
University of Washington CSE 332 16 August 2024

Final Exam
Summer 2024

Name Answer Key

Net ID (@uw.edu)

Academic Integrity: You may not use any resources on this exam except for your one-page
(front and back) reference sheet, writing instruments, your own brain, and the exam packet
itself. This exam is otherwise closed notes, closed neighbor, closed electronic devices, etc..
The last three pages of this exam provide a list of potentially helpful identities, the code
referenced in Section 5, and room for scratch work (respectively). Please detach those last
three pages from the exam packet. No markings on these last three pages will be graded.
Your answer for each question must fit in the answer box provided.

Instructions: Before you begin, Put your name and UW Net ID at the top of this
page. Make sure that your name and ID are LEGIBLE. Please ensure that all of your
answers appear within the boxed area provided.

Section Max Points
Hash Tables 16

Sorting 9
Graphs 13

Parallelism 15
Concurrency 13
Extra Credit (+2)

Total 66

CSE 332 2 Final Exam

Section 1: Hash Tables
(2 pts)Question 1: Clustering
Using 1-2 sentences, explain how quadratic probing addresses the clustering problem of linear probing.

When there is a collision, quadratic probing searches increasingly far away, so clusters of
occupied indices are less likely to grow.

(2 pts)Question 2: Double Hashing v. Quadratic Probing
Using 1-2 sentences, explain one improvement that double hashing makes compared to quadratic probing.

In quadratic probing, when two keys has to the same index, they will follow the same probing
pattern and therefore collide at all the same places. In double hashing we use a second hash
function to make it unlikely for this to occur.

(2 pts)Question 3: Separate Chaining v. Open Addressing
In 1-2 sentences, explain why, in general, a separate chaining hash table permits a larger load factor before
resizing compared to an open addressing hash table.

It’s impossible for an open addressing hash table to have a load factor greater than 1.

Creative Commons BY-NC 4.0 Nathan Brunelle

https://creativecommons.org/licenses/by-nc/4.0/

CSE 332 3 Final Exam

(5 pts)Question 4: Quadratic Probing
Insert 27, 39, 18, 17, 29, 37, 16 (in that order) into the open addressing hash table below. You should
use the primary hash function h(k) = k%10. In the case of collisions, use quadratic probing for collision
resolution. If an item cannot be inserted into the table, indicate this and continue inserting the remaining
values. Do not resize the hash table.

Items that could not be inserted:

0 29

1 17

2

3

4

5 16

6 37

7 27

8 18

9 39

Creative Commons BY-NC 4.0 Nathan Brunelle

https://creativecommons.org/licenses/by-nc/4.0/

CSE 332 4 Final Exam

(5 pts)Question 5: Double Hashing
Insert 18, 28, 38, 14, 22 (in that order) into the open addressing hash table below. You should use the
primary hash function h(k) = k%10. In the case of collisions, use double hashing for collision resolution
where the secondary hash function is g(k) = 1+(k%7). If an item cannot be inserted into the table, indicate
this and continue inserting the remaining values. Do not resize the hash table.

Items that could not be inserted:

0

1

2 38

3

4 14

5

6 22

7

8 18

9 28

Creative Commons BY-NC 4.0 Nathan Brunelle

https://creativecommons.org/licenses/by-nc/4.0/

CSE 332 5 Final Exam

Section 2: Sorting
(4 pts)Question 6: Sorting Olympics
For each scenario below, select the sorting algorithm property the situation most needs, then select the
fastest sorting algorithm with that property. Select only from the options provided.

1. A total of 206 different nations have participated across 30 summer Olympics. The most gold medals
ever one by a country in a single Olympics was the U.S., which won 83 gold medals in 1984. Which
algorithm should we use to sort all 6,000 country-year pairs by the number of gold medals won by
that country in that year?
Property Options: In Place, Stable, Adaptive, Online, Non-Comparison-Based.

Property Needed: non-comparison based

Algorithm Options: Quick Sort, Insertion Sort, Heap Sort, Radix Sort.

Algorithm Suggestion: Radix Sort

2. Suppose we had a list of all runners already sorted by their finish time in the 100 meter dash. A
small number of runners incurred time penalties, so we need to sort the list again to adjust for those
penalties. What algorithm should we use for this second sort?
Property Options: In Place, Stable, Adaptive, Online, Non-Comparison-Based.

Property Needed: Adaptive

Algorithm Options: Quick Sort, Insertion Sort, Merge Sort.

Algorithm Suggestion: Insertion Sort

(2 pts)Question 7: In-Place Sort
Which of the following best matches the definition of an in-place sort? Write the letter of your choice in the
box.

A. Items are re-ordered by swapping within the given list data structure

B. There is no randomness used in the sorting algorithm

C. The worst case running time matches the best case running time

D. Items that are already at the correct index will not be moved

E. If you re-run the algorithm on an already-sorted list, no items will change order

A

Creative Commons BY-NC 4.0 Nathan Brunelle

https://creativecommons.org/licenses/by-nc/4.0/

CSE 332 6 Final Exam

(3 pts)Question 8: Quick Sort Runtime
Using 1-2 sentences, explain why the method used to select the pivot for Quick Sort should not take more
than linear time.

If the pivot takes more than linear time to select, then the solution to the recurrence relation
for its running time will be worse than n log n.

Creative Commons BY-NC 4.0 Nathan Brunelle

https://creativecommons.org/licenses/by-nc/4.0/

CSE 332 7 Final Exam

Section 3: Graphs
(2 pts)Question 9: BFS
For the graph below, list the nodes in an order that they might be removed from the queue in a BFS
starting from node 1 (note that this is the same as the previous graph, but now undirected).

BFS Order: 1, [3 and 4], [2 and 5], 6, 7
(e.g. 1,3,4,5,2,6,7)

(2 pts)Question 10: DFS
Using the same graph as the previous problem, list the nodes in a depth-first-search order starting from
node 1. If there are multiple choices for the next node, you should always select the node with the smallest
value first.

BFS Order: 1,3,5,6,7,4,2

(1 pt)Question 11: Back Edge
Identify the first back edge found by the DFS done in the previous problem.

(7,3)

(2 pts)Question 12: Dijkstras
For the graph below, list the nodes in an order that they might be removed from the priority queue when
running Dijkstra’s algorithm starting from node 1 (note that this is the same as the previous graph, but
now with weights).

Dijkstra’s Order: 1,4,3,5,2,6,7

Creative Commons BY-NC 4.0 Nathan Brunelle

https://creativecommons.org/licenses/by-nc/4.0/

CSE 332 8 Final Exam

(6 pts)Question 13: MSTs
The next 2 questions will relate to running minimum spanning tree algorithms (Kruskal’s and Prim’s) on
the graph below (which is the same as the previous graph, but now undirected):

1. What are the weights of the first three edges added to the minimum spanning tree when running
Kruskal’s algorithm?

First edge’s weight: 1

Second edge’s weight: 2

Third edge’s weight: 3

2. What are the weights of the first three edges added to the minimum spanning tree when running
Prims’s algorithm starting with node 1?

First edge’s weight: 6

Second edge’s weight: 4

Third edge’s weight: 2

Creative Commons BY-NC 4.0 Nathan Brunelle

https://creativecommons.org/licenses/by-nc/4.0/

CSE 332 9 Final Exam

Section 4: Parallelism
(8 pts)Question 14: ForkJoin
For this question you will complete a parallel implementation of the following sequential method using the
Java ForkJoin Framework.

static boolean lastEmpty(String[] arr){
int last = -1;
for(int i = 0; i < arr.length; i++){

if (arr[i].length() == 0){
last = i;

}
}
return last;

}

This method returns the last index which contains the empty string from a given array of strings, or -1 if the
empty string does not appear in the list. For example, given the array ["0" , "1" , "" , "3" , "" , "5"]
the method would return 4.

On the next page we have an incomplete parallel implementation of lastEmpty using ForkJoin. In particular,
we have provided:

– A Client class that has the lastEmpty method.

– Fields for the LastEmptyTask class

– The constructor for the LastEmptyTask class

– The signature of the compute method as well as the sequential code that will run when the problem size
is within the sequential cutoff.

And the code is missing:

– The body of the lastEmpty method, which should create an instance of LastEmptyTask and then call
the invoke method of ForkJoinPool. (Starts on line 6)

– The class that LastEmptyTask should extend. (Line 10)

– The parallelized portion of the compute method. (Starts on line 31)

Complete our implementation by providing the missing code in the boxes following the code.

Creative Commons BY-NC 4.0 Nathan Brunelle

https://creativecommons.org/licenses/by-nc/4.0/

CSE 332 10 Final Exam

1 import java.util.concurrent.*;
2

3 public class Client {
4 public static final ForkJoinPool POOL = new ForkJoinPool();
5 public static int lastEmpty (String[] input) {
6 // Part 1 answer will go here
7 }
8 }
9

10 public class LastEmptyTask extends ??? { // Part 2 will replace the ???
11 String[] arr;
12 int hi;
13 int lo;
14

15 public LastEmptyTask(String[] arr, int lo, int hi){
16 this.arr = arr;
17 this.hi = hi;
18 this.lo = lo;
19 }
20

21 public Integer compute(){
22 if(hi-lo < 100){
23 int last = -1;
24 for(int i = lo; i < hi; i++){
25 if (arr[i].length() == 0){
26 last = i;
27 }
28 }
29 return last;
30 }
31 // Your implementation of compute from Part 3 will go here.
32 }
33 }

Creative Commons BY-NC 4.0 Nathan Brunelle

https://creativecommons.org/licenses/by-nc/4.0/

CSE 332 11 Final Exam

Finish the code in the boxes below:

1. Implement the body of lastEmpty in the box provided. The code you provide will be placed starting
at line 6 of the code above

return POOL.invoke(new LastEmptyTask(input, 0, input.length);

2. Finish line 10 from the code above by filling the in the ??? with the class that LastEmptyTask should
extend.

RecursiveTask<Integer>

3. Finally, finish the compute method. Your code will begin on line 31 above.

int mid = lo+(hi-lo)/2;
LastEmptyTask left = new LastEmptyTask(arr, lo, mid);
left.fork();
LastEmptyTask right = new LastEmptyTask(arr, mid, hi);
int rightans = right.compute();
if(rightans >= 0)

return rightans;
return left.join();

Creative Commons BY-NC 4.0 Nathan Brunelle

https://creativecommons.org/licenses/by-nc/4.0/

CSE 332 12 Final Exam

(4 pts)Question 15: Parallel Prefix
Given the array [3, 7, 0, 8] as input, fill in the tree below as it would be completed by the parallel
prefix sum algorithm.

(3 pts)Question 16: Amdahl’s Law
Suppose we have a program in which a 3

4 proportion can be parallelized with perfect linear speedup. Using
T1 = 1, answer the following using Amdahl’s Law:

1. What is T2?

5
8

2. What is T4?

7
16

3. What is T10?

13
40

Creative Commons BY-NC 4.0 Nathan Brunelle

https://creativecommons.org/licenses/by-nc/4.0/

CSE 332 13 Final Exam

Section 5: Concurrency
The remaining questions in this section use the classes below in a parallel implementation. Both relate to
finding socks in a sock drawer. Two socks will match whenever they have the same color. To find a match
we select a first sock at random, then repeatedly select a second sock at random until a match is found.

1 public static Random r = new Random();
2 public class Sock{
3 public String color;
4 public boolean isDirty = false;
5 public Sock(String color){
6 this.color = color;
7 }
8 public synchronized void wear(){
9 if(this.isDirty)

10 System.out.println("GROSS");
11 this.isDirty = true;
12 }
13 }
14 public class SockDrawer{
15 public List<Sock> drawer;
16 public SockDrawer(){
17 this.drawer = new ArrayList<>();
18 }
19 public Sock pickRandom(){
20 synchronized(drawer){
21 int choice = r.nextInt(0, drawer.size());
22 return drawer.get(choice);
23 }
24 }
25 public synchronized void putOn(Sock sock){
26 sock.wear();
27 drawer.remove(sock);
28 }
29 public void wearPair(){
30 Sock sock1 = pickRandom();
31 synchronized(sock1){
32 findMatch(sock1);
33 }
34 }
35 public Sock findMatch(Sock sock1){
36 Sock sock2 = pickRandom();
37 while(!sock2.color.equals(sock1.color) || sock1==sock2){
38 sock2 = pickRandom();
39 }
40 putOn(sock1);
41 putOn(sock2);
42 }
43 }

Creative Commons BY-NC 4.0 Nathan Brunelle

https://creativecommons.org/licenses/by-nc/4.0/

CSE 332 14 Final Exam

Note: The code is also provided on the last page of the exam, which you may detach for convenient reference.

(3 pts)Question 17: Race Condition
If wearPair is run sequentially, it is impossible for the code to print GROSS, regardless of the contents
of the drawer. If two threads are both executing the wearPair, however, this is possible. Describe the
drawer’s contents and an interleaving that causes the code to print GROSS.

if two threads pick the same sock1 but different matching sock2’s (for example).

Is the error in this code a Data Race or a Bad Interleaving error? Write either DR or BI in the box to
indicate your answer.

BI

(2 pts)Question 18: Deadlock
This code additionally contains a potential for deadlock. Using about 3 sentences, explain how a deadlock
could occur.

Consider there are exactly 2 black socks. Thread 1 selects a black sock as sock1 then Thread
2 selects the other black sock as sock1. Then when inside of findMatch, they must wait on
each other to release their locks.

Creative Commons BY-NC 4.0 Nathan Brunelle

https://creativecommons.org/licenses/by-nc/4.0/

CSE 332 15 Final Exam

(8 pts)Question 19: Deadlock and/or Race Condition
Below we provide alternative implementations of the wearPair method.

For each implementation, consider two threads invoking the wearPair method. Indicate whether it is still
possible for the code to print "GROSS" and whether there is still a potential for deadlock by writing "yes"
or "no" in the corresponding box. Assume all code except for wearPair remains unchanged.

public void wearPair(){
Sock sock1 = drawer.get(0);
synchronized(sock1){

findMatch(sock1);
}

}

1. Deadlock? No

2. Can Print GROSS? Yes

public void wearPair(){
Sock sock1 = drawer.get(drawer.size()-1);
synchronized(sock1){

findMatch(sock1);
}

}

3. Deadlock? Yes

4. Can Print GROSS? Yes

public void wearPair(){
synchronized(drawer){

Sock sock1 = pickRandom();
findMatch(sock1);

}
}

5. Deadlock? No

6. Can Print GROSS? No

public void wearPair(){
Sock sock1 = pickRandom();
synchronized(sock1){

drawer.remove(sock1)
findMatch(sock1);

}
}

7. Deadlock? No

8. Can Print GROSS? Yes

Creative Commons BY-NC 4.0 Nathan Brunelle

https://creativecommons.org/licenses/by-nc/4.0/

CSE 332 16 Final Exam

Extra Credit
(2 pts)Question : Well Done!
Overall, Nathan has felt that this has been an exceptional group of students, and is very proud of you
all! More importantly, though, you should be proud of yourselves! Name one thing you accomplished this
summer that you’re proud of.

...

Creative Commons BY-NC 4.0 Nathan Brunelle

https://creativecommons.org/licenses/by-nc/4.0/

CSE 332 17 Final Exam

Scratch Work
Nothing written on this page will be graded.

Creative Commons BY-NC 4.0 Nathan Brunelle

https://creativecommons.org/licenses/by-nc/4.0/

CSE 332 18 Final Exam

Identities
Nothing written on this page will be graded.

Summations

∞∑
i=0

xi = 1
1 − x

for |x|< 1

n−1∑
i=0

=
i=1∑
n

= n

n∑
i=0

i = 0 +
i=1∑
n

i = n(n + 1)
2

n∑
i=1

i2 = n(n + 1)(2n + 1)
6 = n3

3 + n2

2 + n

6
n∑

i=0
i3 =

(
n(n + 1)

2

)2
= n4

4 + n3

2 + n2

4
n−1∑
i=0

xi = 1 − xn

1 − x

n−1∑
i=0

1
2i

= 2 − 1
2n−1

Logs

xlogx(n) = n

loga(bc) = c loga(b)
alogb(c) = clogb(a)

logb(a) = logd(a)
logd(b)

Creative Commons BY-NC 4.0 Nathan Brunelle

https://creativecommons.org/licenses/by-nc/4.0/

CSE 332 19 Final Exam

Section 5 Code
1 public static Random r = new Random();
2 public class Sock{
3 public String color;
4 public boolean isDirty = false;
5 public Sock(String color){
6 this.color = color;
7 }
8 public synchronized void wear(){
9 if(this.isDirty)

10 System.out.println("GROSS");
11 this.isDirty = true;
12 }
13 }
14 public class SockDrawer{
15 public List<Sock> drawer;
16 public SockDrawer(){
17 this.drawer = new ArrayList<>();
18 }
19 public Sock pickRandom(){
20 synchronized(drawer){
21 int choice = r.nextInt(0, drawer.size());
22 return drawer.get(choice);
23 }
24 }
25 public synchronized void putOn(Sock sock){
26 sock.wear();
27 drawer.remove(sock);
28 }
29 public void wearPair(){
30 Sock sock1 = pickRandom();
31 synchronized(sock1){
32 findMatch(sock1);
33 }
34 }
35 public Sock findMatch(Sock sock1){
36 Sock sock2 = pickRandom();
37 while(!sock2.color.equals(sock1.color) || sock1==sock2){
38 sock2 = pickRandom();
39 }
40 putOn(sock1);
41 putOn(sock2);
42 }
43 }

Creative Commons BY-NC 4.0 Nathan Brunelle

https://creativecommons.org/licenses/by-nc/4.0/

