Sample Midterm Exam

Autumn 2024

Name			
	Net ID	(Ouw edu)	

Academic Integrity: You may not use any resources on this exam except for your one-page (front and back) reference sheet, writing instruments, your own brain, and the exam packet itself. This exam is otherwise closed notes, closed neighbor, closed electronic devices, etc.. The last two pages of this exam provide a list of potentially helpful identities as well as room for scratch work (respectively). Please detach those last two pages from the exam packet. No markings on these last two pages will be graded. Your answer for each question must fit in the answer box provided.

Instructions: Before you begin, Put your name and UW Net ID at the top of this page. Make sure that your name and ID are LEGIBLE. Please ensure that all of your answers appear within the boxed area provided.

Section	Max Points
ADTs and Data Structures	11
Asymptotic Analysis	11
Heaps	15
AVL Trees	15
Hashing	11
Algorithms	4
Extra Credit	(+2)
Total	67

Section 1: ADTs and Data Structures

(5 pts)Question 1: ADT vs Data Structure

For each of the following, indicate whether it is a Data Structure or an Abstract Data Type by writing DS or ADT (respectively) in the box provided.

1.	Binary Search Tree:
2.	Heap:
3.	Queue:
4.	Dictionary:
5.	AVL Tree:
W	pts) Question 2: Name that ADT rite the name of the ADT that would be most appropriate for each use case below. Please name only DTs that we have discussed in this quarter thus far.
1.	There's a long line for seeking help in office hours, and we want to help students in the order that they've arrived.
2.	There's a long line for seeking help in office hours, and we want to help students in order of who has received the most hearts on Ed (keeping in mind students may gain hearts as they're waiting)
3.	We want to track and update the number of times that each student has come to office hours before

Section 2: Asymptotic Analysis

(4 pts)Question 3: Asymptotic Analysis of Code

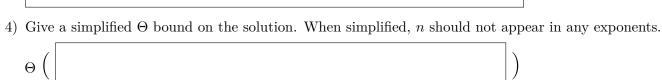
Give a simplified Θ bound on the best and worst case running times for each method below. (By simplified we mean it should contain no constant coefficients or non-dominant terms.)

Each method adds all contents of the given array to a different data structure. Assume that all items in the array are distinct (no item appears multiples times). The comment beside each insert operation is included as a reminder of the order of the parameters.

```
// add into an AVL tree
                                                            1. Best Case: \Theta
public void addAVL(int[] arr){
    AVLTree<Integer> avl = new AVLTree<>();
    for(int i = 0; i < arr.length; i++){</pre>
         avl.insert(arr[i], i); // key, value
                                                            2. Worst Case: \Theta
    }
}
// add into a Binary Search Tree
                                                            3. Best Case: \Theta
public void addBST(int[] arr){
    BSearchTree<Integer> bst = new BSearchTree<>();
    for(int i = 0; i < arr.length; i++){</pre>
        bst.insert(arr[i], i); // key, value
                                                            4. Worst Case: Θ
    }
}
// add into a Binary Min Heap
public void addHeap(int[] arr){
                                                            5. Best Case: \Theta
    MinHeap<Integer> heap = new MinHeap<>();
    for(int i = 0; i < arr.length; i++){</pre>
        heap.insert(arr[i], i); // value, priority
                                                            6. Worst Case: \Theta
}
// add into a Binary Max Heap
public void addHeap(int[] arr){
                                                            7. Best Case: \Theta
    MaxHeap<Integer> heap = new MaxHeap<>();
    for(int i = 0; i < arr.length; i++){</pre>
        heap.insert(arr[i], i); // value, priority
                                                            8. Worst Case: Θ
    }
}
```

(4 pts)Question 4: Tree Method

Suppose that the running time of an algorithm is expressed by the recurrence relation:

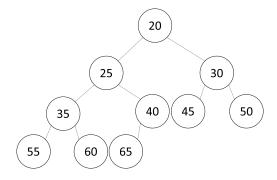

$$T(n) = 3 \cdot T\left(\frac{n}{2}\right) + n^2$$
$$T(1) = 1$$

For the following questions, use the tree method to solve the recurrence relation. We have broken up the process into subquestions to guide you through your answer. You may assume that n is always a power of 2.

1)	Sketch the tree in space below. Include at least the first 3 levels of the tree (i.e. the root, its children	ı,
	and its grandchildren), make clear what the input size is for each recursive call as well as the work per	r
	call.	

Indicate exactly the total Include all constants and n	ne at level i of the t	ree (define the root	to be lev

3) Indicate the level of the tree in which the base cases occur.



Show that $\frac{2n(2n+1)}{2}$	belongs to $O(n^2)$.		

Section 3: Heaps

6

The next three questions relate to the given binary min heap.

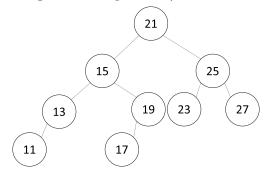
(4 pts)Question 6: True or False

Suppose we added a new node containing x as the right child of the node containing 40. Supposing this heap is still valid, consider each statement below. If that statement guaranteed to be true, then write "True", otherwise write "False".

	,													
1.	$x \ge 65$													
[
l														
2.	$x \ge 40$													
9	/ 15													
3. :	$x \le 45$													
4. :	x > 20													
[
l														
(2 nts)	Questio	n 7: A	rray I	Repres	entatio	n .								
	the arra						n givo	a above	Place	e the re	oot at i	index O	of the	arran
GIVE		y Topic		01 01	lic origi		ip givei	above	. 1 lac				01 0110	
	${f Questio}$													
Perfor	m an ex	tract op	peration	on the	e heap a	nd give	the arr	ay repr	esentat	ion of t	he resu	lting he	ap. Pla	ice the
root a	t index	0 of the	e array.											

(5 pts)Question 9: Binary Heap Math

Answer each question below as it relates to a 0-indexed binary min heap containing 45 items. 0-indexed means the root of the tree is at index 0 in its array representation.


7

1.	What is the height of the tree (recall that a one-node tree has height 0)?
2.	How many items are on the last level of the tree?
3.	If we call percolate up on index 8, which index will we compare to?
4.	If we call percolate down on index 8, which two indices will we compare to?
5.	What is the smallest index which contains a leaf?

Section 4: AVL Trees

(10 pts) Question 10: Rotations

Answer the following questions about the AVL Tree below. Each question should be considered completely independently (i.e. "reset" to the image between questions)

1. Give an integer key which, when inserted into the given AVL tree, would cause a doub.
--

2. Give the smallest integer key which, when given as the argument to insert, would not result in any rotation.

3. If we insert 10 into the tree, which node will become the deepest unbalanced node (from which we will do a rotation)?

4. If we insert 10 into the tree, what type of rotation will we do (Left, Right, Left-Right, or Right-Left)?

5. Give the shortest sequence of keys which, when inserted, would cause in a single left rotation.

(2 pts)Question 11:	Structure property				
	property requires that,				
	most 1. Why do we not	require the subt	trees' heights to	exactly match?	Answer using
1-2 sentences.					
(3 pts)Question 12:	Structure Property				
	describe, at an intuiti	ve level, how th	ne AVL tree stru	ucture property	improves its
worse-case running ti	me.				

Section 5: Hash Tables

$(2 ext{ pts})$ Question 1 Using 1-2 sentence	es, explain how qua	adratic probing	g addresses t	he clustering p	problem of line	ar probing.
2 pts)Question 1	4: Double Hashi	ing v. Quadr	atic Probir	ng		
	es, explain one imp				npared to quad	dratic probing
· - / •	5: Separate Cha	_		_		
	explain why, in gene			sh table permi	its a larger loac	l factor before
resizing compared	to an open addres	sing nash table	e. 			

(5 pts)Question 16: Quadratic Probing

Insert 27, 39, 18, 17, 29, 37, 16 (in that order) into the open addressing hash table below. You should use the primary hash function h(k) = k%10. In the case of collisions, use quadratic probing for collision resolution. If an item cannot be inserted into the table, indicate this and continue inserting the remaining values. Do not resize the hash table.

Items that could not be inserted:	

0	
1	
2	
3	
4	
5	
6	
7	
8	
9	

Section 6: Algorithms

(4 pts)Question 17: Find Next Largest

For each data structure below, describe an algorithm which, when given an item that is currently in the data structure, finds the next largest item in the data structure. Assume that the item given is indeed already present in the data structure.

By next largest item we mean either the item with the smallest key larger than the one given for dictionaries, or the smallest priority that is larger than the one given for priority queues (e.g. min heaps keep the smallest priorities near the root). Make the algorithm as efficient as you can (asymptotically). You may assume the size of the data structure is greater than 1.

1.	Binary Min Heap:
	Asymptotic Running Time: Θ ().
2	AVL Tree:
۷٠	TVE Tree.
	Asymptotic Running Time: Θ ().

Extra Credit

(2 pts) Question Extra Credit: Before In the space below, draw a picture of how you were feeling coming into this exam.					
	Extra Credit: Afte		:		
In the space belo	ow, draw a picture of	now you were reening co	oming into this exam.		
In the space belo	ow, draw a picture of	now you were reening co	oming into this exam.		
In the space belo	ow, draw a picture of	now you were feeling co	oming into this exam.		
In the space belo	ow, draw a picture of	now you were feeling co	oming into this exam.		
In the space belo	ow, draw a picture of	now you were reening co	oming into this exam.		
In the space belo	ow, draw a picture of	now you were reening co	oming into this exam.		
In the space belo	ow, draw a picture of	now you were feeling co	oming into this exam.		
In the space belo	ow, draw a picture of	now you were feeling co	oming into this exam.		
In the space belo	ow, draw a picture of	now you were feeling co	oming into this exam.		
In the space belo	ow, draw a picture of	now you were feeling co	oming into this exam.		
In the space belo	ow, draw a picture of	now you were feeling co	oming into this exam.		

Scratch Work

Nothing written on this page will be graded.

Identities

Nothing written on this page will be graded.

Summations

$$\sum_{i=0}^{\infty} x^{i} = \frac{1}{1-x} \text{ for } |x| < 1$$

$$\sum_{i=0}^{n-1} = \sum_{n=0}^{i=1} = n$$

$$\sum_{i=0}^{n} i = 0 + \sum_{n=0}^{i=1} i = \frac{n(n+1)}{2}$$

$$\sum_{i=1}^{n} i^{2} = \frac{n(n+1)(2n+1)}{6} = \frac{n^{3}}{3} + \frac{n^{2}}{2} + \frac{n}{6}$$

$$\sum_{i=0}^{n} i^{3} = \left(\frac{n(n+1)}{2}\right)^{2} = \frac{n^{4}}{4} + \frac{n^{3}}{2} + \frac{n^{2}}{4}$$

$$\sum_{i=0}^{n-1} x^{i} = \frac{1-x^{n}}{1-x}$$

$$\sum_{i=0}^{n-1} \frac{1}{2^{i}} = 2 - \frac{1}{2^{n-1}}$$

Logs

$$x^{\log_x(n)} = n$$

$$\log_a(b^c) = c \log_a(b)$$

$$a^{\log_b(c)} = c^{\log_b(a)}$$

$$\log_b(a) = \frac{\log_d(a)}{\log_d(b)}$$