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Minimum Spanning Trees

Given an undirected graph G=(V,E), find a graph G’=(V, E’) such 

that:

– E’ is a subset of E

– |E’| = |V| - 1

– G’ is connected

– is minimal

Applications: 

• Example: Electrical wiring for a house or clock wires on a chip

• Example: A road network if you cared about asphalt cost rather 

than travel time
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Two Different Approaches

Prim’s Algorithm
Almost identical to Dijkstra’s

Kruskals’s Algorithm
Completely different!
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Prim’s algorithm

Idea: Grow a tree by picking a vertex from the unknown set that 

has the smallest cost.  Here cost = cost of the edge that 

connects that vertex to the known set.  Pick the vertex with the 

smallest cost that connects “known” to “unknown.”

A node-based greedy algorithm
Builds MST by greedily adding nodes

G

v

known



Prim’s Algorithm vs. Dijkstra’s

Recall: 

Dijkstra picked the unknown vertex with smallest cost where 

cost = distance to the source. 

Prim’s pick the unknown vertex with smallest cost where 

cost = distance from this vertex to the known set (in other words, 

the cost of the smallest edge connecting this vertex to the known 

set)

– Otherwise identical

– Compare to slides in Dijkstra lecture!

5/26/2023 7



Prim’s Algorithm for MST
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1. For each node v, set  v.cost =  and v.known = false

2. Choose any node v. (this is like your “start” vertex in Dijkstra)

a) Mark v as known

b) For each edge (v,u) with weight w:

set u.cost=w and u.prev=v

3. While there are unknown nodes in the graph

a) Select the unknown node v with lowest cost

b) Mark v as known and add (v, v.prev) to output (the MST)

c) For each edge (v,u) with weight w, where u is unknown:

if(w < u.cost) {

u.cost = w;

u.prev = v;

}



Example: Find MST using Prim’s
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Find MST using 
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Prim’s Analysis

• Correctness ?? 

– A bit tricky

– Intuitively similar to Dijkstra

– Might return to this time permitting (unlikely)

• Run-time

– Same as Dijkstra

– O(|E|log |V|) using a priority queue
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Kruskal’s MST Algorithm

Idea: Grow a forest out of edges that do not create a cycle.  Pick an 

edge with the smallest weight.

G=(V,E)

v

19
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Kruskal’s Algorithm for MST

An edge-based greedy algorithm

Builds MST by greedily adding edges

1. Initialize with

• empty MST

• all vertices marked unconnected

• all edges unmarked

2. While all vertices are not connected

a. Pick the lowest cost edge (u,v) and mark it

b. If u and v are not already connected, add (u,v) to the MST 

and mark u and v as connected to each other
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Aside: Union-Find aka Disjoint Set ADT

• Union(x,y) – take the union of two sets named x and y

– Given sets: {3,5,7} , {4,2,8}, {9}, {1,6}

– Union(5,1)

Result: {3,5,7,1,6}, {4,2,8}, {9}, 

To perform the union operation, we replace sets x and y by  (x  y)

• Find(x) – return the name of the set containing x.

– Given sets: {3,5,7,1,6}, {4,2,8}, {9}, 

– Find(1) returns 5

– Find(4) returns 8

• We can do Union in constant time. 

• We can get Find to be amortized constant time 

(worst case O(log n) for an individual Find operation).
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Kruskal’s pseudo code
void Graph::kruskal(){

int edgesAccepted = 0;

DisjSet s(NUM_VERTICES);

while (edgesAccepted < NUM_VERTICES – 1){

e = smallest weight edge not deleted yet;

// edge e = (u, v)

uset = s.find(u);

vset = s.find(v);

if (uset != vset){

edgesAccepted++;

s.unionSets(uset, vset);

}

}

}
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Example: Find MST using Kruskal’s 
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1:  (A,D), (C,D), (B,E), (D,E)

2:  (A,B), (C,F), (A,C)

3:  (E,G)
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Output:

Note: At each step, the union/find sets are the trees in the forest
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Find MST using Kruskal’s
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• Now find the MST using Prim’s method.

• Under what conditions will these methods give the same result?
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Correctness

Kruskal’s algorithm is clever, simple, and efficient

– But does it generate a minimum spanning tree?

– How can we prove it?

First: it generates a spanning tree

– Intuition: Graph started connected and we added every edge 

that did not create a cycle

– Proof by contradiction: Suppose u and v are disconnected in 

Kruskal’s result.  Then there’s a path from u to v in the initial 

graph with an edge we could add without creating a cycle.  

But Kruskal would have added that edge.  Contradiction.

Second: There is no spanning tree with lower total cost…
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The inductive proof set-up

Let F (stands for “forest”) be the set of edges Kruskal has added at 

some point during its execution.

Claim: F is a subset of one or more MSTs for the graph

(Therefore, once |F|=|V|-1, we have an MST.)

Proof: By induction on |F|

Base case: |F|=0: The empty set is a subset of all MSTs

Inductive case: |F|=k+1: By induction, before adding the (k+1)th

edge (call it e), there was some MST T such that F-{e}  T …
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Staying a subset of some MST

Two disjoint cases: 

• If {e}  T: Then F  T and we’re done

• Else e forms a cycle with some simple path (call it p) in T

– Must be since T is a spanning tree
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Claim: F is a subset of one or 

more MSTs for the graph

So far: F-{e}  T:



Staying a subset of some MST

• There must be an edge e2 on p such that e2 is not in F

– Else Kruskal would not have added e

• Claim: e2.weight == e.weight
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Claim: F is a subset of one or 

more MSTs for the graph

So far: F-{e}  T and 

e forms a cycle with p  T

e



Staying a subset of some MST

• Claim: e2.weight == e.weight

– If e2.weight > e.weight, then T is not an MST because 

T-{e2}+{e} is a spanning tree with lower cost: contradiction

– If e2.weight < e.weight, then Kruskal would have already 

considered e2.  It would have added it since T has no cycles 

and F-{e}  T.  But e2 is not in F: contradiction
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Claim: F is a subset of one or 

more MSTs for the graph

So far: F-{e}  T

e forms a cycle with p  T 

e2 on p is not in F

e

e2



Staying a subset of some MST

• Claim:  T-{e2}+{e} is an MST

– It’s a spanning tree because p-{e2}+{e} connects the same 

nodes as p

– It’s minimal because its cost equals cost of T, an MST

• Since F  T-{e2}+{e},   F is a subset of one or more MSTs 

Done.
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Claim: F is a subset of one or 

more MSTs for the graph

So far: F-{e}  T

e forms a cycle with p  T 

e2 on p is not in F

e2.weight == e.weight
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