CSE 332: Data Structures \& Parallelism Lecture 19: Introduction to Graphs

Ruth Anderson

Winter 2023

Today

- Graphs
- Intro \& Definitions

Graphs

- A graph is a formalism for representing relationships among items
- Very general definition because very general concept
- A graph is a pair

$$
G=(V, E)
$$

- A set of vertices, also known as nodes $\mathrm{v}=\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathrm{n}}\right\}$
- A set of edges
$E=\left\{e_{1}, e_{2}, \ldots, e_{m}\right\}$
- Each edge $\mathbf{e}_{\mathbf{i}}$ is a pair of vertices

$$
\begin{aligned}
V= & \{\text { Han, Leia, Luke }\} \\
E= & \{(\text { Luke, Leia) } \\
& (\text { Han,Leia) } \\
& (\text { Leia,Han }\}
\end{aligned}
$$

- An edge "connects" the vertices
- Graphs can be directed or undirected

An ADT?

- Can think of graphs as an ADT with operations like isEdge ($\left(\mathrm{v}_{\mathrm{j}}, \mathrm{v}_{\mathrm{k}}\right)$)
- But it is unclear what the "standard operations" are
- Instead we tend to develop algorithms over graphs and then use data structures that are efficient for those algorithms
- Many important problems can be solved by:

1. Formulating them in terms of graphs
2. Applying a standard graph algorithm

- To make the formulation easy and standard, we have a lot of standard terminology about graphs

Some graphs

For each, what are the vertices and what are the edges?

- Web pages with links
- Facebook friends
- "Input data" for the Kevin Bacon game
- Methods in a program that call each other
- Road maps (e.g., Google maps)
- Airline routes
- Family trees
- Course pre-requisites
- ...

Wow: Using the same algorithms for problems across so many domains sounds like "core computer science and engineering"

Undirected Graphs

- In undirected graphs, edges have no specific direction
- Edges are always "two-way"

- Thus, $(u, v) \in E \operatorname{implies}(v, u) \in E$.
- Only one of these edges needs to be in the set; the other is implicit
- Degree of a vertex: number of edges containing that vertex
- Put another way: the number of adjacent vertices

Directed Graphs

- In directed graphs (sometimes called digraphs), edges have a direction

- Thus, (u,v) $\in \mathbf{E}$ does notimply $(v, u) \in E$.
- Let $(u, v) \in E$ mean $u \rightarrow v$
- Call u the source and v the destination
- In-Degree of a vertex: number of in-bound edges, i.e., edges where the vertex is the destination
- Out-Degree of a vertex: number of out-bound edges i.e., edges where the vertex is the source

Self-edges, connectedness

- A self-edge a.k.a. a loop is an edge of the form (\mathbf{u}, u)
- Depending on the use/algorithm, a graph may have:
- No self edges
- Some self edges
- All self edges (often therefore implicit, but we will be explicit)
- A node can have a degree / in-degree / out-degree of zero
- A graph does not have to be connected (In an undirected graph, this means we can follow edges from any node to every other node), even if every node has non-zero degree

More notation

For a graph $G=(\mathbf{V}, \mathbf{E})$:

- $|\mathrm{V}|$ is the number of vertices
- $|\mathrm{E}|$ is the number of edges
- Minimum?
$\mathrm{V}=\{\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}\}$
$E=\{(C, B)$,
(A, B),
- Maximum for undirected?
(B, A)
- Maximum for directed?
(C, D) \}
- If (u,v) $\in E$
- Then v is a neighbor of u, i.e., v is adjacent to u
- Order matters for directed edges
$\cdot \mathbf{u}$ is not adjacent to \mathbf{v} unless $(\mathbf{v}, \mathbf{u}) \in \mathbf{E}$

Examples again

Which would use directed edges? Which would have self-edges? Which could have 0-degree nodes?

- Web pages with links
- Facebook friends
- "Input data" for the Kevin Bacon game
- Methods in a program that call each other
- Road maps (e.g., Google maps)
- Airline routes
- Family trees
- Course pre-requisites

Weighted graphs

- In a weighed graph, each edge has a weight a.k.a. cost
- Typically numeric (most examples will use ints)
- Orthogonal to whether graph is directed
- Some graphs allow negative weights; many don't

Examples

What, if anything, might weights represent for each of these? Do negative weights make sense?

- Web pages with links
- Facebook friends
- "Input data" for the Kevin Bacon game
- Methods in a program that call each other
- Road maps (e.g., Google maps)
- Airline routes
- Family trees
- Course pre-requisites

Paths and Cycles

- A path is a list of vertices [$\mathrm{v}_{0}, \mathrm{v}_{1}, \ldots, \mathrm{v}_{\mathrm{n}}$] such that $\left(\mathbf{v}_{\mathbf{i}}, \mathbf{v}_{\mathrm{i}+1}\right) \in \mathrm{E}$ for all $0 \leq \mathrm{i}<\mathrm{n}$. Say "a path from v_{0} to v_{n} "
- A cycle is a path that begins and ends at the same node $\left(\mathrm{v}_{0}==\mathrm{v}_{\mathrm{n}}\right)$

Example path (that also happens to be a cycle):
[Seattle, Salt Lake City, Chicago, Dallas, San Francisco, Seattle]

Path Length and Cost

- Path length: Number of edges in a path (also called "unweighted cost")
- Path cost: Sum of the weights of each edge

Example where:
$\mathrm{P}=$ [Seattle, Salt Lake City, Chicago, Dallas, San Francisco]

Paths/cycles in directed graphs

Example:

Is there a path from A to D ?

Does the graph contain any cycles?

Undirected graph connectivity

- An undirected graph is connected if for all pairs of vertices \mathbf{u}, \mathbf{v}, there exists a path from \mathbf{u} to \mathbf{v}

- An undirected graph is complete, a.k.a. fully connected if for all pairs of vertices u, v, there exists an edge from u to v
(plus self edges)

Directed graph connectivity

- A directed graph is strongly connected if there is a path from every vertex to every other vertex
- A directed graph is weakly connected if there is a path from every vertex to every other vertex ignoring direction of edges
- A complete a.k.a. fully connected directed graph has an edge from every vertex to every other vertex

(plus self edges)

Examples

For undirected graphs: connected?
For directed graphs: strongly connected? weakly connected?

- Web pages with links
- Facebook friends
- "Input data" for the Kevin Bacon game
- Methods in a program that call each other
- Road maps (e.g., Google maps)
- Airline routes
- Family trees
- Course pre-requisites

Trees as graphs

When talking about graphs, we say a tree is a graph that is:

- undirected
- acyclic
- connected

So all trees are graphs, but not all graphs are trees

How does this relate to the trees we know and love?...

Example:

Rooted Trees

- We are more accustomed to rooted trees where:
- We identify a unique ("special") root
- We think of edges as directed: parent to children
- Given a tree, once you pick a root, you have a unique rooted tree (just drawn differently and with undirected edges)

Rooted Trees (Another example)

- We are more accustomed to rooted trees where:
- We identify a unique ("special") root
- We think of edges as directed: parent to children
- Given a tree, once you pick a root, you have a unique rooted tree (just drawn differently and with undirected edges)

Directed acyclic graphs (DAGs)

- A DAG is a directed graph with no (directed) cycles
- Every rooted directed tree is a DAG
- But not every DAG is a rooted directed tree:

Not a rooted directed tree, Has a cycle (in the undirected sense)

- Every DAG is a directed graph
- But not every directed graph is a DAG:

Examples

Which of our directed-graph examples do you expect to be a DAG?

- Web pages with links
- "Input data" for the Kevin Bacon game
- Methods in a program that call each other
- Airline routes
- Family trees
- Course pre-requisites

Density / sparsity

- Recall: In an undirected graph, $0 \leq|\mathrm{E}|<|\mathrm{V}|^{2}$
- Recall: In a directed graph: $0 \leq|\mathrm{E}| \leq|\mathrm{V}|^{2}$
- So for any graph, $|\mathrm{E}|$ is $O\left(|\mathrm{~V}|^{2}\right)$
- One more fact: If an undirected graph is connected, then $|\mathrm{E}| \geq|\mathrm{V}|-1$
- Because |E| is often much smaller than its maximum size, we do not always approximate as $|\mathrm{E}|$ as $O\left(|\mathrm{~V}|^{2}\right)$
- This is a correct bound, it just is often not tight
- If it is tight, i.e., $|\mathrm{E}|$ is $\Theta\left(|\mathrm{V}|^{2}\right)$ we say the graph is dense
- More sloppily, dense means "lots of edges"
- If $|\mathrm{E}|$ is $O(|\mathrm{~V}|)$ we say the graph is sparse
- More sloppily, sparse means "most (possible) edges missing"

What is the Data Structure?

- So graphs are really useful for lots of data and questions
- For example, "what's the lowest-cost path from x to y "
- But we need a data structure that represents graphs
- The "best one" can depend on:
- Properties of the graph (e.g., dense versus sparse)
- The common queries (e.g., "is (u,v) an edge?" versus "what are the neighbors of node u?")
- So we'll discuss the two standard graph representations
- Adjacency Matrix and Adjacency List
- Different trade-offs, particularly time versus space

Adjacency matrix

- Assign each node a number from 0 to $|\mathrm{V}|-1$
- $\mathrm{A}|\mathrm{V}| \mathrm{x}|\mathrm{V}|$ matrix (i.e., 2-D array) of Booleans (or 1 vs. 0)
- If m is the matrix, then $M[u][v]==$ true means there is an edge from u to v

Adjacency Matrix Properties

- Running time to:
- Get a vertex's out-edges:
- Get a vertex's in-edges:
- Decide if some edge exists:
- Insert an edge:
- Delete an edge:

	A	B	C	D
\mathbf{A}	F	T	F	F
\mathbf{B}	T	F	F	F
\mathbf{C}	F	T	F	T
	D	F	F	F

- Best for sparse or dense graphs?

Adjacency Matrix Properties

- How will the adjacency matrix vary for an undirected graph?
- How can we adapt the representation for weighted graphs?

	A	B	C	D
	F	T	F	F
\mathbf{A}	T	F	F	F
	T	F	T	F
	T			
	D	F	F	F

Adjacency List

- Assign each node a number from 0 to $|\mathrm{V}|-1$
- An array of length $|\mathrm{V}|$ in which each entry stores a list of all adjacent vertices (e.g., linked list)

Adjacency List Properties

- Running time to:
- Get all of a vertex's out-edges:
- Get all of a vertex's in-edges:
- Decide if some edge exists:
- Insert an edge:
- Delete an edge:
- Space requirements:

- Best for dense or sparse graphs?

Undirected Graphs

Adjacency matrices \& adjacency lists both do fine for undirected graphs

- Matrix: Can save roughly $1 / 2$ the space
- But may slow down operations in languages with "proper" 2D arrays (not Java, which has only arrays of arrays)
- How would you "get all neighbors"?
- Lists: Each edge in two lists to support efficient "get all neighbors"

Which is better?

Graphs are often sparse:

- Streets form grids
- every corner is not connected to every other corner
- Airlines rarely fly to all possible cities
- or if they do it is to/from a hub rather than directly to/from all small cities to other small cities

Adjacency lists should generally be your default choice

- Slower performance compensated by greater space savings

Next...

Okay, we can represent graphs

Now let's implement some useful and non-trivial algorithms

- Topological sort: Given a DAG, order all the vertices so that every vertex comes before all of its neighbors
- Shortest paths: Find the shortest or lowest-cost path from x to y
- Related: Determine if there even is such a path

