
Last revised August 21, 2022

CSE 332 : 22Su Final Pt. 1

Name: @uw.edu NetID: @uw.edu

Instructions

• The allotted time is 60 minutes. Please do not turn the page until the staff says so.

• This is a closed-book and closed-notes exam. You are not permitted to access electronic devices.

• Read directions carefully, especially for problems that require you to show work or provide an explanation.

• We can only give partial credit for work that you’ve written down.

• Unless otherwise noted, every time we ask for an O,Ω, or Θ bound, it must be simplified and tight.

• For answers that involve bubbling# or2, make sure to fill in the shape completely: or .

• If you run out of room on a page, indicate that the answer continues on the back of that page. Try to avoid
writing on the very edges of the pages: we scan your exams and edges often get cropped off.

• Make sure you also get a copy of the formula sheet.

Advice

• If you feel like you’re stuck on a problem, you may want to skip it and come back at the end if you have time.

• Look at the question titles on the cover page to see if you want to start somewhere other than problem 1.

• Remember to take deep breaths.

Question Max points

1. Amdahl’s Law 5
2. Parallel Code 14
3. Parallel Prefix Sum 9
4. Concurrency Issues 13
5. Sorting 14

Total 55

1

1. Amdahl’s Law [5 points]

(a) What fraction of a program must be parallizeable in order to get 5x speedup on 15 processors?

You must show your work for any credit. For full credit give your answer as a number or a simplified frac-
tion (not a formula).

2

2. Parallel Code [14 points]

In Java, using the ForkJoin Framework, write code to solve the following problem:
• Input: An array of Strings (does not contain duplicates).
• Output: The greatest number of vowels in a String and its location (index) in the Input array. In case
of ties, the rightmost index is returned. If no Strings in the array contain any vowels, then return -1 as its index.

Examples:
• Input: [“bonjour”, “hola”, “howdy”, “guten tag”, “ciao”]
• Output: 3, 4

• Input: [“bnjr”, “hl”, “hwdy”, “gtn tg”, “c”]
• Output: 0, -1

• Input: [“bnjr”, “hl”, “hwdy”, “gtn tg”, “c”, “”]
• Output: 0, -1

• Do not employ a sequential cut-off: the base case should process one element.
(You can assume the input array will contain at least one element.)
• Give a class definition, FindMax, along with any other code or classes needed.
• We have provided some of the code for you, you should also fill in the part.

You may not use any global data structures or synchronization primitives (locks)

import java.util.concurrent.ForkJoinPool;

import java.util.concurrent.RecursiveAction;

import java.util.concurrent.RecursiveTask;

class Pair { // You are not required to use this class

int numVowels;

int index;

public Pair (int numVowels, int index) {

this.numVowels = numVowels;

this.index = index;

}

}

class Main {

static final ForkJoinPool fjPool = new ForkJoinPool();

_____________ findMax (String[] array) {

return fjPool.invoke(new FindMax(__________________________));

}

}

Please fill in the two above and write your code on the next page.

3

Write your class, FindMax, on this page, along with any other code or classes needed.
Please remember to also fill in the class header.

___ {

/*

* Returns the number of vowels in the given String str

*/

private int countNumVowels(String str) { // You are not required to use this method

for (int i = 0 ; i < str.length(); i++){

char ch = str.charAt(i);

if(ch == 'a' || ch == 'e' || ch == 'i' || ch == 'o' || ch == 'u' ||

ch == 'A' || ch == 'E' || ch == 'I' || ch == 'O' || ch == 'U'){

count++;

}

}

return count;

}

}

4

3. Parallel Prefix Sum [9 points]

(a) (4 points) Dara has been training all year to climb Mt. Everest and she needs your help calculating if she will
have enough energy to do so! In this particular problem, positive numbers will give Dara an energy boost
and negative numbers will have no effect. Given the following array as input, perform the parallel prefix
algorithm to fill the output array with the sum of only the positive values contained in all of the cells to
the left (including the value contained in that cell) in the input array. Negative values in the input array
should not contribute to the sum. Fill in the values for: pSum, fromLeft, and the Output Array in the tree
and output array. Do not use a sequential cutoff.

(b) (3 points) Give formulas for the following values where p is a reference to a tree node other than a leaf node
and leaves[i] refers to the leaf node in the tree visible just above the corresponding location in the input and
output arrays in the picture above.

p.left.fromLeft=

p.right.fromLeft=

output[i]= leaves[i].psum + leaves[i].fromLeft

(c) (2 points) Describe how you assigned a value to leaves[i].pSum.

5

4. Concurrency [13 points]

After finishing up all of the grading for summer quarter, the Allen School TAs decide to celebrate by eating at their
favorite restaurant on the Ave! The Restaurant class manages a restaurant’s seating capacity through reservations
and walk-ins. Multiple threads (TAs) could be accessing the same Restaurant object, which means two TAs could
be making reservations or walk-ins at the same time. Assume the Queue objects ARE THREAD-SAFE, have enough
space, and operations on them will not throw an exception.

1 public class Restaurant {

2

3 private Queue<Integer> reservations = new Queue<Integer>();

4 private Queue<Integer> walkIns = new Queue<Integer>();

5 private final int maxCapacity = 50; //Max capacity of people in restaurant

6

7 // Calculates current restaurant capacity

8 public int getTotal() {

9 int total = 0;

10

11 for (Integer group : reservations) {

12 total += group;

13 }

14

15 for (Integer group : walkIns) {

16 total += group;

17 }

18

19 return total;

20 }

21

22 // Adds list of reservation groups to the restaurant

23 public void addReservations(List<Integer> groups) {

24 for (int i = 0; i < groups.size(); i++) {

25 if (getTotal() + groups.get(i) <= maxCapacity) {

26 reservations.push(groups.get(i));

27 }

28 }

29 }

30

31 // Adds walkIn group to the restaurant

32 public void addWalkIn(int walkInSize) {

33 if (getTotal() + walkInSize <= maxCapacity) {

34 walkIns.push(groupSize);

35 }

36 }

37

38 }

6

(a) (4 points) Neel and Thien (think of them as two threads) are both trying to access the same Restaurant object
at the same time, but this potentially could cause some issues. If there are any problems, give an example of
when and where they could occur. Be specific.

Does the Restaurant class as shown above have (bubble all that apply):

2a race condition 2potential for deadlock 2a data race 2none of these

(b) (4 points) Hans proposes that we make the addWalkIn method synchronized in order to potentially eliminate
any concurrency issues in the code, and change nothing else.

Does this modified Restaurant class have (bubble all that apply):

2a race condition 2potential for deadlock 2a data race 2none of these

If there are any FIXED problems, describe why they are FIXED. If there are any NEW problems, give an example
of when those problems could occur. Be specific!

(c) (5 points) Modify the code on the next page to use locks to allow the most concurrent access and to avoid
all of the potential problems listed above. For full credit you must allow the most concurrent access possible
without introducing any errors. Create locks as needed. Use any reasonable names for the locking methods
you call. DO NOT use synchronized. You should create re-entrant lock objects as follows:

ReentrantLock lock = new ReentrantLock();

lock.acquire();

lock.release();

Answer this question in the next page.

7

1 // fix this code with locks!

2 public class Restaurant {

3

4 private Queue<Integer> reservations = new Queue<Integer>();

5 private Queue<Integer> walkIns = new Queue<Integer>();

6 private final int maxCapacity = 50; //Max capacity of people in restaurant

7

8

9

10

11 // Calculates current restaurant capacity

12 private int getTotal() {

13

14 int total = 0;

15

16 for (Integer group : reservations) {

17 total += group;

18 }

19

20 for (Integer group : walkIns) {

21 total += group;

22 }

23

24 return total;

25 }

26

27 // Adds list of reservation groups to the restaurant

28 public void addReservations(List<Integer> groups) {

29

30 for (int i = 0; i < groups.size(); i++) {

31

32 if (getTotal() + groups.get(i) <= maxCapacity) {

33

34 reservations.push(groups.get(i));

35

36 }

37

38 }

39

40 }

41

42 // Adds walkIn group to the restaurant

43 public void addWalkIn(int walkInSize) {

44

45 if (getTotal() + walkInSize <= maxCapacity) {

46

47 walkIns.push(groupSize);

48

49 }

50

51 }

52

53 }

8

5. Sorting [14 points]

(a) (3 points) Perform one pass of Hoare’s partition on a following data. We already swapped the pivot, 35, to
the first cell for you (the first to the second row). Show every swap, one per row. Don’t forget to swap the
pivot back.

3 14 15 92 65 35 89 79 32 38 46

35 14 15 92 65 3 89 79 32 38 46

(b) (4 points) Perform a radix sort on the following data.

23 14 6 92 63 27 79 26 90 5

0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9

9

(c) (4 points) Nathan wants to create a new data structure for priority queue operation, SuperQueue, with run-
time of Θ(1) for insert() and O(log logn) for removeMin(). Do you think this is possible? Explain briefly.
(Hint: This is a sorting question.)

(d) (3 points) Give the recurrence for the PARALLEL MERGE discussed in lecture — worst case span.
Note: We are NOT asking for the closed form. This is just a merge routine, not full Mergesort.
For any credit, explain all parts of your answer briefly.

T (N) =

10

Extra piece of paper for scratch work

11

Reference Sheet

Geometric series identities

k∑
i=0

ci =
ck+1 − 1

c− 1

∞∑
i=0

ci =
1

1− c
if |c| < 1

Sums of polynomials

n∑
i=0

i =
n(n+ 1)

2

n∑
i=0

i2 =
n(n+ 1)(2n+ 1)

6

n∑
i=0

i3 =
n2(n+ 1)2

4

Log identities

blogb(a) = a logb(x
y) = y · logb(x) alogb(c) = clogb(a) logb(a) =

logd(a)
logd(b)

Exponent properties

(am)n = am·n = (an)m

12

	1 Amdahl's Law [5 points]
	2 Parallel Code [14 points]
	3 Parallel Prefix Sum [9 points]
	4 Concurrency [13 points]
	5 Sorting [14 points]

