Lecture 12: Comparison Sorts

CSE 332: Data Structures & Parallelism

Winston Jodjana

Summer 2023

Take Handouts! (Raise your hand if you need one)

Announcements

- Midterm grades out!
 - Complain here: https://feedback.cs.washington.edu/
 - (Again, I cannot reply)
- P2 CP2
 - Due Friday
 - P2 Due Tuesday (be careful with bugs)
- EX08: VerifyAVL
 - Due Friday
- EX09: Hashing
 - Out
 - Due next Friday

Today

- Sorting Algorithm 1: Insertion Sort
- Sorting Algorithm 2: Selection Sort
- Sorting Algorithm 3: Heap Sort
 - In-place optimization
- Sorting Algorithm 4: Merge Sort
 - Merging
- Sorting Algorithm 5: Quick Sort
 - Picking a pivot
 - Partioning
- Comparison Sorting Lower Bound

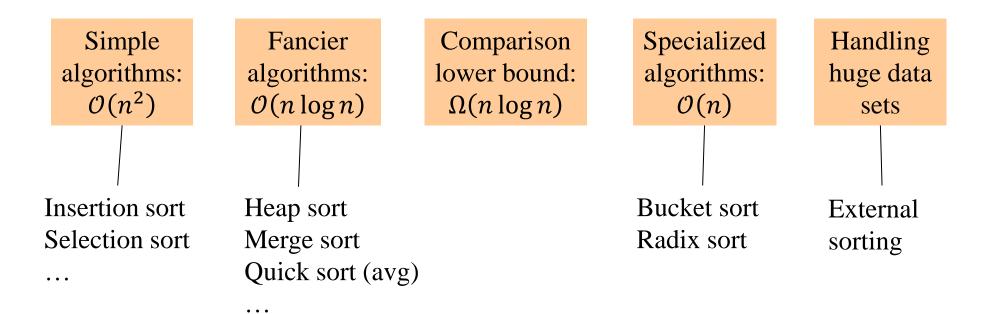
Sorting: An introduction

- Why sorting?
 - Want to know "all the data items" in some order
 - Very common to need data sorted somehow
 - Alphabetical list of people
 - Population list of countries
 - Search engine results by relevance
 - Binary search
- Why many ways of sorting?
 - Tradeoffs...
 - Asymptotic vs Constant Factors
 - Different properties

Sorting: Goals (Terminology)

- 1. Stable
 - Maybe in the case of ties we should preserve the original ordering
 - One way to sort twice, Ex: Sort movies by year, then for ties, alphabetically
- 2. In-Place (Space)
 - No more than $\mathcal{O}(1)$ "auxiliary space"
 - Only use original array by swapping elements
- 3. Fast (Time)
 - Typically, $\mathcal{O}(n \log n)$
 - Or good constant factors

Sorting: The Big Picture



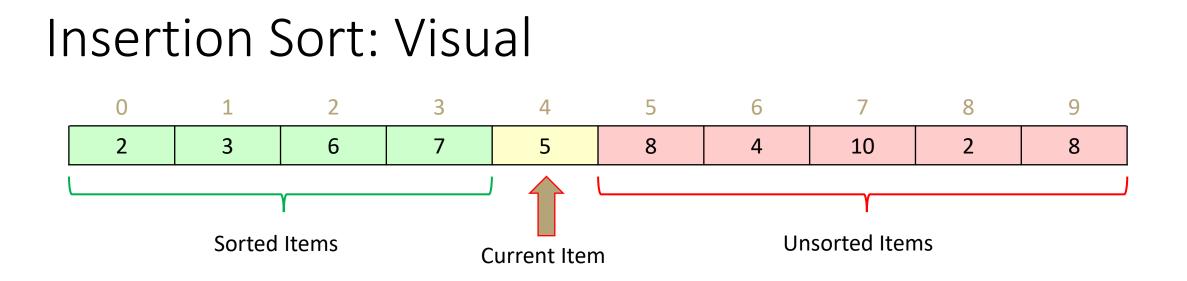
Sorting Algorithm 1: Insertion Sort

Intuition: Given a hand of cards, sort it Algorithm:

- Maintain a sorted subarray
 - 1. Sort first 2 elements
 - 2. Insert 3rd element in order
 - 3. Insert 4th element in order
 - 4. ...

Insertion Sort: Pseudocode

```
insertionSort(int[] arr){
   for(i=0; i < arr.length; i++){
      int curr = i
      while(arr[curr-1] > arr[curr]){
        swap(arr[curr-1], arr[curr])
        curr -= 1
   }
```



Insertion Sort: Analysis

- 1. Stable?
 - Yes!
- 2. In-Place?
 - Yes!
- 3. Fast?
 - No :((in terms of asymptotics)
 - Best Case: $\mathcal{O}(n)$
 - Worst Case: $\mathcal{O}(n^2)$
 - Good constant factors!

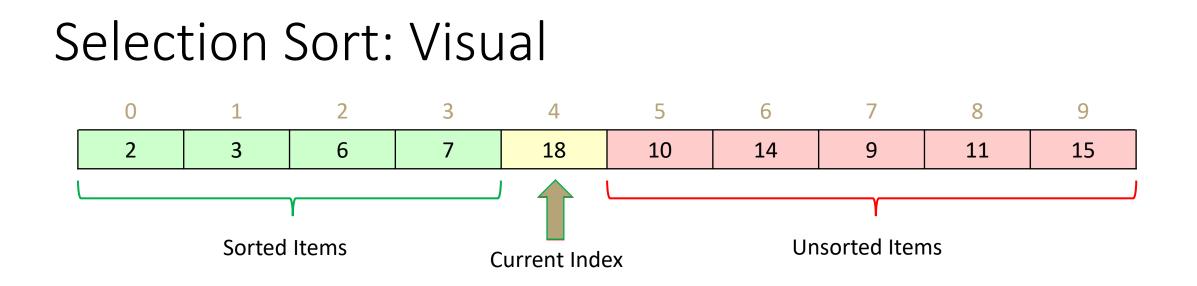
Today

- Sorting Algorithm 1: Insertion Sort
- Sorting Algorithm 2: Selection Sort
- Sorting Algorithm 3: Heap Sort
 - In-place optimization
- Sorting Algorithm 4: Merge Sort
 - Merging
- Sorting Algorithm 5: Quick Sort
 - Picking a pivot
 - Partioning
- Comparison Sorting Lower Bound

Sorting Algorithm 2: Selection Sort

Algorithm:

- Maintain a sorted subarray
 - 1. Find the smallest element remaining in the unsorted subarray
 - 2. Append it at the end of the sorted part
 - 3. Repeat



Selection Sort: Analysis

- 1. Stable?
 - No :((e.g., try [2₁, 2₂, 1])
- 2. In-Place?
 - Yes!
- 3. Fast?
 - No :((in terms of asymptotics)
 - Best Case: $\mathcal{O}(n^2)$
 - Worse than insertion sort when array is almost fully sorted
 - Worst Case: $\mathcal{O}(n^2)$
 - Good constant factors!

Sorting Algorithm null: Bubble Sort

- We pretend it doesn't exist
- Bad asymptotic complexity: $\mathcal{O}(n^2)$
- Bad constant factors
- Literally should never be used
 - Anything it is good at, another algorithm is at least good at
- IDK WHY THE INTERNET LIKES USING IT

Any Questions?

Today

- Sorting Algorithm 1: Insertion Sort
- Sorting Algorithm 2: Selection Sort
- Sorting Algorithm 3: Heap Sort
 - In-place optimization
- Sorting Algorithm 4: Merge Sort
 - Merging
- Sorting Algorithm 5: Quick Sort
 - Picking a pivot
 - Partioning
- Comparison Sorting Lower Bound

Sorting Algorithm 3: Heap Sort

Intuition: Use a heap

Algorithm:

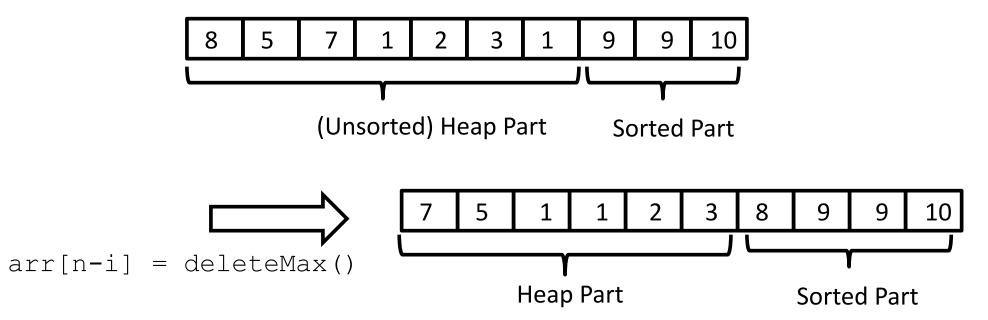
- 1. Put all elements into a heap (e.g., with buildHeap)
- 2. Remove elements one by one and put back into the array

Heap Sort (unoptimized): Pseudocode

```
heapSort(int[] arr){
    heap = buildHeap(arr)
    for(i=0; i < arr.length; i++){
        arr[i] = heap.deleteMin()
    }</pre>
```

(Max) Heap Sort: In-place Optimization

- Treat the initial array as a heap (via buildHeap)
- When you delete the ith element, put it at arr[n-i] (the back)
 - It's not part of the heap anymore!



Any Questions?

Heap Sort: Analysis

- 1. Stable? Try: 3 3 2 1
 - No, no guarantees on which key comes first
 - Technically it **can** be but it makes it not in-place (we don't talk about this).
- 2. In-Place?
 - Yes!
- 3. Fast?
 - Yes! (in terms of asymptotics)
 - Best Case: $\mathcal{O}(n \log n)$
 - Worst Case: $\mathcal{O}(n \log n)$
 - Worse constant factors...
 - Think: have to maintain Heap, using buildHeap, etc.

Sorting Algorithm null: AVL Sort

- We pretend it doesn't exist
- Idea $\mathcal{O}(n \log n)$:
 - insert all elements into some balanced tree, $\mathcal{O}(n \log n)$
 - in-order traversal, $\mathcal{O}(n)$
- Not in-place
- Worse constant factors
- Heap Sort is just better...

Today

- Sorting Algorithm 1: Insertion Sort
- Sorting Algorithm 2: Selection Sort
- Sorting Algorithm 3: Heap Sort
 - In-place optimization
- Sorting Algorithm 4: Merge Sort
 - Merging
- Sorting Algorithm 5: Quick Sort
 - Picking a pivot
 - Partioning
- Comparison Sorting Lower Bound

Divide and Conquer

Very important technique in algorithm design

- 1. Divide problems into smaller parts
- 2. Solve each part independently
 - Think: recursion, parallelism (later)
- 3. Combine each part's solution to produce overall solution

e.g.,

- Sort each half of the array, combine together
- to sort each half, split into halves

Divide and Conquer Sorting

1. Merge Sort

- Sort the left half of the elements (recursively)
- Sort the right half of the elements (recursively)
- Merge the two sorted halves into a sorted whole
- 2. Quick Sort
 - Divide elements into those less-than pivot and those greater-than pivot
 - Sort the two divisions (recursively on each)
 - Merge as [sorted-less-than then pivot then sorted-greater-than]

Sorting Algorithm 4: Merge Sort hi

- Algorithm, (recursively) sort from position 10 to position hi:
 - 1. If lo to hi is 1 element long,
 - 1. Sorted! Because its 1 element...
 - 2. Else, split into halves:
 - 1. Sort from lo to (hi+lo) /2 (lo to the middle)
 - 2. Sort from (hi+lo)/2 to hi
 - 3. Merge the two halves together
- How to merge 2 sorted halves?
 - $\mathcal{O}(n)$ time but needs auxiliary space...

Merge Sort: Merging Visualization

Start with:



1

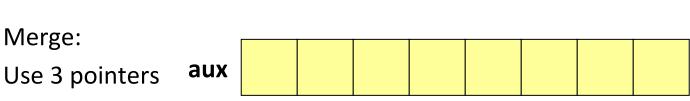
9

3

5

6

After we return from left and right recursive calls (pretend it works for now)

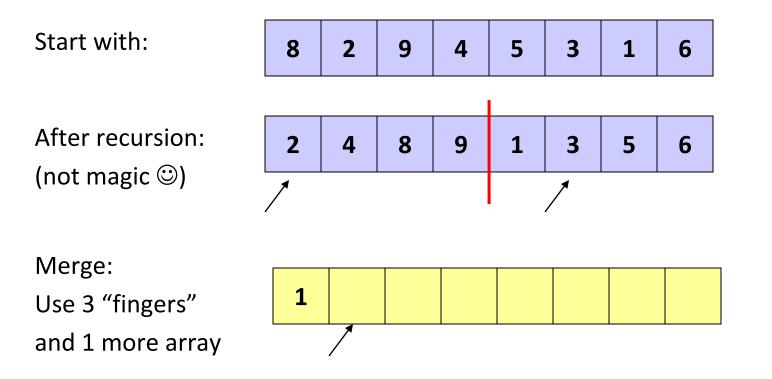


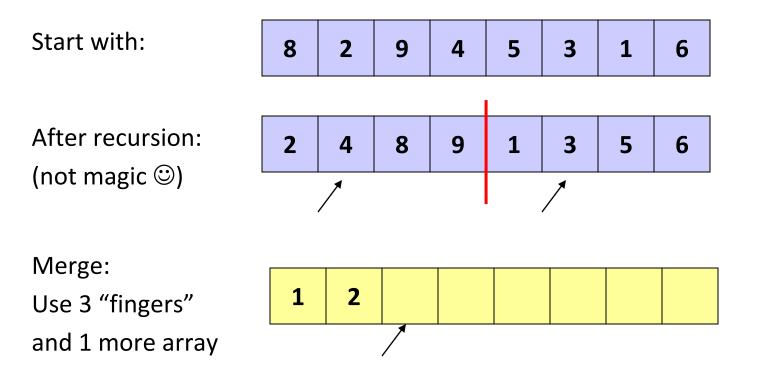
and 1 more array

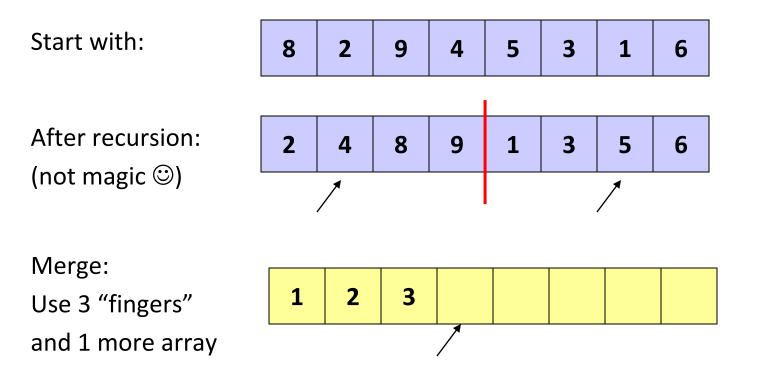
2

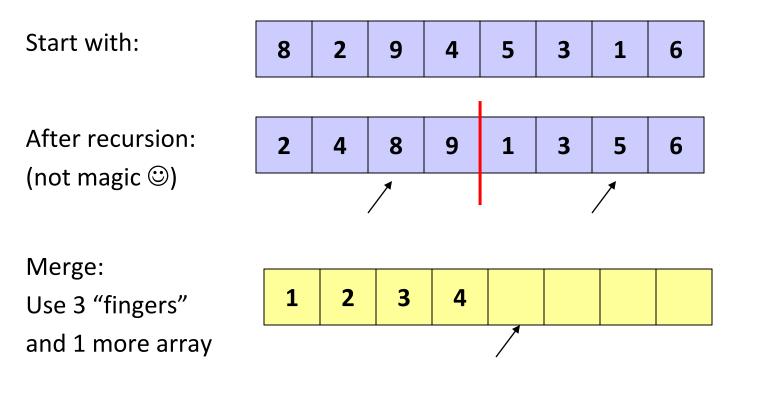
4

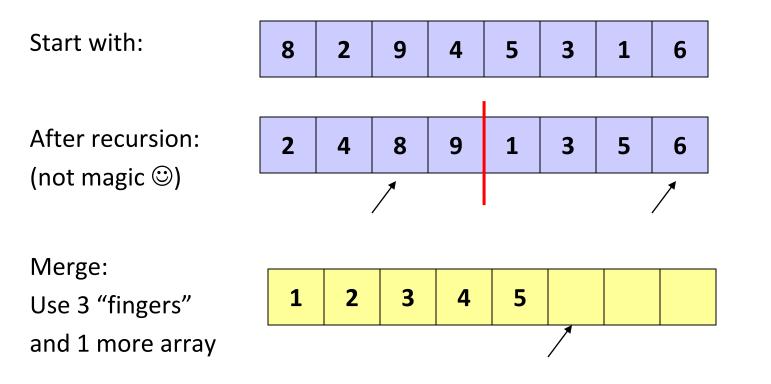
8

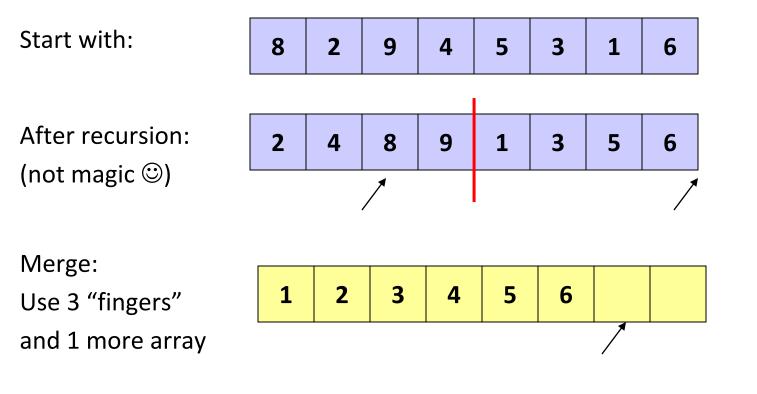


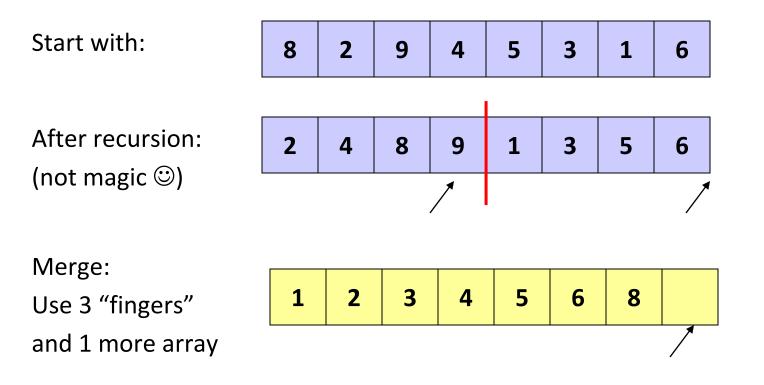


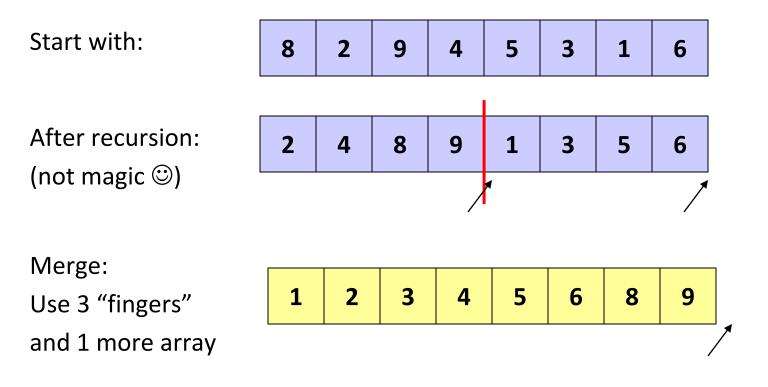




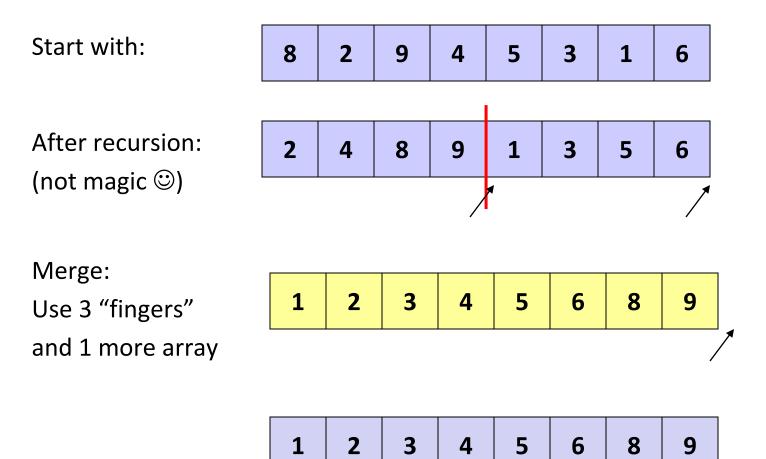








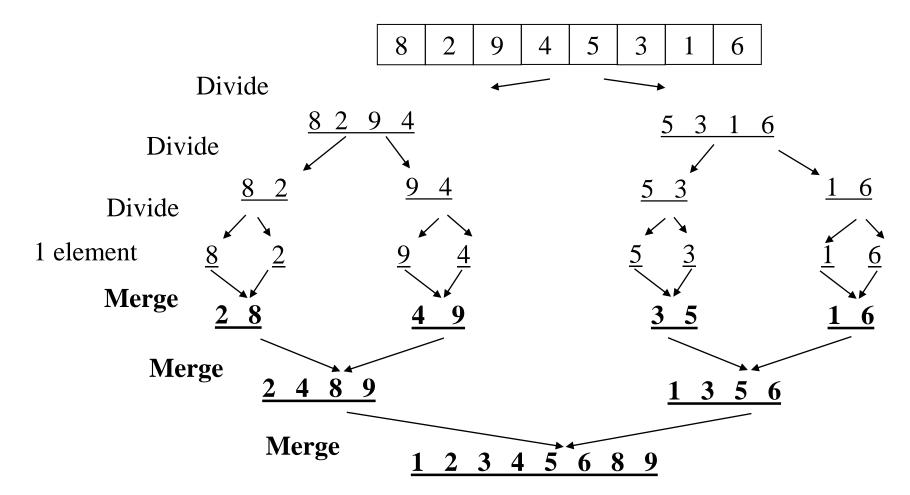
Merge Sort: Merging Visualization (Soln.)



Merge Sort: Splitting Visualization



Merge Sort: Splitting Visualization

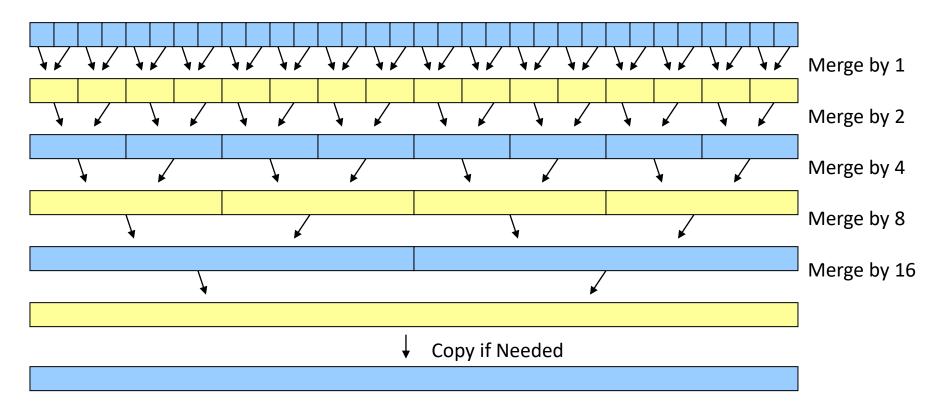


When a recursive call ends, it's sub-arrays are each in order; just need to merge them in order together

Merge Sort: Copy Array Optimization

First recurse down to lists of size 1

As we return from the recursion, switch off arrays



Any Questions?

Merge Sort: Analysis

- 1. Stable?
 - Yes! Just prioritize left array
- 2. In-Place?
 - No :(*O*(*n*) space
- 3. Fast?
 - Yes! (in terms of asymptotics)
 - Best Case: $\mathcal{O}(n \log n)$
 - Worst Case: $\mathcal{O}(n \log n)$ Why?
 - Worse constant factors...
 - Think: recursive splitting, merging, etc.

Merge Sort: Runtime Analysis

Recurrence Relation:

$$T(n) = \begin{cases} c_0 & \text{for } n = 1\\ 2T\left(\frac{n}{2}\right) + c_1n + c_2 & \text{otherwise} \end{cases}$$

Solving:

$$T(n) = 2^{\log n} T(1) + n \log n = n + n \log n \in \mathcal{O}(n \log n)$$

Today

- Sorting Algorithm 1: Insertion Sort
- Sorting Algorithm 2: Selection Sort
- Sorting Algorithm 3: Heap Sort
 - In-place optimization
- Sorting Algorithm 4: Merge Sort
 - Merging
- Sorting Algorithm 5: Quick Sort
 - Picking a pivot
 - Partioning
- Comparison Sorting Lower Bound

Quick Sort Warning

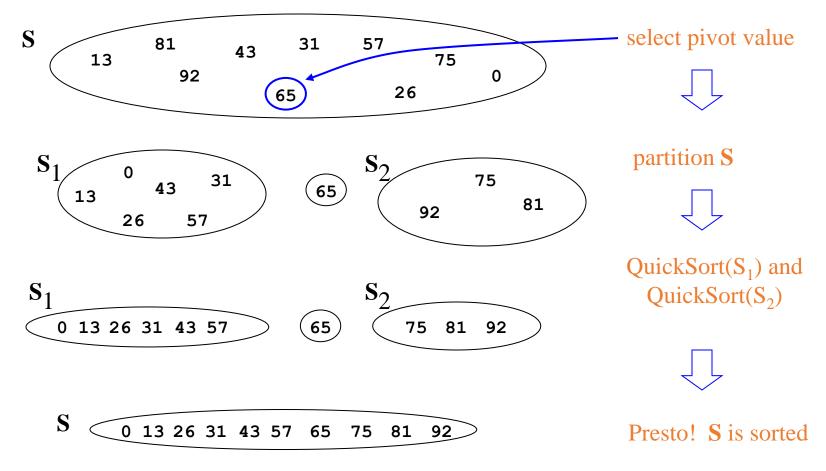
There are millions of versions of Quick Sort on the internet. Use ours.

Sorting Algorithm 5: Quick Sort

• Algorithm:

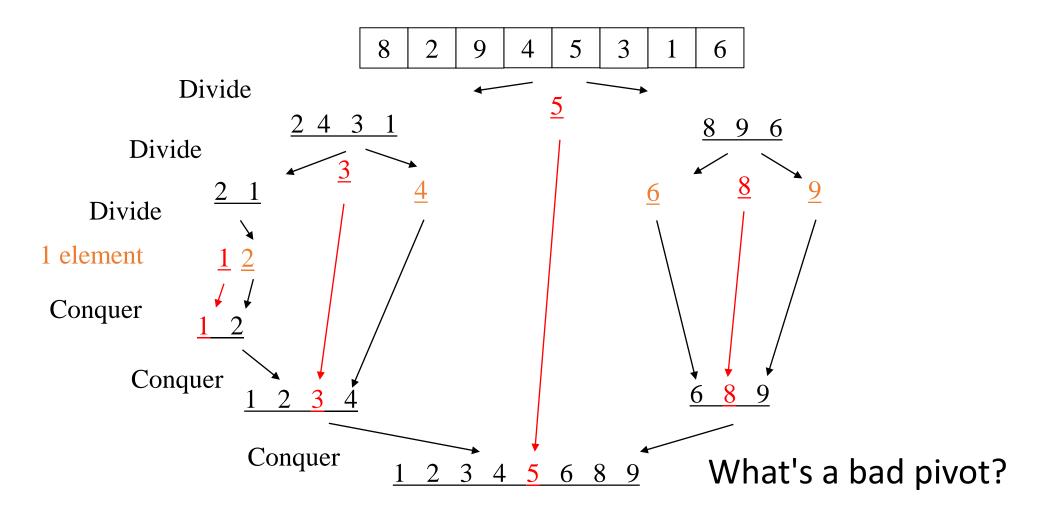
- 1. Pick a pivot element
 - Hopefully the ~median element
 - Important, performance based on this
- 2. Divide elements into 2 "halves":
 - A. less-than pivot
 - B. the pivot
 - C. greater-than pivot
- 3. Recursively sort A and C
- 4. Sorted output: [sorted-less-than then pivot then sorted-greater-than]

Quick Sort: Visualization 1



[Weiss]

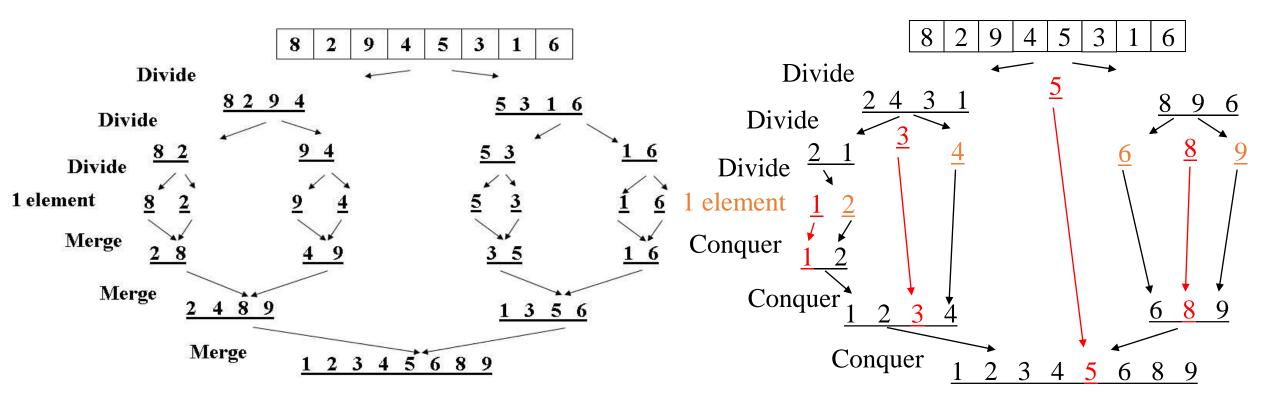
Quick Sort: Visualization 2



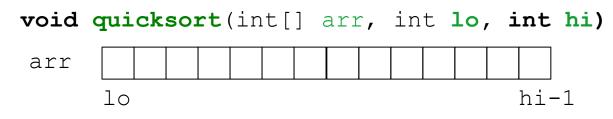
Merge Sort vs Quick Sort

MergeSort Recursion Tree

QuickSort Recursion Tree



Quick Sort: Picking a (good) Pivot



- 1. Option 1: Pick arr[lo] or arr[hi-1]
 - Fast to pick but likely worst-case (e.g., arr is sorted)
- 2. Option 2: Pick random element
 - Good. But pseudo-randomness is expensive!
- 3. Option 3: Median of 3
 - e.g., arr[lo], arr[hi-1], arr[(hi+lo)/2]
 - Common, tends to work well

Quick Sort: Partitioning Problem

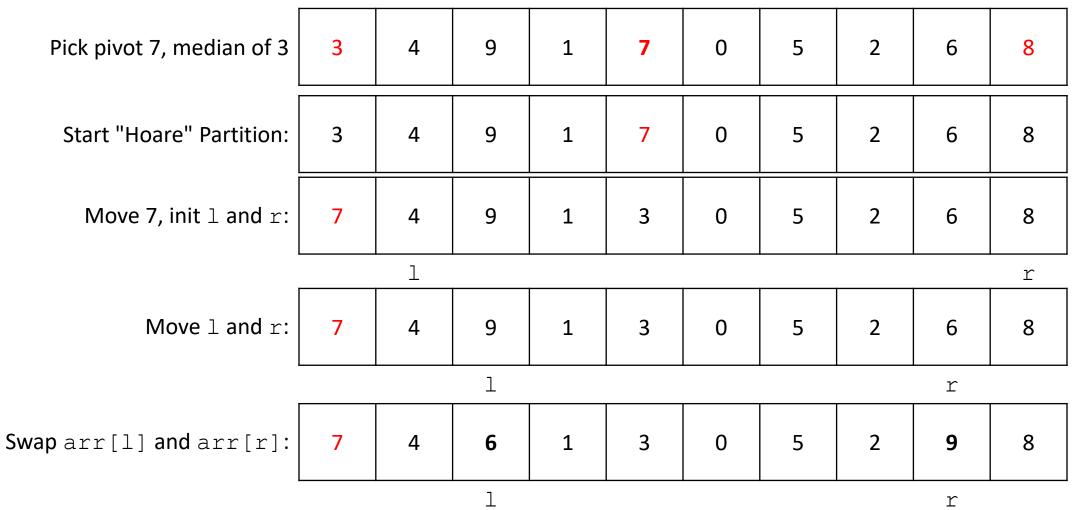
- Problem: Given good pivot, how to split to two?
 - e.g., [8, 4, 2, 9, 3, 5, 7] and pivot 5,
 - how to split to two 4, 2, 3 and 8, 9, 7?
- Ideals:
 - Fast $\mathcal{O}(n)$ linear time
 - In-place

Ideas?

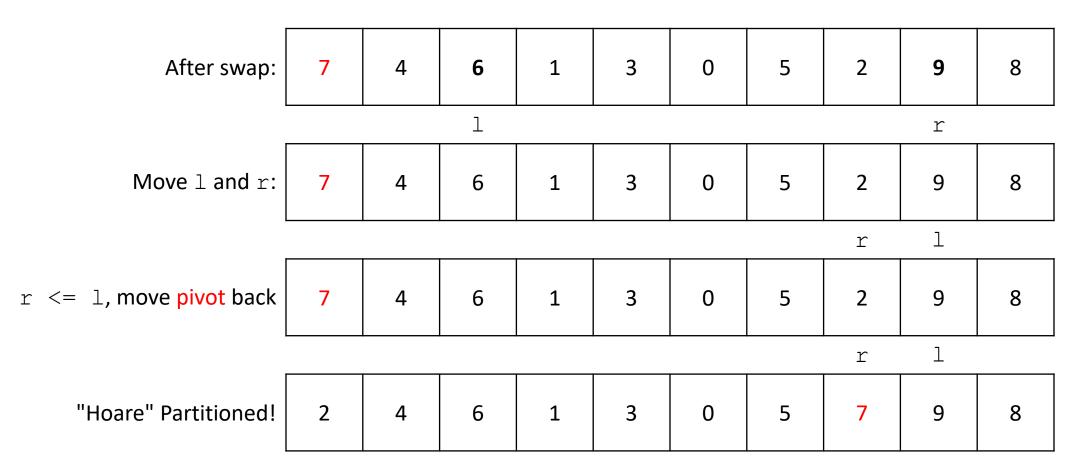
Quick Sort: "Hoare" Partitioning Approach

- 1. Swap pivot with arr[lo] (i.e., move it out of the way)
- 2. Use 2 pointers 1 and r, starting at 10+1 and hi−1
 - Idea: Move $\ensuremath{ \ 1}$ and $\ensuremath{ \ r}$ such that:
 - arr[1] should be on the right of pivot and arr[r] should be on the left of pivot while (l < r)
 if (arr[l] <= pivot) l++
 else if (arr[r] > pivot) r- else swap arr[l] and arr[r]
- 3. Put pivot back in middle (Swap with arr[r])

Quick Sort: Example



Quick Sort: Example (cont.)



Any Questions?

Quick Sort: Analysis

- 1. Stable?
 - No :(
- 2. In-Place?
 - Yes!
- 3. Fast?
 - Yes! (in terms of asymptotics)
 - Best Case: $\mathcal{O}(n \log n)$
 - Average Case: $\mathcal{O}(n \log n)$ (when good pivot)
 - Worst Case: $\mathcal{O}(n^2)$ Why?
 - Worse constant factors...
 - Think: recursive splitting, merging, etc.
 - In practice: way, way better

Quick Sort: Runtime Analysis

Best Case:

$$T(n) = \begin{cases} c_0 & \text{for } n = 0 \text{ or } 2 \\ 2T\left(\frac{n}{2}\right) + c_1 n + c_2 & \text{otherwise} \end{cases}$$

Worst Case:

$$T(n) = \begin{cases} c_0 & \text{for } n = 0 \text{ or } 1 \\ T(n-1) + c_1 n + c_2 & \text{otherwise} \end{cases}$$

Average Case (good pivot):

 $T(n) \in \mathcal{O}(n \log n)$

Proof is in the textbook, Weiss 7.7

Comparison Sorting: CUTOFF Strategy

```
void sort(int[] arr, int lo, int hi) {
    if(hi - lo < CUTOFF)
        insertionSort(arr,lo,hi); // or Selection Sort
    else
        quickSort(arr,lo,hi) // or Merge Sort, etc.
}</pre>
```

Comparison Sorting: Comparisons

	Run-time	Stable?	In-Place?
Insertion Sort	Best Case: $\mathcal{O}(n)$ Worst Case: $\mathcal{O}(n^2)$ Average Case: $\mathcal{O}(n^2)$	Stable	In-place
Selection Sort	$O(n^2)$	Not Stable	In-place
Heap Sort	$O(n \log n)$	Not Stable	In-place
Merge Sort	$O(n \log n)$	Stable	Not In-place
Quick Sort ("Hoare" Partition)	Best Case: $O(n \log n)$ Worst Case: $O(n^2)$ Average Case: $O(n \log n)$	Not Stable	In-place

Today

- Sorting Algorithm 1: Insertion Sort
- Sorting Algorithm 2: Selection Sort
- Sorting Algorithm 3: Heap Sort
 - In-place optimization
- Sorting Algorithm 4: Merge Sort
 - Merging
- Sorting Algorithm 5: Quick Sort
 - Picking a pivot
 - Partioning
- Comparison Sorting Lower Bound

Comparison Sorting Lower Bound

We keep hitting $O(n \log n)$ in the worst case.

Can we do better?

Or is this $O(n \log n)$ pattern a fundamental barrier?

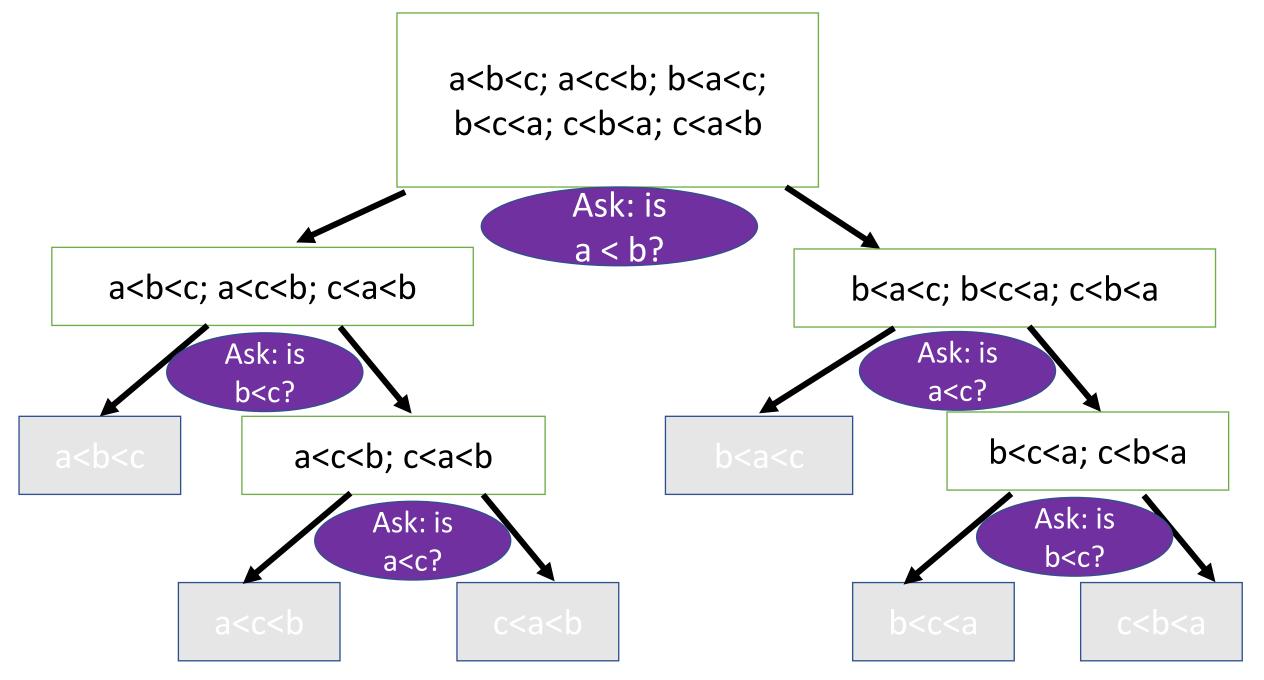
Without more information about our data set, we cannot do better.

Comparison Sorting Lower Bound

Any sorting algorithm which only interacts with its input by comparing elements must take $\Omega(n \log n)$ time.

Decision Trees

- Suppose we have a size 3 array to sort.
- We will figure out which array to return by comparing elements.
- When we know what the correct order is, we'll return that array.



Lower bound on Height

- A binary tree of height h has **at most** how many leaves? $L \leq 2^{h}$
- A binary tree with L leaves has height **at least**: $h \ge \log_2 L$
- The decision tree has how many leaves: N!
- So the decision tree has height:
 - $h \geq \log_2 N!$

Complete the Proof

- How many operations can we guarantee in the worst case?
 - Equal to the height of the tree.
- How tall is the tree if the array is length *n*?
 - One of the children has at least half of the possible inputs.
 - What level can we guarantee has an internal node? $\log_2(n!)$
- What's the simplified $\Omega()$?

 $\log_{2}(n!) = \log_{2}(n) + \log_{2}(n-1) + \log_{2}(n-2) + \dots + \log_{2}(1)$ $\geq \log_{2}\left(\frac{n}{2}\right) + \log_{2}\left(\frac{n}{2}\right) + \dots + \log_{2}\left(\frac{n}{2}\right) \text{ (only } n/2 \text{ copies)}$ $\bullet \geq \frac{n}{2}\log_{2}\left(\frac{n}{2}\right) = n/2(\log_{2}(n) - 1) = \Omega(n \log n)$

Takeaways

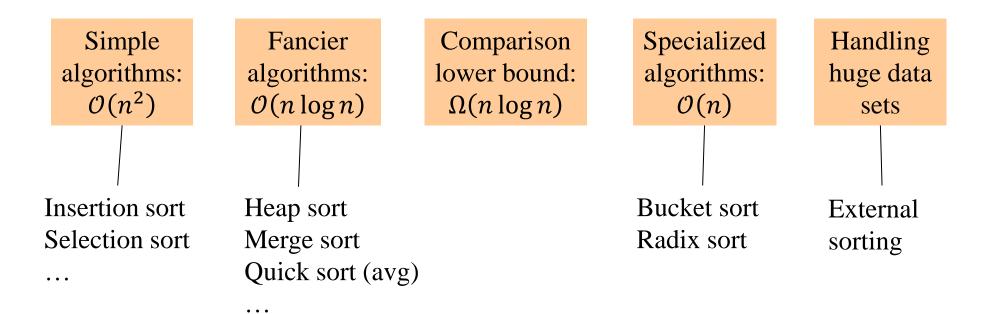
A tight lower bound like this is **very** rare.

This proof had to argue about every possible algorithm

• that's really hard to do.

We can't come up with a more clever recurrence to sort faster. Unless we make some assumptions about our input. And get information without doing the comparisons.

Sorting: The Big Picture



Any Questions?