Lecture 12: Comparison Sorts

CSE 332: Data Structures & Parallelism
Winston Jodjana
Summer 2023

Take Handouts!

(Raise your hand if you need one)



Announcements

* Midterm grades out!
* Complain here: https://feedback.cs.washington.edu/
e (Again, | cannot reply)

e P2 CP2

* Due Friday
e P2 Due Tuesday (be careful with bugs)

e EX08: VerifyAVL
* Due Friday

* EX09: Hashing
* Out
* Due next Friday



Today

* Sorting Algorithm 1: Insertion Sort
* Sorting Algorithm 2: Selection Sort

* Sorting Algorithm 3: Heap Sort
* In-place optimization

* Sorting Algorithm 4: Merge Sort
* Merging

* Sorting Algorithm 5: Quick Sort
* Picking a pivot
* Partioning

* Comparison Sorting Lower Bound



Sorting: An introduction

* Why sorting?
 Want to know "all the data items" in some order

* Very common to need data sorted somehow
* Alphabetical list of people
* Population list of countries
» Search engine results by relevance
* Binary search

* Why many ways of sorting?
* Tradeoffs...

* Asymptotic vs Constant Factors
* Different properties



Sorting: Goals (Terminology)

1. Stable

* Maybe in the case of ties we should preserve the original ordering
* One way to sort twice, Ex: Sort movies by year, then for ties, alphabetically

2. In-Place (Space)
* No more than O(1) "auxiliary space"
* Only use original array by swapping elements

3. Fast (Time)
* Typically, O(nlogn)
* Or good constant factors



Sorting: The Big Picture

Simple Fancier Comparison
algorithms: algorithms: lower bound:
0 (n?) O(nlogn) Q(nlogn)
Insertion sort Heap sort

Selection sort Merge sort
Quick sort (avg)

Specialized
algorithms:
0(n)

Bucket sort
Radix sort

Handling
huge data
sets

External
sorting



Sorting Algorithm 1: Insertion Sort

Intuition: Given a hand of cards, sort it

Algorithm:

 Maintain a sorted subarray
Sort first 2 elements

Insert 3rd element in order
Insert 4th element in order

> w N e



Insertion Sort: Pseudocode

insertionSort (int[] arr) {
for (1=0; 1 < arr.length; 1++) {
int curr = 1
while (arr[curr-1] > arr|[curr]) {
swap (arr[curr-1], arr[curr])

curr —= 1



Insertion Sort: Visual

2 3 6 7 5 8 4 10
| J |
| |
Sorted Items Unsorted Items

Current ltem



Insertion Sort: Analysis

1. Stable?
* Yes!

2. In-Place?
* Yes!

3. Fast?

* No :( (in terms of asymptotics)
e Best Case: O(n)
* Worst Case: O(n?)

 Good constant factors!



Today

* Sorting Algorithm 1: Insertion Sort
* Sorting Algorithm 2: Selection Sort

* Sorting Algorithm 3: Heap Sort
* In-place optimization

* Sorting Algorithm 4: Merge Sort
* Merging

* Sorting Algorithm 5: Quick Sort
* Picking a pivot
* Partioning

* Comparison Sorting Lower Bound



Sorting Algorithm 2: Selection Sort

Algorithm:

* Maintain a sorted subarray
1. Find the smallest element remaining in the unsorted subarray
2. Append it at the end of the sorted part
3. Repeat



Selection Sort: Visual

18
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Selection Sort: Analysis

1. Stable?
* No:((e.g., try [2, 2,, 1])

2. In-Place?
* Yes!

3. Fast?

* No :( (in terms of asymptotics)

* Best Case: O(n?)
* Worse than insertion sort when array is almost fully sorted

* Worst Case: 0(n?)
 Good constant factors!



Sorting Algorithm null: Bubble Sort

* We pretend it doesn't exist
e Bad asymptotic complexity: O(n?)
* Bad constant factors

e Literally should never be used
* Anything it is good at, another algorithm is at least good at

* IDK WHY THE INTERNET LIKES USING IT



Any Questions?



Today

* Sorting Algorithm 1: Insertion Sort
* Sorting Algorithm 2: Selection Sort

* Sorting Algorithm 3: Heap Sort
* In-place optimization

* Sorting Algorithm 4: Merge Sort
* Merging

* Sorting Algorithm 5: Quick Sort
* Picking a pivot
* Partioning

* Comparison Sorting Lower Bound
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Sorting Algorithm 3: Heap Sort

Intuition: Use a heap

Algorithm:

1. Put all elements into a heap (e.g., with buildHeap)

2. Remove elements one by one and put back into the array



Heap Sort (unoptimized): Pseudocode

heapSort (1nt[] arr) {
heap = buildHeap (arr)
for (1=0; 1 < arr.length; 1++) {
arr[1] = heap.deleteMin ()



(Max) Heap Sort: In-place Optimization

* Treat the initial array as a heap (viabuildHeap)

 When you delete the ith element, putitat arr [n—-1] (the back)
* |t's not part of the heap anymore!

8 | 5 71 11 2] 3|1 9 91 10
| J\ )

Y Y
(Unsorted) Heap Part Sorted Part
> 7 s 1] 1]213]8 9] of 10
1\ ]
arr[n-i] = deleteMax|() | |

Heap Part Sorted Part



Any Questions?



Heap Sort: Analysis

1. Stable? Try:|3 |3 | 2] 1

* No, no guarantees on which key comes first
* Technically it can be but it makes it not in-place (we don't talk about this).

2. In-Place?
* Yes!
3. Fast?

* Yes! (in terms of asymptotics)
 Best Case: O(nlogn)
* Worst Case: O(nlogn)

* Worse constant factors...
* Think: have to maintain Heap, using buildHeap, etc.



Sorting Algorithm null: AVL Sort

* We pretend it doesn't exist
* Idea O(nlogn):

* insert all elements into some balanced tree, O(nlogn)
* in-order traversal, O(n)

* Not in-place
* Worse constant factors
* Heap Sort is just better...



Today

* Sorting Algorithm 1: Insertion Sort
* Sorting Algorithm 2: Selection Sort

* Sorting Algorithm 3: Heap Sort
* In-place optimization

* Sorting Algorithm 4: Merge Sort
* Merging

* Sorting Algorithm 5: Quick Sort
* Picking a pivot
* Partioning

* Comparison Sorting Lower Bound

24



Divide and Conquer

Very important technique in algorithm design
1. Divide problems into smaller parts

2. Solve each part independently
e Think: recursion, parallelism (later)

3. Combine each part's solution to produce overall solution
e.g.,

e Sort each half of the array, combine together

* to sort each half, split into halves
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Divide and Conquer Sorting

1. Merge Sort
» Sort the left half of the elements (recursively)
» Sort the right half of the elements (recursively)
* Merge the two sorted halves into a sorted whole

2. Quick Sort

* Divide elements into those less-than pivot and those greater-than pivot
» Sort the two divisions (recursively on each)
* Merge as [sorted-less-than then pivot then sorted-greater-than]



Sorting Algorithm 4: Merge Sort

3 4

8 2 9 4 5 3 1 6
lo hi

* Algorithm, (recursively) sort from position 1o to position hi:
1. If lotohiis1elementlong,
1. Sorted! Because its 1 element...

2. Else, splitinto halves:
1. Sortfrom loto (hi+1lo) /2 (1o tothe middle)
2. Sortfrom (hi+lo)/2tohi
3. Merge the two halves together

* How to merge 2 sorted halves?
* 0(n) time but needs auxiliary space...




Merge Sort: Merging Visualization

Start with: 8 2 9 4 5 3 1 6

After we return from 2 | 4|8 |9 1 3 5 6
left and right recursive calls
(pretend it works for now)

Merge:

Use 3 pointers auX

and 1 more array

(After merge,
copy back to
original array)



Merge Sort: Merging Visualization (Soln.)

Start with: 8/ 2,19 4|53 |16
After recursion: 2 14 81911/ 3|5 6
(not magic ©) / /

Merge:

Use 3 “fingers” 1

and 1 more array /

(After merge,
copy back to
original array)



Merge Sort: Merging Visualization (Soln.)

Start with: 8/ 2,19 4|53 |16
After recursion: 2 14 81911/ 3|5 6
(not magic ©) / /

Merge:

Use 3 “fingers” 1 2

and 1 more array /

(After merge,
copy back to
original array)



Merge Sort: Merging Visualization (Soln.)

Start with: 8/ 2,19 4|53 |16
After recursion: 2 14 81911/ 3|5 6
(not magic ©) / /
Merge:

Use 3 “fingers” 1 2 3

and 1 more array /

(After merge,
copy back to
original array)



Merge Sort: Merging Visualization (Soln.)

Start with: 8/ 2,19 4|53 |16
After recursion: 2 14 81911/ 3|5 6
(not magic ©) / /
Merge:

Use 3 “fingers” 1 2 3 4

and 1 more array /

(After merge,
copy back to
original array)



Merge Sort: Merging Visualization (Soln.)

Start with: 8/ 2,19 4|53 |16
After recursion: 2 14 81911/ 3|5 6
(not magic ©) / /
Merge:

Use 3 “fingers” 1 2 3145

and 1 more array /

(After merge,
copy back to
original array)



Merge Sort: Merging Visualization (Soln.)

Start with: 8/ 2,19 4|53 |16
After recursion: 2 14 81911/ 3|5 6
(not magic ©) / /
Merge:

Use 3 “fingers” 1121314156

and 1 more array /

(After merge,
copy back to
original array)



Merge Sort: Merging Visualization (Soln.)

Start with: 8/ 2,19 4|53 |16
After recursion: 2 14 81911/ 3|5 6
(not magic ©) / /
Merge:

Use 3 “fingers” 1121314 ,5]6/]38

and 1 more array /

(After merge,
copy back to
original array)



Merge Sort: Merging Visualization (Soln.)

Start with: 8/ 2,19 4|53 |16
After recursion: 2 14 81911/ 3|5 6
(not magic ©) /I’ /
Merge:

Use 3 “fingers” 11213 ,4 56893
and 1 more array /

(After merge,
copy back to
original array)



Merge Sort: Merging Visualization (Soln.)

Start with: 8/ 2,19 4|53 |16
After recursion: 2 14 81911/ 3|5 6
(not magic ©) /I’ /
Merge:

Use 3 “fingers” 11213 ,4 56893
and 1 more array /




Merge Sort: Splitting Visualization

812|194 (53|16

Divide — e
82 9 4 5 3 1 6
Divide ZERN %
Divide 8 2 24 2 3
|\ < N
1 element 8 2 9 4 2 3



Merge Sort: Splitting Visualization

Divide — T
82 9 4 5316
Divide \ / .,
Divide 22 9 4 53 16
Vi
a /\ N \
1 element 8 2 5 3 1 6
W4 \/ AW W4
Merge 28 35 16
2 4 809 1 3 56
Merge

1 2345689

When a recursive call ends, it’s sub-arrays are each in order; just
need to merge them in order together



Merge Sort: Copy Array Optimization

First recurse down to lists of size 1

As we return from the recursion, switch off arrays

AT AT AT AT AT AT AT AT AT AT AT AT T
VYo S N N Y
\ Y \ Y \ Y \ Y
\ Y \ Y
\ Y

l Copy if Needed

Merge by 1
Merge by 2
Merge by 4
Merge by 8

Merge by 16



Any Questions?



Merge Sort: Analysis

1. Stable?

* Yes! Just prioritize left array
2. In-Place?

* No:(O(n) space
3. Fast?

* Yes! (in terms of asymptotics)
 Best Case: O(nlogn)
* Worst Case: O(nlogn) Why?
* Worse constant factors...
* Think: recursive splitting, merging, etc.



Merge Sort: Runtime Analysis

Recurrence Relation:
(¢
0
forn=1

n
2T (E) + 1N + C; otherwise

T(n) =+«

\
Solving:
T(n) = 2'°8"T(1) + nlogn =n+nlogn € O(nlogn)



Today

* Sorting Algorithm 1: Insertion Sort
* Sorting Algorithm 2: Selection Sort

* Sorting Algorithm 3: Heap Sort
* In-place optimization

* Sorting Algorithm 4: Merge Sort
* Merging

e Sorting Algorithm 5: Quick Sort
* Picking a pivot
* Partioning

* Comparison Sorting Lower Bound
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Quick Sort Warning

There are millions of versions of Quick Sort on the internet. Use ours.



Sorting Algorithm 5: Quick Sort

* Algorithm:

1. Pick a pivot element
* Hopefully the “median element
* Important, performance based on this
2. Divide elements into 2 "halves":
A. less-than pivot
B. the pivot
C. greater-than pivot

3. Recursively sort Aand C
4. Sorted output: [sorted-less-than then pivot then sorted-greater-than]



Quick Sort: Visualization 1
S 81 31 57
13 os 43 /5 .
S S
D
51 52
S 0 13 26 31 43 57 65@

L
L

U

[Weiss]



Quick Sort: Visualization 2

Divide «— 5 —
o 24 3 1 - 8 9 6
Divide T /8\
1 - o
Divide T
\
1
/]
Conquer 12
Conguer N
d 1 2 3 4 6 8 9
Conquer\’ —

12345686839 What's a bad pivot?




Merge Sort vs Quick Sort

MergeSort Recursion Tree

4 | 5|3 |1]|6

8| 2|9
Divide i i
o 82 9 4 5316

Divide e g e

Divid 8 2 9 4 5 .3 1 6
ivide

.\ R K N 77 R
1 element 8 2 9 4 5 3 1 6
Merge g 9 3 5 16

1 23 45 689

QuickSort Recursion Tree

8121945316
Divide 5
. 24 31 = 8 9 6
Divide — 3 W
. 1 8
Divide =
1
Conquer f é/
— |
Conquery , % il 65 8 9
ONQUET 1 2 345 6 8 9




Quick Sort: Picking a (good) Pivot

void quicksort(int[] arr, 1int lo, int hi)

arr

1o hi-1
1. Option 1: Pick arr[lo] orarr[hi-1]
 Fast to pick but likely worst-case (e.g., arr is sorted)

2. Option 2: Pick random element
* Good. But pseudo-randomness is expensive!

3. Option 3: Median of 3
e eg.,arr[lo],arr[hi-1],arr[ (hi+lo) /2]
e Common, tends to work well



Quick Sort: Partitioning Problem

* Problem: Given good pivot, how to split to two?
e eg.,[8,4,2,9, 3,5, 7] and pivot 5,
* howtosplittotwo-4,2,3and8§,9, 7?
* |deals:

* Fast O(n) linear time
* In-place

|deas?



Quick Sort: "Hoare" Partitioning Approach

1. Swap pivot with arr [1o] (i.e., move it out of the way)

2. Use 2 pointers 1 and r, startingat 1o+1 and hi-1

* |dea: Move 1 and r such that:
e arr[1] should be on the right of pivot and arr [ r] should be on the left of pivot

while (1 < r)
1f (arr[l] <= pivot) 1++
else 1f(arr[r] > pivot) r—--
else swap arr[l] and arr[r]

3. Put pivot back in middle (Swap with arr[r])



Quick Sort: Exam

nle

Pick pivot 7, median of 3 3

Start "Hoare" Partition: 3

Move 7, init 1 and r: 7

Move 1 and r: 7

Swaparr([l] andarr(r]: 7
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Quick Sort: Exam

nle (cont.)

After swap: 7

Move 1 and r: 7

r <= 1, move pivot back 7

"Hoare" Partitioned! 2

4 6 1
1

4 6 1

4 6 1

4 6 1

54




Any Questions?



Quick Sort: Analysis

1. Stable?
* No :(

2. In-Place?
* Yes!

3. Fast?

* Yes! (in terms of asymptotics)
 Best Case: O(nlogn)
* Average Case: O(nlogn) (when good pivot)
« Worst Case: O(n?) Why?
* Worse constant factors...
* Think: recursive splitting, merging, etc.

* |n practice: way, way better



Quick Sort: Runtime Analysis

Best Case:

(c
0

forn=0o0r1

n
2T (E) +cn+ ¢y otherwise

T(n) =+

\
Worst Case:
Co formn=0o0r1l

T —
(n) {T(n — 1)+ cin+cy otherwise

Average Case (good pivot):
T(n) € O(nlogn)

Proof is in the textbook, Weiss 7.7



Comparison Sorting: CUTOFF Strategy

void sort(int[] arr, int lo, int hi) {
(hi - lo < CUTOFF)
insertionSort (arr,lo,hi); // or Selection Sort

quickSort(arr,lo,hi) // or Merge Sort, etc.



Comparison Sorting: Comparisons

Run-time Stable? In-Place?

Best Case: O(n)
Insertion Sort | Worst Case: 0(n?) Stable In-place
Average Case: 0(n?)

Selection Sort | 0(n?) Not Stable In-place
Heap Sort | O(nlogn) Not Stable In-place
Merge Sort | O(nlogn) Stable Not In-place
Quick Sort Best Case: O(nlogn)

Worst Case: 0(n?) Not Stable In-place

("Hoare" Partition) Average Case: O(nlogn)
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Today

* Sorting Algorithm 1: Insertion Sort
* Sorting Algorithm 2: Selection Sort

* Sorting Algorithm 3: Heap Sort
* In-place optimization

* Sorting Algorithm 4: Merge Sort
* Merging

* Sorting Algorithm 5: Quick Sort
* Picking a pivot
* Partioning

 Comparison Sorting Lower Bound



Comparison Sorting Lower Bound

We keep hitting O(nlogn) in the worst case.

Can we do better?

Or is this O(nlogn) pattern a fundamental barrier?

Without more information about our data set, we cannot do better.

Comparison Sorting Lower Bound

Any sorting algorithm which only interacts with its input by
comparing elements must take Q1(nlogn) time.




Decision Trees

e Suppose we have a size 3 array to sort.
* We will figure out which array to return by comparing elements.
* When we know what the correct order is, we’ll return that array.



a<b<c; a<c<b; b<a<c;
b<c<a; c<b<a: c<a<b

/

a<b<c; a<c<b; c<a<b

D\

a<c<b; c<a<b

@i -
a<b?

b<a<c; b<c<a; c<b<a

D\

D\

b<c<a; c<b<a

D\
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Lower bound on Height

* A binary tree of height h has at most how many leaves?

L < 2°
* A binary tree with L leaves has height at least:
h > log,L

* The decision tree has how many leaves: N!
* So the decision tree has height:

h > log, NI

64



Complete the Proof

* How many operations can we guarantee in the worst case?
* Equal to the height of the tree.

* How tall is the tree if the array is length n?
* One of the children has at least half of the possible inputs.
* What level can we guarantee has an internal node? log, (n!)

* What’s the simplified () ?
log,(n!) =log,(n) +log,(n —1) +log,(n — 2) 4+ --- + log, (1)

> log, ( ) + log, ( ) + -+ log, ( ) (only n/2 copies)
+ > 7log, (3) = n/2(logo(n) — 1) = A(nlogn)



Takeaways

A tight lower bound like this is very rare.

This proof had to argue about every possible algorithm
* that’s really hard to do.

We can’t come up with a more clever recurrence to sort faster.
Unless we make some assumptions about our input.

And get information without doing the comparisons.



Sorting: The Big Picture

Simple Fancier Comparison
algorithms: algorithms: lower bound:
0 (n?) O(nlogn) Q(nlogn)
Insertion sort Heap sort

Selection sort Merge sort
Quick sort (avg)

Specialized
algorithms:
0(n)

Bucket sort
Radix sort

Handling
huge data
sets

External
sorting



Any Questions?
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