
CSE 332: Data Structures & Parallelism

Lecture 23: Minimum Spanning Trees

Ruth Anderson

Spring 2023

5/26/2023

Minimum Spanning Trees

Given an undirected graph G=(V,E), find a graph G’=(V, E’) such

that:

– E’ is a subset of E

– |E’| = |V| - 1

– G’ is connected

– is minimal

Applications:

• Example: Electrical wiring for a house or clock wires on a chip

• Example: A road network if you cared about asphalt cost rather

than travel time

 '),(

c
Evu

uv

G’ is a minimum

spanning tree.

2

5/26/2023 3

j

m

nk

4 7

1
5

9

2

A

C

B

D

F
H

G

E

1

7
6

5

11

4

12

13

2
3

9

10

4

Find the MST
Student Activity

5/26/2023 4

Two Different Approaches

Prim’s Algorithm
Almost identical to Dijkstra’s

Kruskals’s Algorithm
Completely different!

5/26/2023 6

Prim’s algorithm

Idea: Grow a tree by picking a vertex from the unknown set that

has the smallest cost. Here cost = cost of the edge that

connects that vertex to the known set. Pick the vertex with the

smallest cost that connects “known” to “unknown.”

A node-based greedy algorithm
Builds MST by greedily adding nodes

G

v

known

Prim’s Algorithm vs. Dijkstra’s

Recall:

Dijkstra picked the unknown vertex with smallest cost where

cost = distance to the source.

Prim’s pick the unknown vertex with smallest cost where

cost = distance from this vertex to the known set (in other words,

the cost of the smallest edge connecting this vertex to the known

set)

– Otherwise identical

– Compare to slides in Dijkstra lecture!

5/26/2023 7

Prim’s Algorithm for MST

5/26/2023 8

1. For each node v, set v.cost = and v.known = false

2. Choose any node v. (this is like your “start” vertex in Dijkstra)

a) Mark v as known

b) For each edge (v,u) with weight w:

set u.cost=w and u.prev=v

3. While there are unknown nodes in the graph

a) Select the unknown node v with lowest cost

b) Mark v as known and add (v, v.prev) to output (the MST)

c) For each edge (v,u) with weight w, where u is unknown:

if(w < u.cost) {

u.cost = w;

u.prev = v;

}

Example: Find MST using Prim’s

5/26/2023 9

A B

C
D

F

E

G

∞

∞

∞

∞

∞

∞

2

1
2

vertex known? cost prev

A

B

C

D

E

F

G

5

1

1

1

2
6

5 3

10

∞

Order added to known set:

5/26/2023 17

Find MST using

Prim’s v4

v7

v2

v3 v5

v6

v1

Start with V1

2

2

5

4

7

1 10

4 6

3

8

1

V Kwn Distance path

v1

v2

v3

v4

v5

v6

v7

Student Activity

Order Declared Known:

V1

Total Cost:

Prim’s Analysis

• Correctness ??

– A bit tricky

– Intuitively similar to Dijkstra

– Might return to this time permitting (unlikely)

• Run-time

– Same as Dijkstra

– O(|E|log |V|) using a priority queue

5/26/2023 18

5/26/2023

Kruskal’s MST Algorithm

Idea: Grow a forest out of edges that do not create a cycle. Pick an

edge with the smallest weight.

G=(V,E)

v

19

5/26/2023

Kruskal’s Algorithm for MST

An edge-based greedy algorithm

Builds MST by greedily adding edges

1. Initialize with

• empty MST

• all vertices marked unconnected

• all edges unmarked

2. While all vertices are not connected

a. Pick the lowest cost edge (u,v) and mark it

b. If u and v are not already connected, add (u,v) to the MST

and mark u and v as connected to each other

20

5/26/2023

Aside: Union-Find aka Disjoint Set ADT

• Union(x,y) – take the union of two sets named x and y

– Given sets: {3,5,7} , {4,2,8}, {9}, {1,6}

– Union(5,1)

Result: {3,5,7,1,6}, {4,2,8}, {9},

To perform the union operation, we replace sets x and y by (x y)

• Find(x) – return the name of the set containing x.

– Given sets: {3,5,7,1,6}, {4,2,8}, {9},

– Find(1) returns 5

– Find(4) returns 8

• We can do Union in constant time.

• We can get Find to be amortized constant time

(worst case O(log n) for an individual Find operation).

21

5/26/2023

Kruskal’s pseudo code
void Graph::kruskal(){

int edgesAccepted = 0;

DisjSet s(NUM_VERTICES);

while (edgesAccepted < NUM_VERTICES – 1){

e = smallest weight edge not deleted yet;

// edge e = (u, v)

uset = s.find(u);

vset = s.find(v);

if (uset != vset){

edgesAccepted++;

s.unionSets(uset, vset);

}

}

}

22

Example: Find MST using Kruskal’s

5/26/2023 25

A B

C
D

F

E

G

2

1
2 5

1

1

1

2
6

5 3

10

Edges in sorted order:

1: (A,D), (C,D), (B,E), (D,E)

2: (A,B), (C,F), (A,C)

3: (E,G)

5: (D,G), (B,D)

6: (D,F)

10: (F,G)

Output:

Note: At each step, the union/find sets are the trees in the forest

5/26/2023

Find MST using Kruskal’s

A

C

B

D

F H

G

E

2 2 3

2
1

4

10

8

1
94

2

7

Student Activity

Total Cost:

• Now find the MST using Prim’s method.

• Under what conditions will these methods give the same result?

34

Correctness

Kruskal’s algorithm is clever, simple, and efficient

– But does it generate a minimum spanning tree?

– How can we prove it?

First: it generates a spanning tree

– Intuition: Graph started connected and we added every edge

that did not create a cycle

– Proof by contradiction: Suppose u and v are disconnected in

Kruskal’s result. Then there’s a path from u to v in the initial

graph with an edge we could add without creating a cycle.

But Kruskal would have added that edge. Contradiction.

Second: There is no spanning tree with lower total cost…

5/26/2023 36

The inductive proof set-up

Let F (stands for “forest”) be the set of edges Kruskal has added at

some point during its execution.

Claim: F is a subset of one or more MSTs for the graph

(Therefore, once |F|=|V|-1, we have an MST.)

Proof: By induction on |F|

Base case: |F|=0: The empty set is a subset of all MSTs

Inductive case: |F|=k+1: By induction, before adding the (k+1)th

edge (call it e), there was some MST T such that F-{e} T …

5/26/2023 37

Staying a subset of some MST

Two disjoint cases:

• If {e} T: Then F T and we’re done

• Else e forms a cycle with some simple path (call it p) in T

– Must be since T is a spanning tree

5/26/2023 38

Claim: F is a subset of one or

more MSTs for the graph

So far: F-{e} T:

Staying a subset of some MST

• There must be an edge e2 on p such that e2 is not in F

– Else Kruskal would not have added e

• Claim: e2.weight == e.weight

5/26/2023 39

Claim: F is a subset of one or

more MSTs for the graph

So far: F-{e} T and

e forms a cycle with p T

e

Staying a subset of some MST

• Claim: e2.weight == e.weight

– If e2.weight > e.weight, then T is not an MST because

T-{e2}+{e} is a spanning tree with lower cost: contradiction

– If e2.weight < e.weight, then Kruskal would have already

considered e2. It would have added it since T has no cycles

and F-{e} T. But e2 is not in F: contradiction

5/26/2023 40

Claim: F is a subset of one or

more MSTs for the graph

So far: F-{e} T

e forms a cycle with p T

e2 on p is not in F

e

e2

Staying a subset of some MST

• Claim: T-{e2}+{e} is an MST

– It’s a spanning tree because p-{e2}+{e} connects the same

nodes as p

– It’s minimal because its cost equals cost of T, an MST

• Since F T-{e2}+{e}, F is a subset of one or more MSTs

Done.

5/26/2023 41

Claim: F is a subset of one or

more MSTs for the graph

So far: F-{e} T

e forms a cycle with p T

e2 on p is not in F

e2.weight == e.weight

e

e2

