
CSE 332: Data Structures and Parallelism

Section 3: Recurrences and Closed Forms

Terminology Recurrence Function/Relation General formula Closed form

Definition Piecewise function that
mathematically models the
runtime of a recursive algorithm
(might want to define constants)

Function written as the
number of expansion 𝑖
and recurrence function
(might have a summation)

General formula evaluated without
recurrence function or summations
(force them to be in terms of
constants or)𝑛

Example

𝑇 𝑛() = 𝑐
1

, for 𝑛 = 1

𝑇 𝑛() = 𝑇 𝑛
2() + 𝑐

2
, otherwise 𝑇(𝑛) = 𝑇 𝑛

2𝑖() + 𝑖 · 𝑐
2

Let ,𝑖 = log
2
𝑛

𝑇 𝑛() = 𝑇 𝑛

2
log

2
𝑛() + log

2
𝑛 · 𝑐

2

= 𝑇 1() + log
2
𝑛 · 𝑐

2
= 𝑐

1
+ log

2
𝑛 · 𝑐

2

0. Not to Tree
Consider the function . Find a recurrence modeling the worst-case runtime of this function and then find a Big-Oh𝑓 𝑛()
bound for this recurrence.

1 f(n) {

2 if (n <= 0) {

3 return 1;

4 }

5 return 2 * f(n − 1) + 1;

6 }

a) Find a recurrence modeling the worst-case runtime complexity of𝑇 𝑛() 𝑓 𝑛()

b) Find a closed form for 𝑇 𝑛()

1. To Tree
Consider the function . Find a recurrence modeling the worst-case runtime of this function and then find a Big-Ohℎ 𝑛()
bound for this recurrence.

1 h(n) {

2 if (n <= 1) {

3 return 1

4 } else {

5 return h(n/2) + n + 2*h(n/2)

6 }

7 }

a) Find a recurrence modeling the worst-case runtime complexity of𝑇 𝑛() ℎ 𝑛()

b) Find a closed form for 𝑇 𝑛()

2. To Tree or Not to Tree
Consider the function . Find a recurrence modeling the worst-case runtime of this function and then find a Big-Oh𝑓 𝑛()
bound for this recurrence.

1 f(n) {

2 if (n <= 1) {

3 return 0

4 }

5 int result = f(n/2)

6 for (int i = 0; i < n; i++) {

7 result *= 4

8 }

9 return result + f(n/2)

10 }

a) Find a recurrence modeling the worst-case runtime complexity of𝑇 𝑛() 𝑓 𝑛()

b) Find a closed form for 𝑇 𝑛()

3. Big-Oof Bounds
Consider the function . Find a recurrence modeling the worst-case runtime of this function and then find a Big-Oh𝑓 𝑛()
bound for this recurrence.

1 f(n) {

2 if (n == 1) {

3 return 0

4 }

5

6 int result = 0

7 for (int i = 0; i < n; i++) {

8 for (int j = 0; j < i; j++) {

9 result += j

10

11 }

12 }

13 return f(n/2) + result + f(n/2)

14 }

a) Find a recurrence modeling the worst-case runtime complexity of𝑇 𝑛() 𝑓 𝑛()

b) Find a Big-Oh bound for your recurrence.

4. Odds Not in Your Favor
Consider the function . Find a recurrence modeling the worst-case runtime of this function and then find a Big-Oh𝑔 𝑛()
bound for this recurrence.

1 g(n) {

2 if (n <= 1) {

3 return 1000

4 }

5 if (g(n/3) > 5) {

6 for (int i = 0; i < n; i++) {

7 println("Yay!")

8 }

9 return 5 * g(n/3)

10 } else {

11 for (int i = 0; i < n * n; i++) {

12 println("Yay!")

13 }

14 return 4 * g(n/3)

15 }

16 }

a) Find a recurrence modeling the worst-case runtime complexity of𝑇 𝑛() 𝑓 𝑛()

b) Find a closed form for 𝑇 𝑛()

