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Today

• Graphs

– Shortest Paths
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Shortest Path Applications

– Network routing

– Driving directions

– Cheap flight tickets

– Critical paths in project management

(see textbook)

– …
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Single source shortest paths

• Done: BFS to find the minimum path length from v to u in O(|E|+|V|)

• Actually, can find the minimum path length from v to every node

– Still O(|E|+(|V|)

– No faster way for a “distinguished” destination in the worst-case

• Now:  Weighted graphs 

Given a weighted graph and node v, 

find the minimum-cost path from v to every node 

• As before, asymptotically no harder than for one destination

• Unlike before, BFS will not work
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Not as easy

Why BFS won’t work: Shortest path may not have the fewest edges

– Annoying when this happens with costs of flights
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We will assume there are no negative weights

• Problem is ill-defined if there are negative-cost cycles

• Today’s algorithm is wrong if edges can be negative
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Dijkstra’s Algorithm

• Named after its inventor Edsger Dijkstra (1930-2002)

– Truly one of the “founders” of computer science; 

1972 Turing Award; this is just one of his many contributions

– Sample quotation: “computer science is no more about 

computers than astronomy is about telescopes”

• The idea: reminiscent of BFS, but adapted to handle weights

– Grow the set of nodes whose shortest distance has been 

computed

– Nodes not in the set will have a “best distance so far”

– A priority queue will turn out to be useful for efficiency
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Dijkstra’s Algorithm: Idea
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• Initially, start node has cost 0 and all other nodes have cost 

• At each step:

– Pick closest unknown vertex v

– Add it to the “cloud” of known vertices

– Update distances for nodes with edges from v

• That’s it!  (Have to prove it produces correct answers)
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The Algorithm

1. For each node v, set  v.cost =  and v.known = false

2. Set source.cost = 0

3. While there are unknown nodes in the graph

a) Select the unknown node v with lowest cost

b) Mark v as known

c) For each edge (v,u) with weight w, if u is unknown,

c1 = v.cost + w // cost of best path through v to u

c2 = u.cost // cost of best path to u previously known

if(c1 < c2){ // if the path through v is better

u.cost = c1

u.pred = v // for computing actual paths

}
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Important features

• Once a vertex is marked known, the cost of the shortest path to 

that node is known

– The path is also known by following back-pointers

• While a vertex is still not known, another shorter path to it might 

still be found
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Example #1
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Features

• When a vertex is marked known, 

the cost of the shortest path to that node is known

– The path is also known by following back-pointers

• While a vertex is still not known, 

another shorter path to it might still be found

Note: The “Order Added to Known Set” is not important

– A detail about how the algorithm works (client doesn’t care)

– Not used by the algorithm (implementation doesn’t care)

– It is sorted by path-cost, resolving ties in some way
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Interpreting the Results

• Now that we’re done, how do we get the path from, say, A to E?
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Stopping Short

• How would this have worked differently if we were only interested in:

– The path from A to G?

– The path from A to D?
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Example #2
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Example #3
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How will the best-cost-so-far for Y proceed?

Is this expensive?

…



A Greedy Algorithm

• Dijkstra’s algorithm

– For single-source shortest paths in a weighted graph (directed 

or undirected) with no negative-weight edges

• An example of a greedy algorithm: 

– At each step, irrevocably does what seems best at that step

• A locally optimal step, not necessarily globally optimal

– Once a vertex is known, it is not revisited

• Turns out to be globally optimal
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Where are we?

• What should we do after learning an algorithm?

– Prove it is correct

• Not obvious!

• We will sketch the key ideas

– Analyze its efficiency

• Will do better by using a data structure we learned earlier!
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Correctness: Intuition

Rough intuition: 

All the “known” vertices have the correct shortest path

– True initially: shortest path to start node has cost 0

– If it stays true every time we mark a node “known”, then by 

induction this holds and eventually everything is “known”

Key fact we need: When we mark a vertex “known” we won’t 

discover a shorter path later!

– This holds only because Dijkstra’s algorithm picks the node 

with the next shortest path-so-far

– The proof is by contradiction…
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Correctness: The Cloud (Rough Idea)
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The Known 
Cloud

v Next shortest path from 

inside the known cloud

w

Better path to 

v?  No!

Source

Suppose v is the next node to be marked known (“added to the cloud”)

• The best-known path to v must have only nodes “in the cloud”

– Since we’ve selected it, and we only know about paths through the 

cloud to a node right outside the cloud

• Assume the actual shortest path to v is different

– It won’t use only cloud nodes, (or we would know about it), so it must 

use non-cloud nodes

– Let w be the first non-cloud node on this path.  

– The part of the path up to w is already known and must be shorter than 

the best-known path to v.  So v would not have been picked.  

Contradiction!



Efficiency, first approach

Use pseudocode to determine asymptotic run-time

– Notice each edge is processed only once
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dijkstra(Graph G, Node start) {

for each node: x.cost=infinity, x.known=false

start.cost = 0

while(not all nodes are known) {

b = find unknown node with smallest cost

b.known = true

for each edge (b,a) in G

if(!a.known)

if(b.cost + weight((b,a)) < a.cost){

a.cost = b.cost + weight((b,a))

a.pred = b

}

}

}



Improving asymptotic running time

• So far: O(|V|2+ |E|)

• due to each iteration looking for the node to process next

– We solved it with a queue of zero-degree nodes

– But here we need the lowest-cost node and costs can change 

as we process edges

• Solution?
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Efficiency, second approach

Use pseudocode to determine asymptotic run-time
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dijkstra(Graph G, Node start) {

for each node: x.cost=infinity, x.known=false

start.cost = 0

build-heap with all nodes

while(heap is not empty) {

b = deleteMin()

b.known = true

for each edge (b,a) in G

if(!a.known)

if(b.cost + weight((b,a)) < a.cost){

decreaseKey(a,“new cost – old cost”)

a.pred = b

}
}

}

415/05/2023



Dense vs. sparse again

• First approach: O(|V|2+ |E|) or: O(|V|2)  

• Second approach: O(|V|log|V|+|E|log|V|)

• So which is better?

– Sparse: O(|V|log|V|+|E|log|V|) (if |E| > |V|, then O(|E|log|V|))

– Dense: O(|V|2+ |E|) , or: O(|V|2)  

• But, remember these are worst-case and asymptotic

– Priority queue might have slightly worse constant factors

– On the other hand, for “normal graphs”, we might call 
decreaseKey rarely (or not percolate far), making |E|log|V| 

more like |E|
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