CSE 332: Data Structures and Parallelism

Section 3: Recurrences and Closed Forms

Terminology | Recurrence Function/Relation | General formula Closed form

Definition Piecewise function that Function written as the General formula evaluated without
mathematically models the number of expansion i recurrence function or summations
runtime of a recursive algorithm | and recurrence function (force them to be in terms of

(might want to define constants) | (might have a summation) | constants or n)

Example Leti = logzn,
T(m)=c, ,forn=1

T(n)= T(—,fgvn) +log,n - c,
— 7™~ otherwise 2
T(n) = T(2)+c2 ;

T(n) = T(Ll) +ti-c,
z T(1) + logzn "c,

c, + logzn "c,

0. Not to Tree

Consider the function f(n). Find a recurrence modeling the worst-case runtime of this function and then find a Big-Oh
bound for this recurrence.

1 f(n) {

2 if (n <= 0) {

3 return 1;

4 }

5 return 2 * f(n - 1) + 1;
6 }

a) Find a recurrence T(n) modeling the worst-case runtime complexity of f(n)

b) Find a closed form for T(n)

1. To Tree

Consider the function h(n). Find a recurrence modeling the worst-case runtime of this function and then find a Big-Oh
bound for this recurrence.

1 h(n) {

2 if (n <=1) {

3 return 1

4 } else {

5 return h(n/2) + n + 2*h(n/2)
6 }

7}

a) Find a recurrence T(n) modeling the worst-case runtime complexity of h(n)

b) Find a closed form for T(n)

2. To Tree or Not to Tree

Consider the function f(n). Find a recurrence modeling the worst-case runtime of this function and then find a Big-Oh
bound for this recurrence.

1 f(n) {

2 if (n<=1) {

3 return 0

4 }

5 int result = f(n/2)

6 for (int 1 = 9; i < n; i++) {
7 result *= 4

8 }

9 return result + f(n/2)

10 }

a) Find a recurrence T(n) modeling the worst-case runtime complexity of f(n)

b) Find a closed form for T(n)

3. Big-Oof Bounds

Consider the function f(n). Find a recurrence modeling the worst-case runtime of this function and then find a Big-Oh
bound for this recurrence.

1 f(n) {

2 if (n ==1) {

3 return ©

4 }

5

6 int result = 0

7 for (int 1 = 9; i < n; i++) {

8 for (int j =0; j < i; j++) {
9 result += j

10

11 }

12 }

13 return f(n/2) + result + f(n/2)
14 }

a) Find a recurrence T(n) modeling the worst-case runtime complexity of f(n)

b) Find a Big-Oh bound for your recurrence.

4. Odds Not in Your Favor

Consider the function g(n). Find a recurrence modeling the worst-case runtime of this function and then find a Big-Oh
bound for this recurrence.

1 g(n) {

2 if (n <=1) {

3 return 1000

4 }

5 if (g(n/3) > 5) {

6 for (int i = 0; 1 < n; i++) {
7 println("Yay!")

8 }

9 return 5 * g(n/3)

10 } else {

11 for (int 1 =0; i < n * n; i++) {
12 println("Yay!")

13 }

14 return 4 * g(n/3)

15 }

16 }

a) Find a recurrence T(n) modeling the worst-case runtime complexity of f(n)

b) Find a closed form for T(n)

