CSE 332: Data Structures \& Parallelism Lecture 20b: Graph Traversals

Ruth Anderson

Winter 2023

Graph Traversals

Next problem: For an arbitrary graph and a starting node v, find all nodes reachable (i.e., there exists a path) from \mathbf{v}

- Possibly "do something" for each node (an iterator!)
- E.g. Print to output, set some field, etc.

Related Questions:

- Is an undirected graph connected?
- Is a directed graph weakly / strongly connected?
- For strongly, need a cycle back to starting node

Basic idea:

- Keep following nodes
- But "mark" nodes after visiting them, so the traversal terminates and processes each reachable node exactly once

Graph Traversal: Abstract Idea

```
traverseGraph(Node start) {
    Set pending = emptySet();
    pending.add(start)
    mark start as visited
    while(pending is not empty) {
        next = pending.remove()
        for each node u adjacent to next
        if(u is not marked) {
        mark u
        pending.add(u)
        }
    }
}
```


Running time and options

- Assuming add and remove are $O(1)$, entire traversal is $O(|\mathrm{E}|)$
- Use an adjacency list representation
- The order we traverse depends entirely on how add and remove work/are implemented
- Depth-first graph search (DFS): a stack
- Breadth-first graph search (BFS): a queue
- DFS and BFS are "big ideas" in computer science
- Depth: recursively explore one part before going back to the other parts not yet explored
- Breadth: Explore areas closer to the start node first

Recursive DFS, Example : trees

- A tree is a graph and DFS and BFS are particularly easy to "see"


```
DFS (Node start) {
    mark and "process"(e.g. print) start
    for each node u adjacent to start
    if u is not marked
        DFS (u)
}
```

Order processed: A, B, D, E, C, F, G, H

- Exactly what we called a "pre-order traversal" for trees
- The marking is not needed here, but we need it to support arbitrary graphs, we need a way to process each node exactly once

DFS with a stack, Example: trees

Order processed:

- A different but perfectly fine traversal

BFS with a queue, Example: trees

Order processed:

- A "level-order" traversal

DFS/BFS Comparison

Breadth-first search:

- Always finds shortest paths, i.e., "optimal solutions
- Better for "what is the shortest path from \mathbf{x} to \mathbf{y} "
- Queue may hold $O(|\mathrm{~V}|)$ nodes (e.g. at the bottom level of binary tree of height $h, 2^{h}$ nodes in queue)

Depth-first search:

- Can use less space in finding a path
- If longest path in the graph is pand highest out-degree is d then DFS stack never has more than $\mathrm{d} *$ p elements

A third approach: Iterative deepening (IDDFS):

- Try DFS but don't allow recursion more than K levels deep.
- If that fails, increment K and start the entire search over
- Like BFS, finds shortest paths. Like DFS, less space.

Saving the path

- Our graph traversals can answer the "reachability question":
- "Is there a path from node x to node y ?"
- Q: But what if we want to output the actual path?
- Like getting driving directions rather than just knowing it's possible to get there!
- A: Like this:
- Instead of just "marking" a node, store the previous node along the path (when processing \mathbf{u} causes us to add \mathbf{v} to the search, set \mathbf{v}. path field to be \mathbf{u})
- When you reach the goal, follow path fields backwards to where you started (and then reverse the answer)
- If just wanted path length, could put the integer distance at each node instead

Example using BFS

What is a path from Seattle to Austin

- Remember marked nodes are not re-enqueued
- Note shortest paths may not be unique

Example using BFS

What is a path from Seattle to Austin

- Remember marked nodes are not re-enqueued
- Note shortest paths may not be unique

