some choice of 𝑝 ∈ ℝ

• We say all problems belonging to 𝐸𝑋𝑃 − 𝑃 are “Intractable”
• Disclaimer: Really it’s all problems outside of 𝑃, and there are problems which do not belong 

to 𝐸𝑋𝑃, but we’re not going to worry about those in this class



Some problems in 𝐸𝑋𝑃 seem “easier”

• There are some problems that we do not have polynomial time 
algorithms to solve, but provided answers are easy to check

• Hamiltonian Path:
• It’s “hard” to look at a graph and determine whether it has a Hamiltonian 

Path

• It’s “easy” to look at a graph and a candidate path together and determine 
whether THAT path is a Hamiltonian Path 
• It’s easy to verify whether a given path is a Hamiltonian path



𝐸𝑋𝑃 ⊃ 𝑁𝑃 ⊇ 𝑃
𝐸𝑋𝑃

Exponential

Upper bounded by 2𝑛
𝑝

𝑃
Polynomial

Upper bounded by 𝑛𝑝

𝑁𝑃
Nondeterministic Polynomial

Verified in 𝑛𝑝 time



Independent Set

• Independent set: 
• 𝑆 ⊆ 𝑉 is an independent set if no two nodes in 𝑆 share an edge

• Independent Set Problem: 
• Given a graph 𝐺 = (𝑉, 𝐸) and a number 𝑘, determine whether there is an 

independent set 𝑆 of size 𝑘
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Example
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Independent set of size 6



Vertex Cover

• Vertex Cover: 
• 𝐶 ⊆ 𝑉 is a vertex cover if every edge in 𝐸 has one of its endpoints in 𝐶

• Vertex Cover Problem: 
• Given a graph 𝐺 = (𝑉, 𝐸) and a number 𝑘, determine if there is a vertex 

cover 𝐶 of size 𝑘
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Example
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Vertex cover of size 5



It’s easy to convert an Independent Set into a 
Vertex Cover!

𝑆 is an independent set of 𝐺 iff 𝑉 − 𝑆 is a vertex cover of 𝐺
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Independent Set
Vertex Cover



It’s easy to convert a Vertex Cover into an 
Independent Set!

𝑆 is an independent set of 𝐺 iff 𝑉 − 𝑆 is a vertex cover of 𝐺
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Independent SetVertex Cover



Solving Vertex Cover and Independent Set

• Algorithm to solve vertex cover
• Input: 𝐺 = (𝑉, 𝐸) and a number 𝑘

• Output: True if 𝐺 has a vertex cover of size 𝑘
• Check if there is an Independent Set of 𝐺 of size 𝑉 − 𝑘

• Algorithm to solve independent set
• Input: 𝐺 = (𝑉, 𝐸) and a number 𝑘

• Output: True if 𝐺 has an independent set of size 𝑘
• Check if there is a Vertex Cover of 𝐺 of size 𝑉 − 𝑘

Either both problems belong 
to 𝑃, or else neither does!



Reduction

• A strategy for creating algorithms

• Solve one problem by converting it into a different problem, then 
using an algorithm for that other problem.



Independent Set Reduces To Vertex Cover
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Use same graph
Set 𝑘 = 𝑉 − 𝑘

Reduction

Relate Independent Set input to 
Vertex Cover output

Any Algorithm for 
Vertex Cover

Relate Independent Set output to 
Vertex Cover output

O(V) TimeIndependent Set Input Vertex Cover Input

Vertex Cover OuputIndependent Set Output

𝑘
𝑘

Give same output



Reductions
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Shows how two different problems relate to each other



MacGyver’s Reduction
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Opening a door

Problem we don’t know how to solve

Lighting a fire

Problem we do know how to solve

Alcohol, wood, 
matches

Solution for 𝑩

𝐴 𝐵

Keg cannon 
battering ram

Solution for 𝑨

Aim duct at door, 
insert keg

H
o

w
?

Put fire under the Keg

Reduction



NP-Hard

• How can we try to figure out if P=NP?

• Identify problems at least as “hard” as NP
• If any of these “hard” problems can be solved in 

polynomial time, then all NP problems can be solved in 
polynomial time.

• Definition: NP-Hard:
• 𝐵 is NP-Hard provided EVERY problem within NP 

reduces to 𝐵 in polynomial time
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𝐸𝑋𝑃

𝑃

𝑁𝑃



NP-Hard Idea
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Any NP Problem An NP-Hard Problem

Solution for 𝑩

𝐴 𝐵

Solution for 𝑨

Reduction

𝑌𝑋

𝑂(𝑛𝑝)

For every NP problem

There exists a 
polynomial-time 
reduction to each NP-
Hard Problem

So if this was 𝑂 𝑛𝑝  
we can solve any NP 
problem in 
polynomial time



Showing NP-Hardness
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A First NP-Hard
 Problem

A new NP-Hard Problem

Solution for 𝑩

𝐴
𝐵

Solution for 𝑨

Reduction

𝑌𝑋

𝑂(𝑛𝑝)

Reduction

𝑂(𝑛𝑝)

𝐶

𝑍

Any NP Problem

Solution for 𝑪



NP-Complete

• A set of “together they stand, together they fall” problems

• The problems in this set either all belong to 𝑃, or none of them do

• Intuitively, the “hardest” problems in NP

• Collection of problems from 𝑁𝑃 that can all be “transformed” into 
each other in polynomial time
• Like we could transform independent set to vertex cover, and vice-versa

• We can also transform vertex cover into Hamiltonian path, and Hamiltonian 
path into independent set, and …



Another Representation



𝐸𝑋𝑃 ⊃ 𝑁𝑃 − 𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑒 ⊇ 𝑁𝑃 ⊇ 𝑃 
𝑃 = 𝑁𝑃 iff some problem from 
𝑁𝑃 − 𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑒 belongs to 𝑃 𝐸𝑋𝑃

𝑃

𝑁𝑃

Sorting
Shortest Path
Euler Path

Cryptography
Prime factorization

Checkers
Go
Chess

Vertex Cover
Independent Set
Hamiltonian Path



NP-Complete

• “Together they stand, together they fall”

• Problems solvable in polynomial time iff ALL NP 
problems are

• NP-Complete = NP ∩ NP-Hard

• How to show a problem is NP-Complete?
• Show it belongs to NP

• Give a polynomial time verifier

• Show it is NP-Hard
• Give a reduction from another NP-H problem
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𝐸𝑋𝑃

𝑃

𝑁𝑃



NP-Completeness
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Any NP-Complete Problem Any other NP-Complete Problem

Solution for 𝑩

𝐴 𝐵

Solution for 𝑨

Reduction

𝑌𝑋

𝑂(𝑛𝑝)

If this could be done 
in polynomial time

Then this could be 
done in polynomial 
time
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Any NP-Complete Problem Any other NP-Complete Problem

Solution for 𝑩

𝐴 𝐵

Solution for 𝑨

Reduction

𝑌𝑋

𝑂(𝑛𝑝)

Then this cannot be 
done in polynomial 
time

If this cannot be 
done in polynomial 
time

NP-Completeness



Overview

• Problems not belonging to 𝑃 are considered intractable

• The problems within 𝑁𝑃 have some properties that make them seem 
like they might be tractable, but we’ve been unsuccessful with finding 
polynomial time algorithms for many

• The class 𝑁𝑃 − 𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑒 contains problems with the properties:
• All members are also members of 𝑁𝑃
• All members of 𝑁𝑃 can be transformed into every member of 𝑁𝑃 −
𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑒
• Because they are both 𝑁𝑃 and 𝑁𝑃 − 𝐻𝑎𝑟𝑑

• If any one member of 𝑁𝑃 − 𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑒 belongs to 𝑃, then 𝑃 = 𝑁𝑃
• If any one member of 𝑁𝑃 − 𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑒 is outside of 𝑃, then 𝑃 ≠ 𝑁𝑃



Why should YOU care?
• If you can find a polynomial time algorithm for any 𝑁𝑃 − 𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑒 problem then:

• You will win $1million

• You will win a Turing Award

• You will be world famous

• You will have done something that no one else on Earth has been able to do in spite of the 
above!

• If you are told to write an algorithm a problem that is 𝑁𝑃 − 𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑒
• You can tell that person everything above to set expectations

• Change the requirements!

• Approximate the solution: Instead of finding a path that visits every node, find a path that visits 
at least 75% of the nodes

• Add Assumptions: problem might be tractable if we can assume the graph is acyclic, a tree

• Use Heuristics: Write an algorithm that’s “good enough” for small inputs, ignore edge cases



Why should YOU care?

• The entire field of cryptography relies on it (nearly at least)
• Requires decrypting with a key is easier than decrypting without a key

• This is strongly related to requiring a difference in difficulty between verifying a candidate solution 
and finding a solution in the first place

• If 𝑃 ≠ 𝑁𝑃
• Some problems remain intractable 

• Cryptography persists

• If 𝑃 = 𝑁𝑃
• We may get efficient solutions for important problems

• Cryptography is potentially doomed.
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