
Lecture 15: Graph Traversals

CSE 332: Data Structures & Parallelism

Winston Jodjana

Summer 2023

Take Handouts!

(Raise your hand if you need one)

1

Announcements

• P2
• Due Tomorrow, late Thursday

• Most people use late days

• EX09: Hashing
• Due this Friday

• EX10: Sorting
• Due this Friday

2

Today
• Graph Terminologies

• Paths vs Cycles

• Connected vs Unconnected

• Sparse vs dense

• Graph Datastructures
• Adjacency Matrix

• Adjacency List

• Graph Traversals
• DFS (Iterative + Recursive)

• BFS

• Graph Shortest Paths
• Dijkstra's 3

Graphs: (Walks) vs Paths vs Cycles

• Walk: Sequence of adjacent vertices
• e.g., ABA, ABCD, ABC, etc.

• Path (or Simple Path): A walk that doesn't repeat a vertex
• e.g., ABCD, ABC, AB

• NOT ABA

• Cycle: A walk that doesn't repeat a vertex except the first and last vertex
• e.g., ABCDA

• NOT ABCD

____ Length: Number of edges in ____

____ Cost: Sum of weights of each edge in ____ 4

A B C D

1 2

3
1

1

Graphs: Paths vs Cycles Example

• Is there a path from A to D?

• Does the graph contain any cycles?

• What if undirected?

5

A

B

C

D

Graphs: Paths vs Cycles Example (Soln.)

• Is there a path from A to D?

No

• Does the graph contain any cycles? No

• What if undirected?

Yes, Yes
6

A

B

C

D

Graphs: Undirected Graph Connectivity

• An undirected graph is connected if for all pairs of vertices 𝑣, 𝑢 ,
there exists a path from 𝑣 to 𝑢

• An undirected graph is complete, a.k.a. fully connected if for all pairs
of vertices 𝑣, 𝑢 , there exists an edge from 𝑣 to 𝑢

7

Connected graph Disconnected graph

(plus self-edges)

Graphs: Directed Graph Connectivity

• A directed graph is strongly connected if there is a path from
every vertex to every other vertex

• A directed graph is weakly connected if there is a path from
every vertex to every other vertex ignoring direction of edges

• A directed graph is complete a.k.a. fully connected if for all
pairs of vertices 𝑣, 𝑢 , there exists an edge from 𝑣 to 𝑢

8

(plus self-edges)

Graphs: Practical Examples

For undirected graphs: connected?

For directed graphs: strongly connected? weakly connected?

weighted?

• Web pages with links

• Facebook friends

• Methods in a program that call each other

• Road maps (e.g., Google maps)

• Airline routes

• Course pre-requisites

• … 9

Graphs: Trees

• When talking about graphs, we say a tree is a graph that is:
• undirected

• acyclic

• connected

• So all trees are graphs, but not all graphs are trees

• How does this relate to the trees we know and love?...

10

A

B

D E

C

F

HG

Graphs: Rooted Trees
• We are more accustomed to rooted trees where:

• We identify a unique (“special”) root

• We think of edges as directed: parent to children

• Given a tree, once you pick a root, you have a unique rooted tree (just
drawn differently and with undirected edges)

11

A

B

D E

C

F

HG

redrawn
A

B

D E

C

F

HG

A

B

D E

C

F

HG

redrawn

F

G H C

A

B

D E

Graphs: Directed Acyclic Graphs (DAGs)

• A DAG is a directed graph with no cycles (Acyclic)
• Every rooted directed tree is a DAG

• But not every DAG is a rooted directed tree:

• Every DAG is a directed graph
• But not every directed graph is a DAG:

12

Not a rooted directed tree,
Has a cycle (in the undirected
sense)

Graphs: Number of Vertices vs Edges (Math)

• Correct Mathematical Notation:
• Number of Vertices = 𝑣1, 𝑣2, … , 𝑣𝑛 = 𝑉

• Number of Edges = 𝑒1, 𝑒2, … , 𝑒𝑚 = 𝐸

• Common Notation: 𝑉 or 𝐸

• Given 𝑉 vertices, what is:
• Minimum number of Edges?

• Maximum for undirected?

• Maximum for directed?

13

Graphs: Number of Vertices vs Edges (Math)

• Correct Mathematical Notation:
• Number of Vertices = 𝑣1, 𝑣2, … , 𝑣𝑛 = 𝑉

• Number of Edges = 𝑒1, 𝑒2, … , 𝑒𝑚 = 𝐸

• Common Notation: 𝑉 or 𝐸

• Given 𝑉 vertices, what is:
• Minimum number of Edges?

• 0

• Maximum for undirected?

•
𝑉 𝑉+1

2
 (with self-edges) or

𝑉 𝑉+1

2
− 𝑉 (no self-edges)

• Maximum for directed?
• 𝑉2

14

Graphs: Sparse vs Dense Graphs

• In a graph,
• Undirected, 0 ≤ 𝐸 < 𝑉 2

• Directed: 0 ≤ 𝐸 ≤ 𝑉 2

• So: 𝐸 ∈ 𝒪 𝑉 2

• Sparse: when 𝐸 ∈ Θ 𝑉 i.e., "few edges"

• Dense: when 𝐸 ∈ Θ 𝑉 2 i.e., "many edges"

15

0 edges 𝒪 𝑉 2 edges𝒪 𝑉 edges

Sparse Dense

Any Questions?

16

Today
• Graph Terminologies

• Paths vs Cycles

• Connected vs Unconnected

• Sparse vs dense

• Graph Datastructures
• Adjacency Matrix

• Adjacency List

• Graph Traversals
• DFS (Iterative + Recursive)

• BFS

• Graph Shortest Paths
• Dijkstra's 17

Graphs: The Data Structure

• Many data structures, tradeoffs

• Exploits graph properties

• Common operations:
• "Is 𝑣, 𝑢 an edge?"

• "What are the neighbors of 𝑣?"

• Two standards:
• Adjacency Matrix

• Adjacency List

18

Graphs: Adjacency Matrix

• Assign each node a number from 0 to 𝑉 − 1

• A 𝑉 by 𝑉 matrix M (2-D array) of Booleans

• M[v][u]==true means there is an edge from v to u

19

A

B

C

D

To

Fr
o

m

A B C D

A F T F F

B T F F F

C F T F T

D F F F F

Any Questions?

20

Adjacency Matrix: Properties

• Running time to:
• Get a vertex’s out-bound edges:

• Get a vertex’s in-bound edges:

• Decide if some edge exists:

• Insert an edge:

• Delete an edge:

• Space requirements:

• Better for Sparse or Dense Graphs?

21

A

B

C

D

To

Fr
o

m

A B C D

A F T F F

B T F F F

C F T F T

D F F F F

Adjacency Matrix: Properties (Soln.)

• Running time to:
• Get a vertex’s out-bound edges: 𝒪 𝑉

• Get a vertex’s in-bound edges: 𝒪 𝑉

• Decide if some edge exists: 𝒪 1

• Insert an edge: 𝒪 1

• Delete an edge: 𝒪 1

• Space requirements: 𝒪 𝑉 2

• Better for Sparse or Dense Graphs? Dense

22

A

B

C

D

To

Fr
o

m

A B C D

A F T F F

B T F F F

C F T F T

D F F F F

Adjacency Matrix: Adaptability

• How does it work for undirected graph?

• How does it work for weighted graph?

23

Adjacency Matrix: Adaptability (Soln.)

• How does it work for undirected graph?
• Symmetric in diagonal axis (e.g., M[v][u]==true , then M[u][v]==true)

• How does it work for weighted graph?
• Instead of boolean, use integer

• "not an edge" can be 0, -1, infinite, etc.

24

Graphs: Adjacency List

• Assign each node a number from 0 to 𝑉 − 1

• An array arr of length 𝑉 where arr[i] stores a (linked) list of all
adjacent vertices

25

A

B

C

D

A

B

C

D

B /

A /

D B /

/

Any Questions?

26

Adjacency List: Properties
• Running time to:

• Get a vertex’s out-bound edges:

• Get a vertex’s in-bound edges:

• Decide if some edge exists:

• Insert an edge:

• Delete an edge:

• Space requirements:

• Better for Sparse or Dense Graphs? 27

A

B

C

D

A

B

C

D

B /

A /

D B /

/

Adjacency List: Properties (Soln.)
• Running time to:

• Get a vertex’s out-bound edges:
• 𝒪 𝑑 , where 𝑑 is out-degree of vertex

• Get a vertex’s in-bound edges:
• 𝒪 𝑉 + 𝐸 , note: can keep 2nd "reverse" adjacency list for faster

• Decide if some edge exists:
• 𝒪 𝑑 , where 𝑑 is out-degree of source vertex

• Insert an edge:
• 𝒪 1 , unless you need to check for duplicates then 𝒪 𝑑

• Delete an edge:
• 𝒪 𝑑

• Space requirements: 𝒪 𝑉 + 𝐸

• Better for Sparse or Dense Graphs? Sparse 28

A

B

C

D

A

B

C

D

B /

A /

D B /

/

Any Questions?

29

Matrix vs List, which is better?

• Graphs are often sparse:
• Streets form grids

• every corner is not connected to every other corner

• Airlines rarely fly to all possible cities
• or if they do it is to/from a hub rather than directly to/from all small cities to other small

cities

• Adjacency lists should generally be your default choice
• Slower performance compensated by greater space savings

30

Today
• Graph Terminologies

• Paths vs Cycles

• Connected vs Unconnected

• Sparse vs dense

• Graph Datastructures
• Adjacency Matrix

• Adjacency List

• Graph Traversals
• DFS (Iterative + Recursive)

• BFS

• Graph Shortest Paths
• Dijkstra's 31

Graphs: Algorithms

Okay, we can represent graphs

Now let’s implement some useful and non-trivial algorithms

• Graph Traversals: Depth-first graph search (DFS) & Breadth-first graph
search (BFS)

• Shortest paths: Find the shortest or lowest-cost path from x to y
• Related: Determine if there even is such a path

32

Graphs: Traversals

Problem: In a graph G, find all nodes from a node src

• i.e., Is there a path from src to specific nodes?

Useful for doing something (processing) at a node (e.g., print the node)

Basic Idea:

• Keep following nodes

• "mark" nodes after visiting them such that it processes each node
once

33

Traversal: Abstract "Pseudocode"

34

traverseGraph(Node src) {

 Set pending = new DataStructure();

 pending.add(src)

 mark src as visited

 while(pending is not empty) {

 v = pending.remove()

 for each node u adjacent to v // i.e., all of v's neighbour(s)

 if(u is not marked) {

 mark u

 pending.add(u)

 }

 }

}

Traversal: Algorithms

• Depth-First Search
• Uses a Stack

• (Recursively) Explore far away from src first

• Breadth-First Search
• Uses a Queue

• Explore everything near src first

35

Traversal: Internet Warning

You know the drill.

36

Traversal: Iterative DFS (Less common)

Order Processed:

37

A

B

D E

C

F

HG

IterativeDFS(Node src) {

 s = new Stack()

 s.push(src)

 mark src as visited

 while(s is not empty) {

 v = s.pop() // and "process"

 for each node u adjacent to v

 if(u is not marked)

 mark u as visited

 s.push(u)

 }

 }

}

Traversal: Iterative DFS (Less common) (Soln.)

Order Processed:

A, C, F, H, G, B, E, D

A, B, D, E, C, F, G, H

etc.
38

A

B

D E

C

F

HG

IterativeDFS(Node src) {

 s = new Stack()

 s.push(src)

 mark src as visited

 while(s is not empty) {

 v = s.pop() // and "process"

 for each node u adjacent to v

 if(u is not marked)

 mark u as visited

 s.push(u)

 }

 }

}

Traversal: Recursive DFS (More common)

39

A

B

D E

C

F

HG

RecursiveDFS(Node v) {

 mark v as visited // and "process"

 for each node u adjacent to v

 if u is not marked

 RecursiveDFS(u)

}

Order Processed:

Same as before!

Any Questions?

40

Traversal: BFS (Soln.)

41

A

B

D E

C

F

HG

BFS(Node src) {

 s = new Queue()

 s.enqueue(src)

 mark src as visited

 while(s is not empty) {

 v = s.dequeue() // and "process"

 for each node u adjacent to v

 if(u is not marked)

 mark u as visited

 s.enqueue(u)

 }

 }

}

Order Processed:

Traversal: BFS (Soln.)

42

A

B

D E

C

F

HG

BFS(Node src) {

 s = new Queue()

 s.enqueue(src)

 mark src as visited

 while(s is not empty) {

 v = s.dequeue() // and "process"

 for each node u adjacent to v

 if(u is not marked)

 mark u as visited

 s.enqueue(u)

 }

 }

}

Order Processed:

A, B, C, D, E, F, G, H

etc., any level-order traversal

Traversal: DFS vs BFS

• Depth-First Search (DFS):
• Memory: Generally, DFS uses less memory compared to BFS as it only needs

to store the nodes along the current branch.

• Applications: Topological Sorting, Cycle Detection, etc.

• Breadth-First Search (BFS):
• Memory: BFS tends to use more memory than DFS, as it needs to store all

nodes at the current level before moving to the next level.

• Applications: Shortest Paths

• 3rd Option: Iterative Deep DFS (IDDFS)
• Use DFS with increasing depth limits

• Good memory + finds shortest path
43

Traversal: Saving the Path

• Old Problem: Is there a path from src to specific nodes?

• New Problem: What is the path from src to specific nodes?

Q: How do we output the actual path?

A:

• When marking, store the predecessor (previous) node along the path

• When you're done search, follow the pred backwards to where you
started (and then reverse it to get the path)

44

BFS with Path Saving

45

IterativeDFS(Node src) {

 s = new Queue()

 s.enqueue(src)

 src.pred = null // same as marking src as visited

 while(s is not empty) {

 v = s.dequeue() // and "process"

 for each node u adjacent to v

 if(u is not marked)

 u.pred = v // previous node of u in the path is v

 s.enqueue(u)

 }

 }

}

Traversal: BFS Shortest Path Example

What is the shortest path from Seattle to Austin?

46

Seattle

San Francisco
Dallas

Salt Lake City

Chicago

Austin

Traversal: BFS Shortest Path Example (Soln.)

What is the shortest path from Seattle to Austin?

Seattle -> Chicago -> Dallas -> Austin

Seattle -> Salt Lake City -> Dallas -> Austin

Seattle -> San Francisco -> Dallas -> Austin

47

Seattle

San Francisco
Dallas

Salt Lake City

Chicago

Austin

Any Questions?

48

Today
• Graph Terminologies

• Paths vs Cycles

• Connected vs Unconnected

• Sparse vs dense

• Graph Datastructures
• Adjacency Matrix

• Adjacency List

• Graph Traversals
• DFS (Iterative + Recursive)

• BFS

• Graph Shortest Paths
• Dijkstra's 49

Shortest Path: Applications

• Google Maps

• Network routing

• Driving directions

• Cheap flight tickets

• Critical paths in project management
(see textbook)

• etc.

50

Shortest Path: Weighted Graphs

New Problem: What is the shortest path from src to specific nodes in
a weighted graph?

• Why BFS won’t work: Shortest path may not have the fewest edges
• Annoying when this happens with costs of flights

• We will assume there are no negative weights
• Problem is ill-defined if there are negative-cost cycles

• Some algorithms are wrong (e.g, Dijkstra's Algorithm) if edges can be negative

51

500

100
100 100

100

7

10 5

-11

Shortest Path: Dijkstra's Algorithm

• Initially, start node (A) has cost 0 and all other nodes have cost ∞

• At each step:
• Pick closest unknown vertex v

• Add it to the "cloud" of known vertices

• Update distances for nodes with edges from v

• That’s it! (Have to prove it produces correct answers) 52

A B

D
C

F H

E

G

0 2 4 ∞

4

1

12

∞

2 2 3

110 2
3

111

7

1

9

2

4 5

	Slide 1: Lecture 15: Graph Traversals
	Slide 2: Announcements
	Slide 3: Today
	Slide 4: Graphs: (Walks) vs Paths vs Cycles
	Slide 5: Graphs: Paths vs Cycles Example
	Slide 6: Graphs: Paths vs Cycles Example (Soln.)
	Slide 7: Graphs: Undirected Graph Connectivity
	Slide 8: Graphs: Directed Graph Connectivity
	Slide 9: Graphs: Practical Examples
	Slide 10: Graphs: Trees
	Slide 11: Graphs: Rooted Trees
	Slide 12: Graphs: Directed Acyclic Graphs (DAGs)
	Slide 13: Graphs: Number of Vertices vs Edges (Math)
	Slide 14: Graphs: Number of Vertices vs Edges (Math)
	Slide 15: Graphs: Sparse vs Dense Graphs
	Slide 16: Any Questions?
	Slide 17: Today
	Slide 18: Graphs: The Data Structure
	Slide 19: Graphs: Adjacency Matrix
	Slide 20: Any Questions?
	Slide 21: Adjacency Matrix: Properties
	Slide 22: Adjacency Matrix: Properties (Soln.)
	Slide 23: Adjacency Matrix: Adaptability
	Slide 24: Adjacency Matrix: Adaptability (Soln.)
	Slide 25: Graphs: Adjacency List
	Slide 26: Any Questions?
	Slide 27: Adjacency List: Properties
	Slide 28: Adjacency List: Properties (Soln.)
	Slide 29: Any Questions?
	Slide 30: Matrix vs List, which is better?
	Slide 31: Today
	Slide 32: Graphs: Algorithms
	Slide 33: Graphs: Traversals
	Slide 34: Traversal: Abstract "Pseudocode"
	Slide 35: Traversal: Algorithms
	Slide 36: Traversal: Internet Warning
	Slide 37: Traversal: Iterative DFS (Less common)
	Slide 38: Traversal: Iterative DFS (Less common) (Soln.)
	Slide 39: Traversal: Recursive DFS (More common)
	Slide 40: Any Questions?
	Slide 41: Traversal: BFS (Soln.)
	Slide 42: Traversal: BFS (Soln.)
	Slide 43: Traversal: DFS vs BFS
	Slide 44: Traversal: Saving the Path
	Slide 45: BFS with Path Saving
	Slide 46: Traversal: BFS Shortest Path Example
	Slide 47: Traversal: BFS Shortest Path Example (Soln.)
	Slide 48: Any Questions?
	Slide 49: Today
	Slide 50: Shortest Path: Applications
	Slide 51: Shortest Path: Weighted Graphs
	Slide 52: Shortest Path: Dijkstra's Algorithm

