CSE 332: Data Structures \& Parallelism Lecture 21: Shortest Paths

Ruth Anderson

Winter 2023

Today

- Graphs
- Shortest Paths

Shortest Path Applications

- Network routing
- Driving directions
- Cheap flight tickets
- Critical paths in project management (see textbook)
- ...

Single source shortest paths

- Done: BFS to find the minimum path length from \mathbf{v} to \mathbf{u} in $O(|\mathrm{E}|+|\mathrm{V}|)$
- Actually, can find the minimum path length from \mathbf{v} to every node
- Still $O(|\mathrm{E}|+(|\mathrm{V}|)$
- No faster way for a "distinguished" destination in the worst-case
- Now: Weighted graphs

Given a weighted graph and node v, find the minimum-cost path from \mathbf{v} to every node

- As before, asymptotically no harder than for one destination
- Unlike before, BFS will not work

Not as easy

Why BFS won't work: Shortest path may not have the fewest edges

- Annoying when this happens with costs of flights

We will assume there are no negative weights

- Problem is ill-defined if there are negative-cost cycles
- Today's algorithm is wrong if edges can be negative

Dijkstra's Algorithm

- Named after its inventor Edsger Dijkstra (1930-2002)
- Truly one of the "founders" of computer science; 1972 Turing Award; this is just one of his many contributions
- Sample quotation: "computer science is no more about computers than astronomy is about telescopes"
- The idea: reminiscent of BFS, but adapted to handle weights
- Grow the set of nodes whose shortest distance has been computed
- Nodes not in the set will have a "best distance so far"
- A priority queue will turn out to be useful for efficiency

Dijkstra's Algorithm: Idea

- Initially, start node has cost 0 and all other nodes have cost ∞
- At each step:
- Pick closest unknown vertex \mathbf{v}
- Add it to the "cloud" of known vertices
- Update distances for nodes with edges from \mathbf{v}
- That's it! (Have to prove it produces correct answers)

The Algorithm

1. For each node \mathbf{v}, set \mathbf{v}.cost $=\infty$ and \mathbf{v}.known $=$ false
2. Set source.cost $=0$
3. While there are unknown nodes in the graph
a) Select the unknown node v with lowest cost
b) Mark v as known
c) For each edge (\mathbf{v}, u) with weight \mathbf{w}, if u is unknown, $\mathrm{c} 1=\mathrm{v} . \operatorname{cost}+\mathrm{w} / /$ cost of best path through v to u c2 = u.cost // cost of best path to u previously known if (c1 < c2) \{ // if the path through v is better
u.cost = c1
u.path $=\mathrm{v} / /$ for computing actual paths \}

Important features

- Once a vertex is marked known, the cost of the shortest path to that node is known
- The path is also known by following back-pointers
- While a vertex is still not known, another shorter path to it might still be found

Example \#1

Features

- When a vertex is marked known, the cost of the shortest path to that node is known
- The path is also known by following back-pointers
- While a vertex is still not known, another shorter path to it might still be found

Note: The "Order Added to Known Set" is not important

- A detail about how the algorithm works (client doesn't care)
- Not used by the algorithm (implementation doesn't care)
- It is sorted by path-cost, resolving ties in some way

Interpreting the Results

- Now that we're done, how do we get the path from, say, A to E?

Order Added to Known Set:
A, C, B, D, F, H, G, E

vertex	known?	cost	path
A	Y	0	
B	Y	2	A
C	Y	1	A
D	Y	4	A
E	Y	11	G
F	Y	4	B
G	Y	8	H
H	Y	7	F

Stopping Short

- How would this have worked differently if we were only interested in:
- The path from A to G ?
- The path from A to D ?

Order Added to Known Set:
A, C, B, D, F, H, G, E

vertex	known?	cost	path
A	Y	0	
B	Y	2	A
C	Y	1	A
D	Y	4	A
E	Y	11	G
F	Y	4	B
G	Y	8	H
H	Y	7	F

Example \#2

Order Added to Known Set:

vertex	known?	cost	path
A		0	
B			
C			
D			
E			
F			
G			

Example \#3

How will the best-cost-so-far for Y proceed?
Is this expensive?

A Greedy Algorithm

- Dijkstra's algorithm
- For single-source shortest paths in a weighted graph (directed or undirected) with no negative-weight edges
- An example of a greedy algorithm:
- At each step, irrevocably does what seems best at that step
- A locally optimal step, not necessarily globally optimal
- Once a vertex is known, it is not revisited
- Turns out to be globally optimal

Where are we?

- What should we do after learning an algorithm?
- Prove it is correct
- Not obvious!
- We will sketch the key ideas
- Analyze its efficiency
- Will do better by using a data structure we learned earlier!

Correctness: Intuition

Rough intuition:

All the "known" vertices have the correct shortest path

- True initially: shortest path to start node has cost 0
- If it stays true every time we mark a node "known", then by induction this holds and eventually everything is "known"

Key fact we need: When we mark a vertex "known" we won't discover a shorter path later!

- This holds only because Dijkstra's algorithm picks the node with the next shortest path-so-far
- The proof is by contradiction...

Correctness: The Cloud (Rough Idea)

Suppose \mathbf{v} is the next node to be marked known ("added to the cloud")

- The best-known path to \mathbf{v} must have only nodes "in the cloud"
- Since we've selected it, and we only know about paths through the cloud to a node right outside the cloud
- Assume the actual shortest path to \mathbf{v} is different
- It won't use only cloud nodes, (or we would know about it), so it must use non-cloud nodes
- Let \mathbf{w} be the first non-cloud node on this path.
- The part of the path up to \mathbf{w} is already known and must be shorter than the best-known path to \mathbf{v}. So \mathbf{v} would not have been picked.

Efficiency, first approach

Use pseudocode to determine asymptotic run-time

- Notice each edge is processed only once

```
dijkstra(Graph G, Node start) \{
    for each node: x.cost=infinity, x.known=false]
    start.cost = 0
    while (not all nodes are known) \{
        \(\mathrm{b}=\) find unknown node with smallest cost
    b.known \(=\) true
    for each edge (b,a) in G
        if(!a.known)
            if (b.cost + weight((b,a)) < a.cost) \{
            a.cost \(=\mathrm{b} . \operatorname{cost}+\) weight( \((\mathrm{b}, \mathrm{a}))\)
                a.path \(=\) b
\}
```


Improving asymptotic running time

- So far: $\mathrm{O}\left(|\mathrm{V}|^{2}+|\mathrm{E}|\right)$
- We had a similar "problem" with topological sort being $\mathrm{O}\left(|\mathrm{V}|^{2}+|\mathrm{E}|\right)$
- due to each iteration looking for the node to process next
- We solved it with a queue of zero-degree nodes
- But here we need the lowest-cost node and costs can change as we process edges
- Solution?

Efficiency, second approach

Use pseudocode to determine asymptotic run-time

```
dijkstra(Graph G, Node start) \{
for each node: x.cost=infinity, x.known=false
start.cost \(=0\)
build-heap with all nodes
while(heap is not empty) \{
    b = deleteMin()
    b.known \(=\) true
    for each edge ( \(b, a\) ) in G
        if(!a.known)
        if (b.cost + weight((b,a)) < a.cost) \{
                decreaseKey(a,"new cost - old cost")
                a.path = b
        \}
\}
```


Dense vs. sparse again

- First approach: $\mathrm{O}\left(|\mathrm{V}|^{2}+|\mathrm{E}|\right)$ or: $\mathrm{O}\left(|\mathrm{V}|^{2}\right)$
- Second approach: $O(|\mathrm{~V}| \log |\mathrm{V}|+|\mathrm{E}| \mathrm{log}|\mathrm{V}|)$
- So which is better?
- Sparse: $O(|\mathrm{~V}| \log |\mathrm{V}|+|\mathrm{E}| \log |\mathrm{V}|)$ (if $|\mathrm{E}|>|\mathrm{V}|$, then $O(|\mathrm{E}| \log |\mathrm{V}|)$)
- Dense: $\mathrm{O}\left(|\mathrm{V}|^{2}+|\mathrm{E}|\right)$, or: $\mathrm{O}\left(|\mathrm{V}|^{2}\right)$
- But, remember these are worst-case and asymptotic
- Priority queue might have slightly worse constant factors
- On the other hand, for "normal graphs", we might call decreaseKey rarely (or not percolate far), making |E|log|V| more like |E|

Find the shortest path to each vertex from v_{0}

v	Known	Dist from s	Path
v0			
v1			
v2			
v3			
v4			
v5			
v6		$103 / 2023$	

Order declared Known:

