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Take Handouts!

(Raise your hand if you need one)
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Announcements

• P2
• Due Tomorrow, late Thursday

• Most people use late days

• EX09: Hashing
• Due this Friday

• EX10: Sorting
• Due this Friday
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Today
• Graph Terminologies

• Paths vs Cycles

• Connected vs Unconnected

• Sparse vs dense

• Graph Datastructures
• Adjacency Matrix

• Adjacency List

• Graph Traversals
• DFS (Iterative + Recursive)

• BFS

• Graph Shortest Paths
• Dijkstra's 3



Graphs: (Walks) vs Paths vs Cycles

• Walk: Sequence of adjacent vertices
• e.g., ABA, ABCD, ABC, etc.

• Path (or Simple Path): A walk that doesn't repeat a vertex
• e.g., ABCD, ABC, AB

• NOT ABA

• Cycle: A walk that doesn't repeat a vertex except the first and last vertex
• e.g., ABCDA

• NOT ABCD

____ Length: Number of edges in ____

____ Cost: Sum of weights of each edge in ____ 4
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Graphs: Paths vs Cycles Example

• Is there a path from A to D? 

• Does the graph contain any cycles?

• What if undirected?
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Graphs: Paths vs Cycles Example (Soln.)

• Is there a path from A to D? 

No

• Does the graph contain any cycles? No

• What if undirected?

Yes, Yes
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Graphs: Undirected Graph Connectivity

• An undirected graph is connected if for all pairs of vertices 𝑣, 𝑢 , 
there exists a path from 𝑣 to 𝑢

• An undirected graph is complete, a.k.a. fully connected if for all pairs 
of vertices 𝑣, 𝑢 , there exists an edge from 𝑣 to 𝑢
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Connected graph Disconnected graph
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Graphs: Directed Graph Connectivity

• A directed graph is strongly connected if there is a path from 
every vertex to every other vertex

• A directed graph is weakly connected if there is a path from 
every vertex to every other vertex ignoring direction of edges

• A directed graph is complete a.k.a. fully connected if for all 
pairs of vertices 𝑣, 𝑢 , there exists an edge from 𝑣 to 𝑢
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(plus self-edges)



Graphs: Practical Examples

For undirected graphs: connected? 

For directed graphs: strongly connected? weakly connected?

weighted?

• Web pages with links

• Facebook friends

• Methods in a program that call each other

• Road maps (e.g., Google maps)

• Airline routes

• Course pre-requisites

• … 9



Graphs: Trees

• When talking about graphs, we say a tree is a graph that is:
• undirected

• acyclic

• connected

• So all trees are graphs, but not all graphs are trees

• How does this relate to the trees we know and love?...
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Graphs: Rooted Trees
• We are more accustomed to rooted trees where:

• We identify a unique (“special”) root

• We think of edges as directed: parent to children

• Given a tree, once you pick a root, you have a unique rooted tree (just 
drawn differently and with undirected edges)
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Graphs: Directed Acyclic Graphs (DAGs)

• A DAG is a directed graph with no cycles (Acyclic)
• Every rooted directed tree is a DAG

• But not every DAG is a rooted directed tree:

• Every DAG is a directed graph
• But not every directed graph is a DAG:
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Graphs: Number of Vertices vs Edges (Math)

• Correct Mathematical Notation: 
• Number of Vertices = 𝑣1, 𝑣2, … , 𝑣𝑛 = 𝑉

• Number of Edges = 𝑒1, 𝑒2, … , 𝑒𝑚 = 𝐸

• Common Notation: 𝑉 or 𝐸

• Given 𝑉  vertices, what is:
• Minimum number of Edges?

• Maximum for undirected?

• Maximum for directed?
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Graphs: Number of Vertices vs Edges (Math)

• Correct Mathematical Notation: 
• Number of Vertices = 𝑣1, 𝑣2, … , 𝑣𝑛 = 𝑉

• Number of Edges = 𝑒1, 𝑒2, … , 𝑒𝑚 = 𝐸

• Common Notation: 𝑉 or 𝐸

• Given 𝑉  vertices, what is:
• Minimum number of Edges?

• 0

• Maximum for undirected?

•
𝑉 𝑉+1

2
 (with self-edges) or 

𝑉 𝑉+1

2
− 𝑉 (no self-edges)

• Maximum for directed?
• 𝑉2
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Graphs: Sparse vs Dense Graphs

• In a graph,
• Undirected, 0 ≤ 𝐸 < 𝑉 2

• Directed: 0 ≤ 𝐸 ≤ 𝑉 2

• So: 𝐸 ∈ 𝒪 𝑉 2

• Sparse: when 𝐸 ∈ Θ 𝑉  i.e., "few edges"

• Dense: when 𝐸 ∈ Θ 𝑉 2  i.e., "many edges"
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Any Questions?
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Today
• Graph Terminologies

• Paths vs Cycles

• Connected vs Unconnected

• Sparse vs dense

• Graph Datastructures
• Adjacency Matrix

• Adjacency List

• Graph Traversals
• DFS (Iterative + Recursive)

• BFS

• Graph Shortest Paths
• Dijkstra's 17



Graphs: The Data Structure

• Many data structures, tradeoffs

• Exploits graph properties

• Common operations:
• "Is 𝑣, 𝑢  an edge?"

• "What are the neighbors of 𝑣?"

• Two standards:
• Adjacency Matrix

• Adjacency List
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Graphs: Adjacency Matrix

• Assign each node a number from 0 to 𝑉 − 1

• A 𝑉  by 𝑉  matrix M (2-D array) of Booleans

• M[v][u]==true means there is an edge from v to u
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Any Questions?
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Adjacency Matrix: Properties

• Running time to:
• Get a vertex’s out-bound edges:

• Get a vertex’s in-bound edges:

• Decide if some edge exists:

• Insert an edge:

• Delete an edge:

• Space requirements:

• Better for Sparse or Dense Graphs?
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Adjacency Matrix: Properties (Soln.)

• Running time to:
• Get a vertex’s out-bound edges: 𝒪 𝑉

• Get a vertex’s in-bound edges: 𝒪 𝑉

• Decide if some edge exists: 𝒪 1

• Insert an edge: 𝒪 1

• Delete an edge: 𝒪 1

• Space requirements: 𝒪 𝑉 2

• Better for Sparse or Dense Graphs? Dense
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Adjacency Matrix: Adaptability

• How does it work for undirected graph?

• How does it work for weighted graph?
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Adjacency Matrix: Adaptability (Soln.)

• How does it work for undirected graph?
• Symmetric in diagonal axis (e.g., M[v][u]==true , then M[u][v]==true)

• How does it work for weighted graph?
• Instead of boolean, use integer

• "not an edge" can be 0, -1, infinite, etc.
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Graphs: Adjacency List

• Assign each node a number from 0 to 𝑉 − 1

• An array arr of length 𝑉  where arr[i] stores a (linked) list of all 
adjacent vertices
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Any Questions?
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Adjacency List: Properties
• Running time to:

• Get a vertex’s out-bound edges: 

• Get a vertex’s in-bound edges: 

• Decide if some edge exists: 

• Insert an edge: 

• Delete an edge: 

• Space requirements: 

• Better for Sparse or Dense Graphs? 27
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Adjacency List: Properties (Soln.)
• Running time to:

• Get a vertex’s out-bound edges: 
• 𝒪 𝑑 , where 𝑑 is out-degree of vertex

• Get a vertex’s in-bound edges: 
• 𝒪 𝑉 + 𝐸 , note: can keep 2nd "reverse" adjacency list for faster 

• Decide if some edge exists: 
• 𝒪 𝑑 , where 𝑑 is out-degree of source vertex

• Insert an edge: 
• 𝒪 1 , unless you need to check for duplicates then 𝒪 𝑑

• Delete an edge: 
• 𝒪 𝑑

• Space requirements: 𝒪 𝑉 + 𝐸

• Better for Sparse or Dense Graphs? Sparse 28
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Any Questions?
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Matrix vs List, which is better?

• Graphs are often sparse:
• Streets form grids 

• every corner is not connected to every other corner

• Airlines rarely fly to all possible cities 
• or if they do it is to/from a hub rather than directly to/from all small cities to other small 

cities

• Adjacency lists should generally be your default choice
• Slower performance compensated by greater space savings
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Today
• Graph Terminologies

• Paths vs Cycles

• Connected vs Unconnected

• Sparse vs dense

• Graph Datastructures
• Adjacency Matrix

• Adjacency List

• Graph Traversals
• DFS (Iterative + Recursive)

• BFS

• Graph Shortest Paths
• Dijkstra's 31



Graphs: Algorithms

Okay, we can represent graphs

Now let’s implement some useful and non-trivial algorithms

• Graph Traversals: Depth-first graph search (DFS) & Breadth-first graph 
search (BFS)

• Shortest paths: Find the shortest or lowest-cost path from x to y
• Related: Determine if there even is such a path
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Graphs: Traversals

Problem: In a graph G, find all nodes from a node src

• i.e., Is there a path from src to specific nodes?

Useful for doing something (processing) at a node (e.g., print the node)

Basic Idea:

• Keep following nodes

• "mark" nodes after visiting them such that it processes each node 
once
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Traversal: Abstract "Pseudocode"
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traverseGraph(Node src) {

 Set pending = new DataStructure();

 pending.add(src)

 mark src as visited

 while(pending is not empty) {

  v = pending.remove()

  for each node u adjacent to v // i.e., all of v's neighbour(s)

   if(u is not marked) {

    mark u

    pending.add(u)

   }

 }

}



Traversal: Algorithms

• Depth-First Search
• Uses a Stack

• (Recursively) Explore far away from src first

• Breadth-First Search
• Uses a Queue

• Explore everything near src first
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Traversal: Internet Warning

You know the drill.

36



Traversal: Iterative DFS (Less common)

Order Processed:
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IterativeDFS(Node src) {

 s = new Stack()

 s.push(src)

 mark src as visited

 while(s is not empty) {

  v = s.pop() // and "process"

  for each node u adjacent to v

  if(u is not marked)

   mark u as visited

   s.push(u)

  }

 }

}



Traversal: Iterative DFS (Less common) (Soln.)

Order Processed:

A, C, F, H, G, B, E, D

A, B, D, E, C, F, G, H

etc.
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IterativeDFS(Node src) {

 s = new Stack()

 s.push(src)

 mark src as visited

 while(s is not empty) {

  v = s.pop() // and "process"

  for each node u adjacent to v

  if(u is not marked)

   mark u as visited

   s.push(u)

  }

 }

}



Traversal: Recursive DFS (More common)
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RecursiveDFS(Node v) {

 mark v as visited // and "process"

 for each node u adjacent to v

  if u is not marked

   RecursiveDFS(u)

}

Order Processed:

Same as before!



Any Questions?
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Traversal: BFS (Soln.)
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BFS(Node src) {

 s = new Queue()

 s.enqueue(src)

 mark src as visited

 while(s is not empty) {

  v = s.dequeue() // and "process"

  for each node u adjacent to v

  if(u is not marked)

   mark u as visited

   s.enqueue(u)

  }

 }

}

Order Processed:



Traversal: BFS (Soln.)
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BFS(Node src) {

 s = new Queue()

 s.enqueue(src)

 mark src as visited

 while(s is not empty) {

  v = s.dequeue() // and "process"

  for each node u adjacent to v

  if(u is not marked)

   mark u as visited

   s.enqueue(u)

  }

 }

}

Order Processed:

A, B, C, D, E, F, G, H

etc., any level-order traversal



Traversal: DFS vs BFS

• Depth-First Search (DFS):
• Memory: Generally, DFS uses less memory compared to BFS as it only needs 

to store the nodes along the current branch.

• Applications: Topological Sorting, Cycle Detection, etc.

• Breadth-First Search (BFS):
• Memory: BFS tends to use more memory than DFS, as it needs to store all 

nodes at the current level before moving to the next level.

• Applications: Shortest Paths

• 3rd Option: Iterative Deep DFS (IDDFS)
• Use DFS with increasing depth limits

• Good memory + finds shortest path
43



Traversal: Saving the Path

• Old Problem: Is there a path from src to specific nodes?

• New Problem: What is the path from src to specific nodes?

Q: How do we output the actual path?

A:

• When marking, store the predecessor (previous) node along the path

• When you're done search, follow the pred backwards to where you 
started (and then reverse it to get the path)
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BFS with Path Saving
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IterativeDFS(Node src) {

 s = new Queue()

 s.enqueue(src)

 src.pred = null // same as marking src as visited

 while(s is not empty) {

  v = s.dequeue() // and "process"

  for each node u adjacent to v

  if(u is not marked)

   u.pred = v // previous node of u in the path is v

   s.enqueue(u)

  }

 }

}



Traversal: BFS Shortest Path Example

What is the shortest path from Seattle to Austin?
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Traversal: BFS Shortest Path Example (Soln.)

What is the shortest path from Seattle to Austin?

Seattle -> Chicago -> Dallas -> Austin

Seattle -> Salt Lake City -> Dallas -> Austin

Seattle -> San Francisco -> Dallas -> Austin
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Any Questions?
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Today
• Graph Terminologies

• Paths vs Cycles

• Connected vs Unconnected

• Sparse vs dense

• Graph Datastructures
• Adjacency Matrix

• Adjacency List

• Graph Traversals
• DFS (Iterative + Recursive)

• BFS

• Graph Shortest Paths
• Dijkstra's 49



Shortest Path: Applications

• Google Maps

• Network routing

• Driving directions

• Cheap flight tickets

• Critical paths in project management
(see textbook)

• etc.
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Shortest Path: Weighted Graphs

New Problem: What is the shortest path from src to specific nodes in 
a weighted graph? 

• Why BFS won’t work: Shortest path may not have the fewest edges
• Annoying when this happens with costs of flights

• We will assume there are no negative weights
• Problem is ill-defined if there are negative-cost cycles

• Some algorithms are wrong (e.g, Dijkstra's Algorithm) if edges can be negative

51
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Shortest Path: Dijkstra's Algorithm

• Initially, start node (A) has cost 0 and all other nodes have cost ∞

• At each step:
• Pick closest unknown vertex v

• Add it to the "cloud" of known vertices

• Update distances for nodes with edges from v

• That’s it!  (Have to prove it produces correct answers) 52
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