

CSE 332: Data Structures & Parallelism Lecture 12: Comparison Sorting

Ruth Anderson Winter 2023

Today

- Sorting
 - Comparison sorting

Introduction to sorting

- Stacks, queues, priority queues, and dictionaries all focused on providing one element at a time
- But often we know we want "all the data items" in some order
 - Anyone can sort, but a computer can sort faster
 - Very common to need data sorted somehow
 - Alphabetical list of people
 - Population list of countries
 - Search engine results by relevance
 - ...
- Different algorithms have different asymptotic and constantfactor trade-offs
 - No single 'best' sort for all scenarios
 - Knowing one way to sort just isn't enough

More reasons to sort

General technique in computing:

Preprocess (e.g. sort) data to make subsequent operations faster

Example: Sort the data so that you can

- Find the \mathbf{k}^{th} largest in constant time for any \mathbf{k}
- Perform binary search to find an element in logarithmic time

Whether the benefit of the preprocessing depends on

- How often the data will change
- How much data there is

The main problem, stated carefully

For now we will assume we have *n* comparable elements in an array and we want to rearrange them to be in increasing order

Input:

- An array **A** of data records
- A key value in each data record
- A comparison function (consistent and total)
 - Given keys a & b, what is their relative ordering? <, =, >?
 - Ex: keys that implement Comparable or have a Comparator that can handle them

Effect:

- Reorganize the elements of **A** such that for any **i** and **j**,

if i < j then $A[i] \leq A[j]$

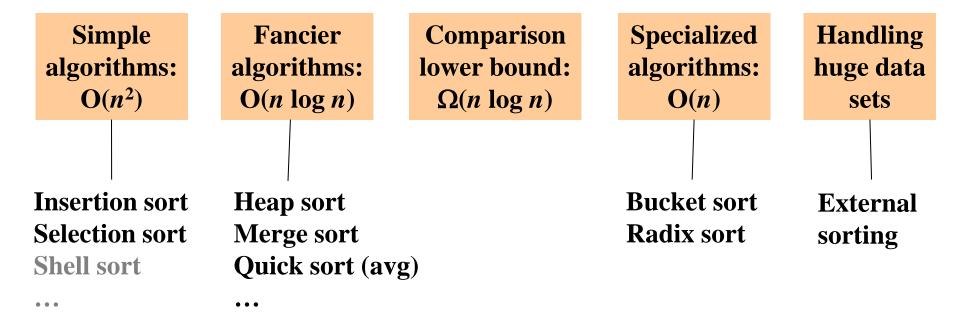
- Usually unspoken assumption: **A** must have all the same data it started with
- Could also sort in reverse order, of course

An algorithm doing this is a comparison sort

Variations on the basic problem

- 1. Maybe elements are in a linked list (could convert to array and back in linear time, but some algorithms needn't do so)
- 2. Maybe in the case of ties we should preserve the original ordering
 - Sorts that do this naturally are called stable sorts
 - One way to sort twice, Ex: Sort movies by year, then for ties, alphabetically
- 3. Maybe we must not use more than *O*(1) "auxiliary space"
 - Sorts meeting this requirement are called 'in-place' sorts
 - Not allowed to allocate extra array (at least not with size O(n)), but can allocate O(1) # of variables
 - All work done by swapping around in the array
- 4. Maybe we can do more with elements than just compare
 - Comparison sorts assume we work using a binary 'compare' operator
 - In special cases we can sometimes get faster algorithms
- 5. Maybe we have too much data to fit in memory
 - Use an "external sorting" algorithm

Sorting: The Big Picture



Insertion Sort

- Idea: At step k, put the kth element in the correct position among the first k elements
- Alternate way of saying this:
 - Sort first two elements
 - Now insert 3rd element in order
 - Now insert 4th element in order

— ...

- "Loop invariant": when loop index is i, first i elements are sorted relative to each other
- Time?

Best-case _____ Worst-case _____ "Average" case _____

Selection sort

- Idea: At step k, find the smallest element among the not-yetsorted elements and put it at position k
- Alternate way of saying this:
 - Find smallest element, put it 1st
 - Find next smallest element, put it 2nd
 - Find next smallest element, put it 3rd

— ...

- "Loop invariant": when loop index is i, first i elements are the i smallest elements in sorted order
- Time?

Best-case _____ Worst-case _____ "Average" case _____

Insertion Sort vs. Selection Sort

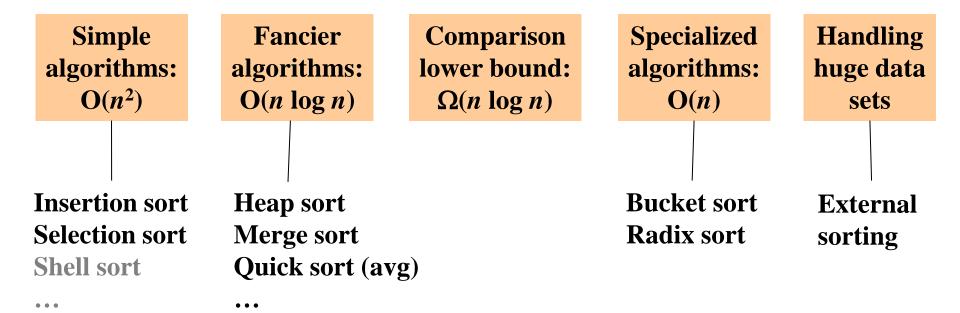
- Different algorithms
- Solve the same problem
- Have the same worst-case and average-case asymptotic complexity
 - Insertion-sort has better best-case complexity; preferable when input is "mostly sorted"
- Other algorithms are more efficient for non-small arrays that are not already almost sorted
 - Insertion sort may do well on small arrays

Aside: We won't cover Bubble Sort

- It doesn't have good asymptotic complexity: $O(n^2)$
- It's not particularly efficient with respect to common factors
- Basically, almost everything it is good at, some other algorithm is at least as good at
- Some people seem to teach it just because someone taught it to them

• For fun see: "Bubble Sort: An Archaeological Algorithmic Analysis", Owen Astrachan, SIGCSE 2003 http://www.cs.duke.edu/~ola/bubble/bubble.pdf

Sorting: The Big Picture



Heap sort

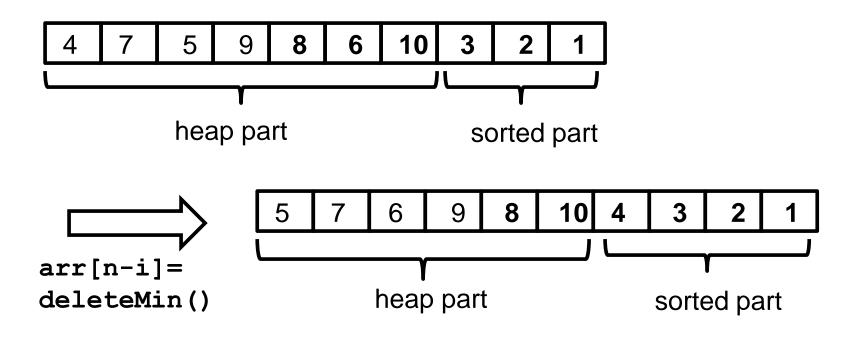
- Sorting with a heap is easy:
 - insert each arr[i], better yet use buildHeap

arr[i] = deleteMin();

- Worst-case running time:
- We have the array-to-sort and the heap
 - So this is not an in-place sort
 - There's a trick to make it in-place...

In-place heap sort

- Treat the initial array as a heap (via buildHeap)
- When you delete the ith element, put it at arr[n-i]
 - It's not part of the heap anymore!



"AVL sort"

• How?

Divide and conquer

Very important technique in algorithm design

- 1. Divide problem into smaller parts
- 2. Solve the parts independently
 - Think recursion
 - Or potential parallelism
- 3. Combine solution of parts to produce overall solution

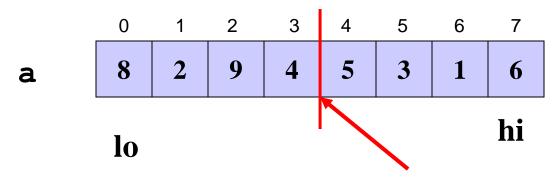
Ex: Sort each half of the array, combine together; to sort each half, split into halves...

Divide-and-conquer sorting

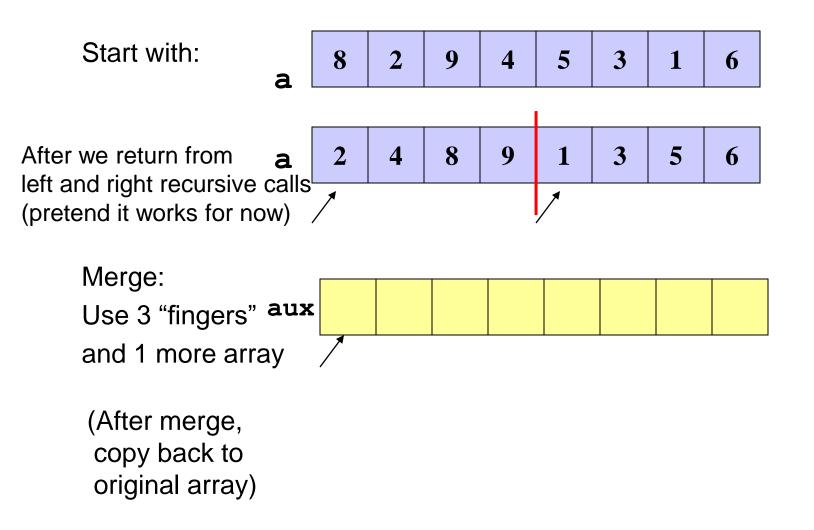
Two great sorting methods are fundamentally divide-and-conquer

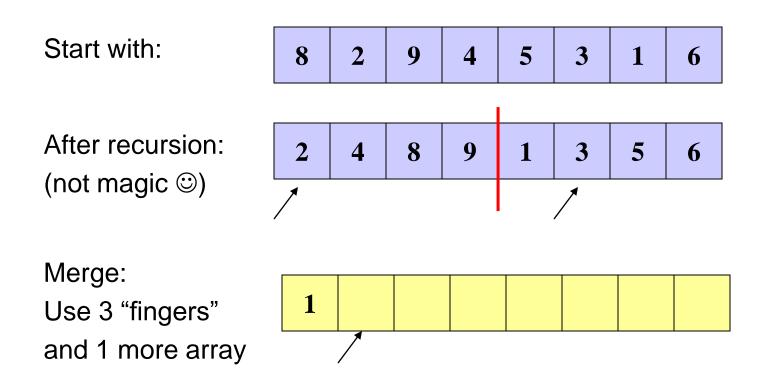
- Mergesort: Sort the left half of the elements (recursively)
 Sort the right half of the elements (recursively)
 Merge the two sorted halves into a sorted whole
- 2. Quicksort: Pick a "pivot" element Divide elements into those less-than pivot and those greater-than pivot Sort the two divisions (recursively on each) Answer is [sorted-less-than then pivot then sorted-greater-than]

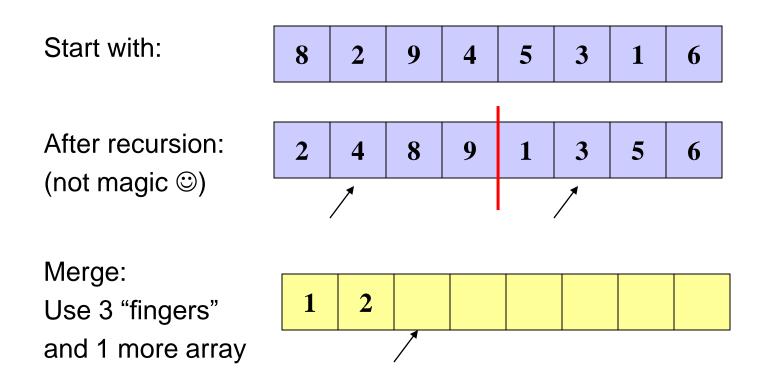
Mergesort

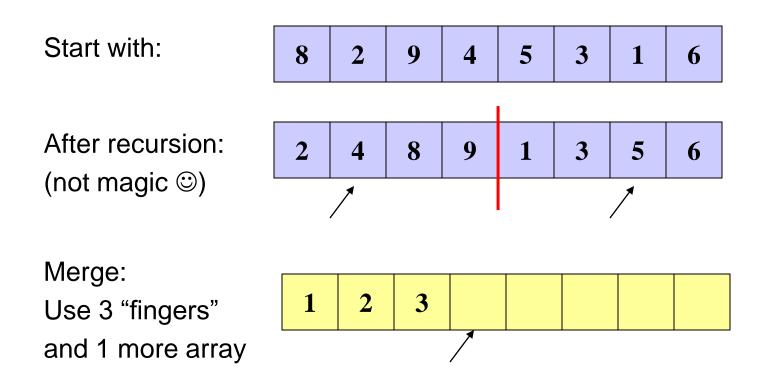


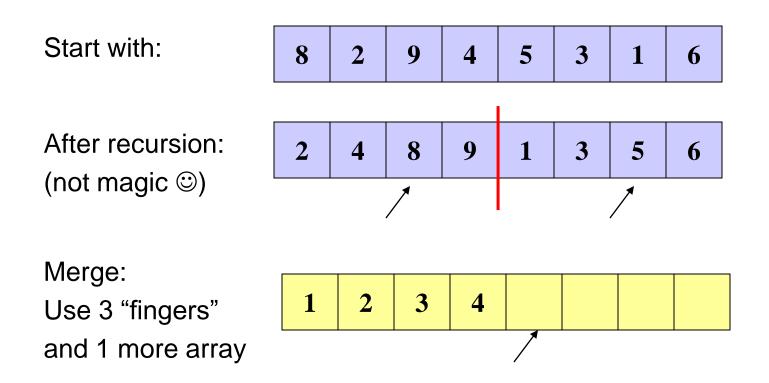
- To sort array from position **lo** to position **hi**:
 - If range is 1 element long, it's sorted! (Base case)
 - Else, split into two halves:
 - Sort from lo to (hi+lo)/2
 - Sort from (hi+lo) /2 to hi
 - Merge the two halves together
- Merging takes two sorted parts and sorts everything
 - O(n) but requires auxiliary space...

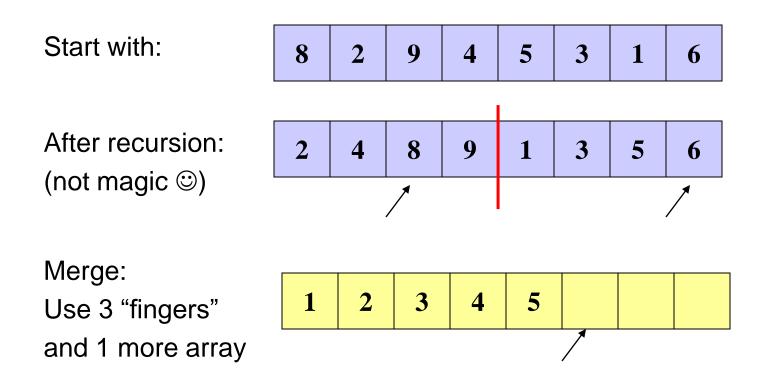


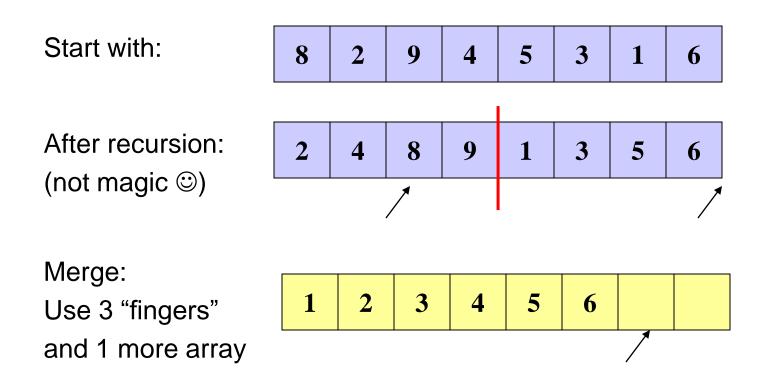


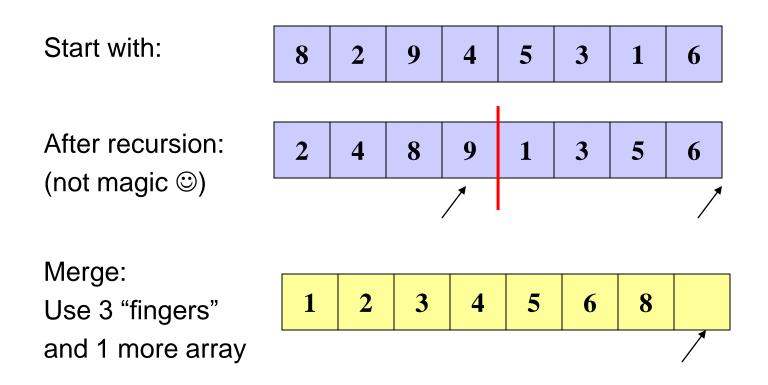


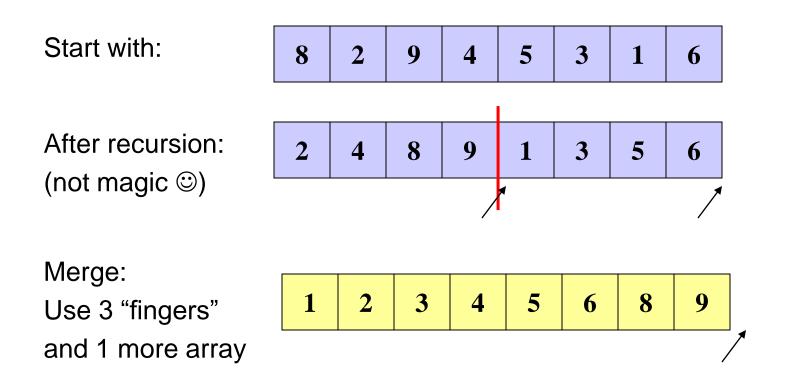


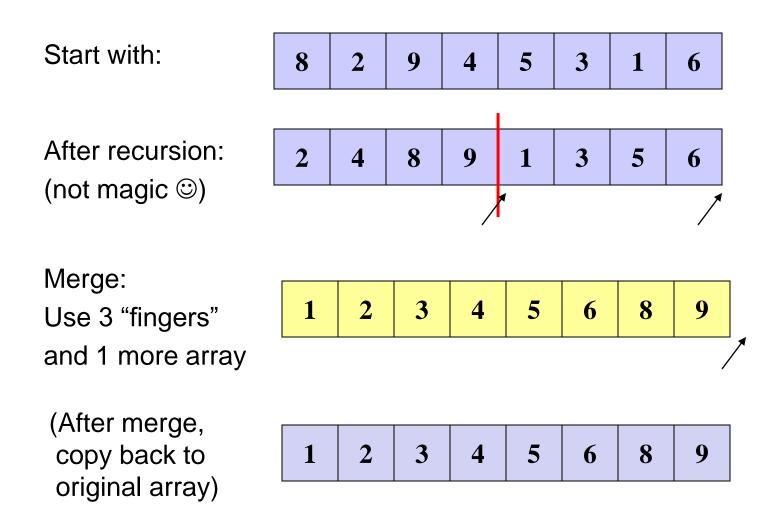




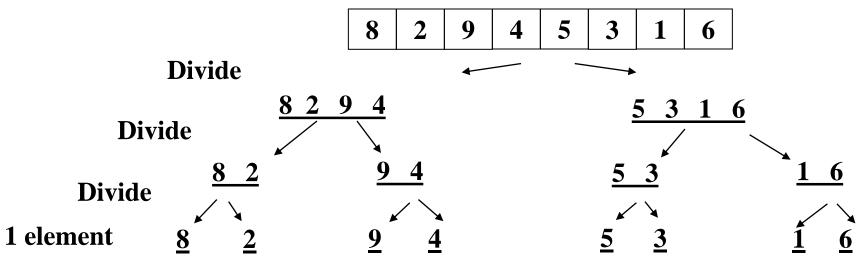




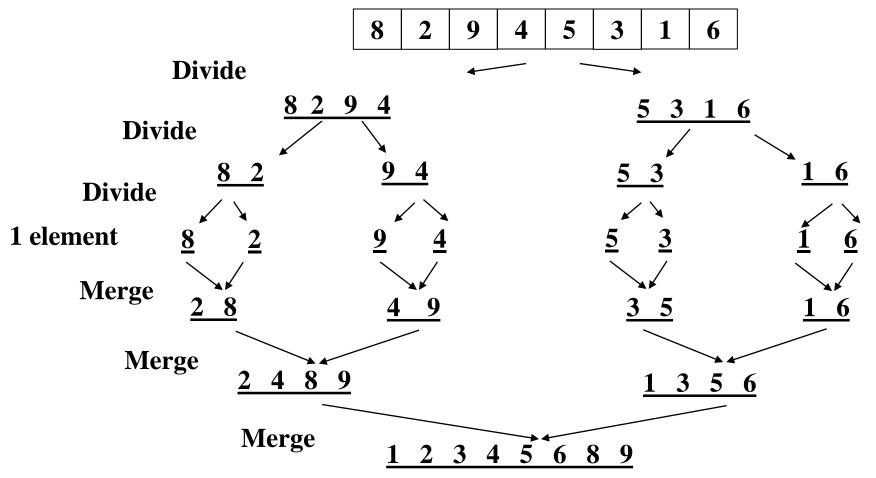




Mergesort example: Recursively splitting list in half

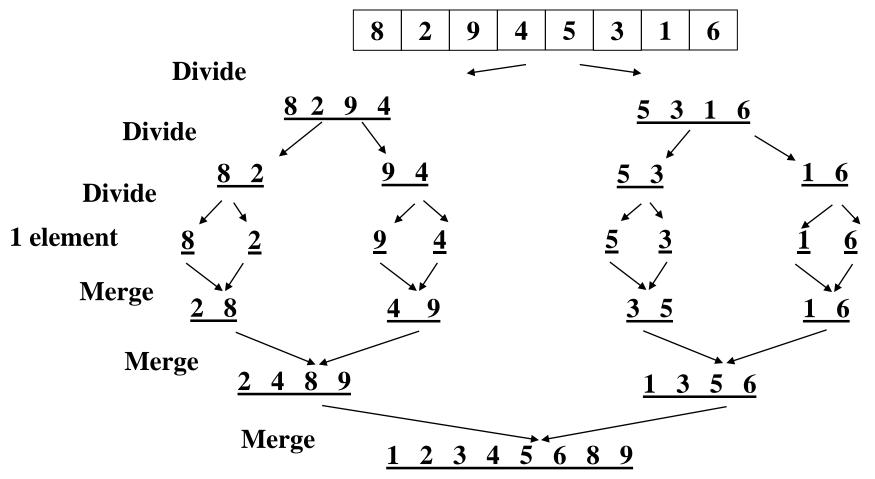


Mergesort example: Merge as we return from recursive calls



When a recursive call ends, it's sub-arrays are each in order; just2/03/2023need to merge them in order together34

Mergesort example: Merge as we return from recursive calls



We need another array in which to do each merging step; merge 2/03/2023 results into there, then copy back to original array 35

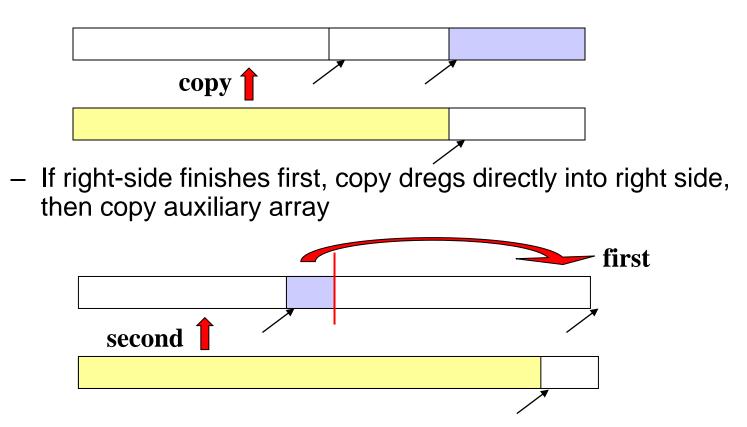
Mergesort, some details: saving a little time

• What if the final steps of our merging looked like the following:

• Seems kind of wasteful to copy 8 & 9 to the auxiliary array just to copy them immediately back...

Mergesort, some details: saving a little time

- Unnecessary to copy 'dregs' over to auxiliary array
 - If left-side finishes first, just stop the merge & copy the auxiliary array:



Some details: saving space / copying

Simplest / worst approach:

Use a new auxiliary array of size (hi-lo) for every merge Returning from a recursive call? Allocate a new array!

Better:

Reuse same auxiliary array of size **n** for every merging stage Allocate auxiliary array at beginning, use throughout

Best (but a little tricky):

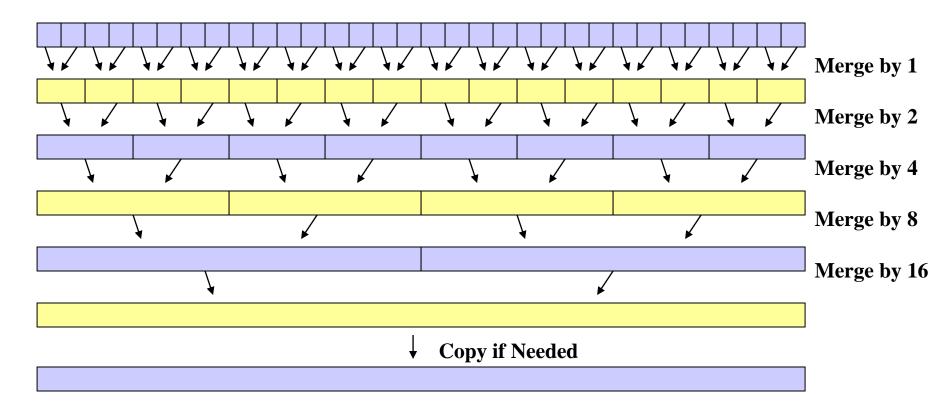
Don't copy back – at 2nd, 4th, 6th, … merging stages, use the original array as the auxiliary array and vice-versa

- Need one copy at end if number of stages is odd

Picture of the "best" from previous slide: Allocate one auxiliary array, switch each step

First recurse down to lists of size 1

As we return from the recursion, switch off arrays



Arguably easier to code up without recursion at all 2/03/2023

Linked lists and big data

We defined the sorting problem as over an array, but sometimes you want to sort linked lists

One approach:

- Convert to array: O(n)
- Sort: $O(n \log n)$
- Convert back to list: O(n)

Or: mergesort works very nicely on linked lists directly

- heapsort and quicksort do not
- insertion sort and selection sort do but they're slower

Mergesort is also the sort of choice for external sorting

– Linear merges minimize disk accesses

Mergesort Analysis

Having defined an algorithm and argued it is correct, we should analyze its running time (and space):

To sort *n* elements, we:

- Return immediately if n=1
- Else do 2 subproblems of size n/2 and then an O(n) merge

Recurrence relation?

Mergesort Analysis

Having defined an algorithm and argued it is correct, we should analyze its running time (and space):

To sort *n* elements, we:

- Return immediately if n=1
- Else do 2 subproblems of size n/2 and then an O(n) merge

Recurrence relation:

 $T(1) = c_1$ $T(n) = 2T(n/2) + c_2n + c_3$

MergeSort Recurrence

(For simplicity let constants be 1 – no effect on asymptotic answer)

$$\begin{split} T(1) &= 1 \\ T(n) &= 2T(n/2) + n \\ &= 2(2T(n/4) + n/2) + n \\ &= 4T(n/4) + 2n \\ &= 4(2T(n/8) + n/4) + 2n \\ &= 8T(n/8) + 3n \\ &\dots \text{ (after k expansions)} \\ &= 2^{\mathbf{k}}T(n/2^{\mathbf{k}}) + kn \end{split}$$

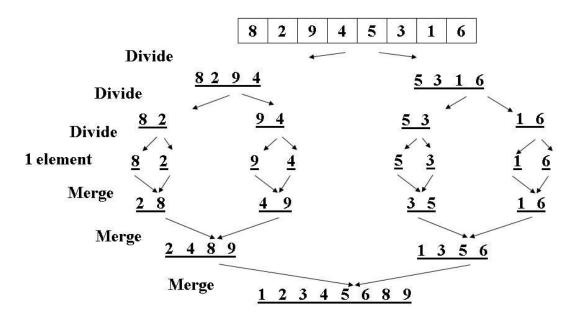
So total is $2^{\mathbf{k}}T(n/2^{\mathbf{k}}) + kn$ where $n/2^{\mathbf{k}} = 1$, i.e., log n = k That is, $2^{\log n}T(1) + n \log n$ $= n + n \log n$ $= O(n \log n)$

Or more intuitively...

This recurrence comes up often enough you should just "know" it's O(n log n)

Merge sort is relatively easy to intuit (best, worst, and average):

- The recursion "tree" will have log n height
- At each level we do a *total* amount of merging equal to n



Quicksort

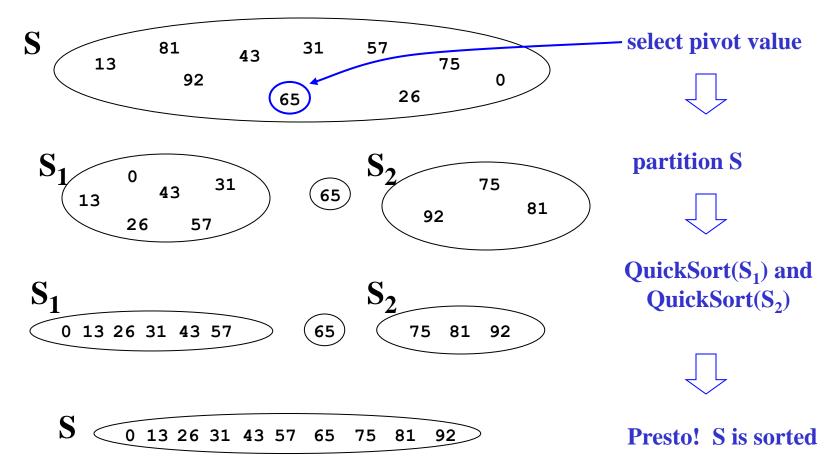
- Also uses divide-and-conquer
 - Recursively chop into halves
 - But, instead of doing all the work as we merge together, we'll do all the work as we recursively split into halves
 - Also unlike MergeSort, does not need auxiliary space
- $O(n \log n)$ on average \odot , but $O(n^2)$ worst-case \otimes
 - MergeSort is always O(nlogn)
 - So why use QuickSort?
- Can be faster than mergesort
 - Often believed to be faster
 - Quicksort does fewer copies and more comparisons, so it depends on the relative cost of these two operations!

Quicksort Overview

- 1. Pick a pivot element
 - Hopefully an element ~median
 - Good QuickSort performance depends on good choice of pivot; we'll see why later, and talk about good pivot selection later
- 2. Partition all the data into:
 - A. The elements less than the pivot
 - B. The pivot
 - C. The elements greater than the pivot
- 3. Recursively sort A and C
- 4. The answer is, "as simple as A, B, C"

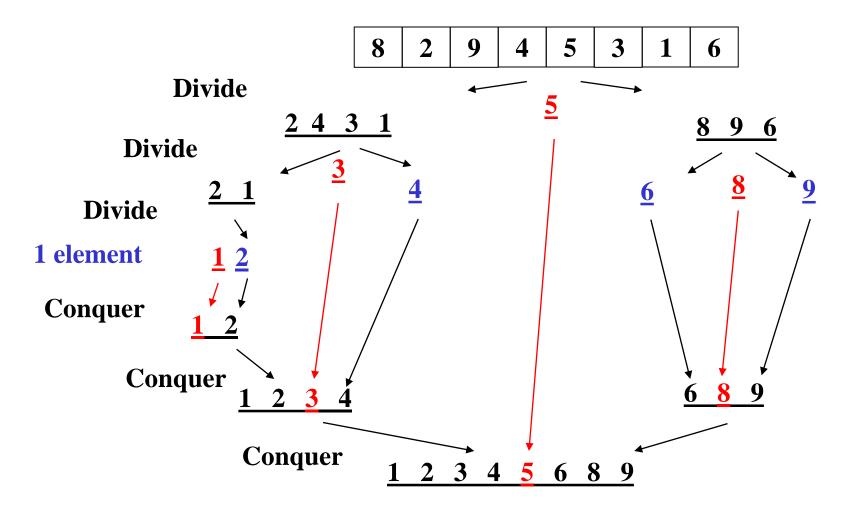
(Alas, there are some details lurking in this algorithm)

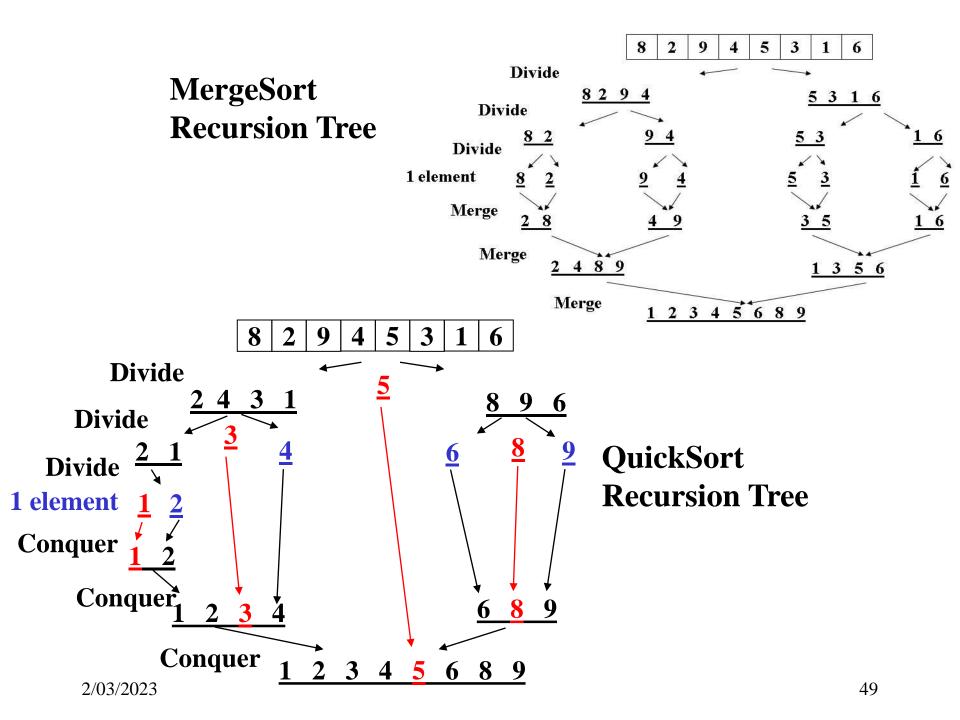
Quicksort: Think in terms of sets



[Weiss]

Quicksort Example, showing recursion

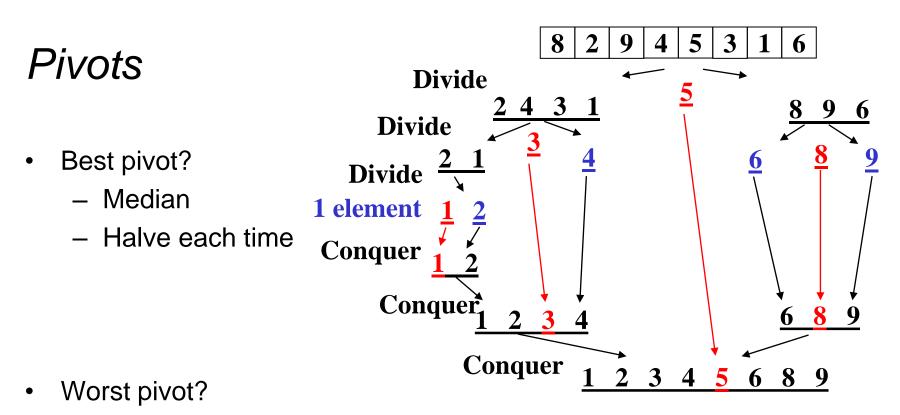




Quicksort Details

We have not yet explained:

- How to pick the pivot element
 - Any choice is correct: data will end up sorted
 - But as analysis will show, want the two partitions to be about equal in size
- How to implement partitioning
 - In linear time
 - In place



- Greatest/least element
- Reduce to problem of size 1 smaller

- O(n²)

Quicksort: Potential pivot rules

While sorting arr from 10 (inclusive) to hi (exclusive)...

• Pick arr[lo] Or arr[hi-1]

- Fast, but worst-case is (mostly) sorted input

- Pick random element in the range
 - Does as well as any technique, but (pseudo)random number generation can be slow
 - (Still probably the most elegant approach)
- Median of 3, e.g., arr[lo], arr[hi-1], arr[(hi+lo)/2]
 - Common heuristic that tends to work well

Partitioning

- That is, given 8, 4, 2, 9, 3, 5, 7 and pivot 5
 - Dividing into left half & right half (based on pivot)
- Conceptually simple, but hardest part to code up correctly
 - After picking pivot, need to partition
 - Ideally in linear time
 - Ideally in place
- Ideas?

Partitioning

- One approach (there are slightly fancier ones):
 - 1. Swap pivot with **arr[lo]**; move it 'out of the way'
 - 2. Use two fingers i and j, starting at lo+1 and hi-1 (start & end of range, apart from pivot)
 - 3. Move from right until we hit something less than the pivot; belongs on left side Move from left until we hit something greater than the pivot; belongs on right side Swap these two; keep moving inward while (i < j) if (arr[j] > pivot) j-else if (arr[i] <= pivot) i++ else swap arr[i] with arr[j]
 - 4. Put pivot back in middle (Swap with arr[i])

Quicksort Example

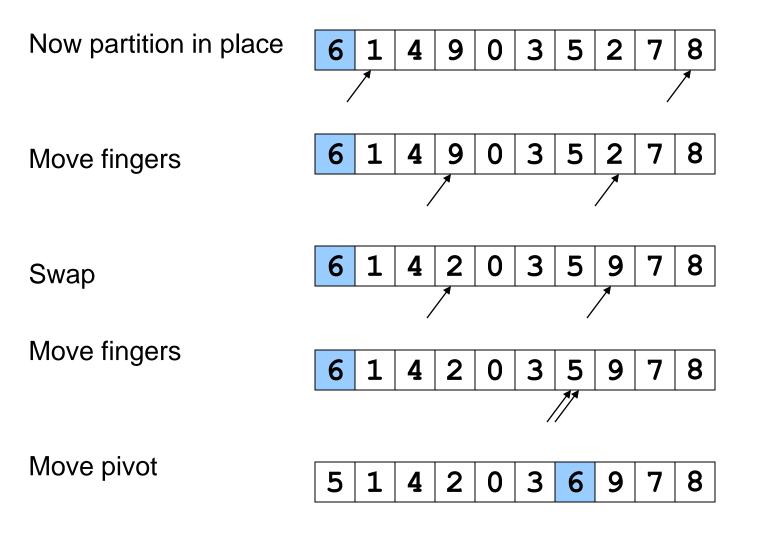
- Step one: pick pivot as median of 3
 - 10 = 0, hi = 10

					_			8	-
8	1	4	9	0	3	5	2	7	6

• Step two: move pivot to the lo position

Quicksort Example

Often have more than one swap during partition – this is a short example



Quicksort Analysis

• Best-case?

• Worst-case?

• Average-case?

Quicksort Cutoffs

- For small *n*, all that recursion tends to cost more than doing a quadratic sort
 - Remember asymptotic complexity is for large *n*
 - Also, recursive calls add a lot of overhead for small n
- Common engineering technique: switch to a different algorithm for subproblems below a cutoff
 - Reasonable rule of thumb: use insertion sort for n < 10
- Notes:
 - Could also use a cutoff for merge sort
 - Cutoffs are also the norm with parallel algorithms
 - switch to sequential algorithm
 - None of this affects asymptotic complexity

Quicksort Cutoff skeleton

```
void quicksort(int[] arr, int lo, int hi) {
    if(hi - lo < CUTOFF)
        insertionSort(arr,lo,hi);
    else
        ...
}</pre>
```

Notice how this cuts out the vast majority of the recursive calls

- Think of the recursive calls to quicksort as a tree
- Trims out the bottom layers of the tree