

CSE 332: Data Structures & Parallelism Lecture 11:More Hashing

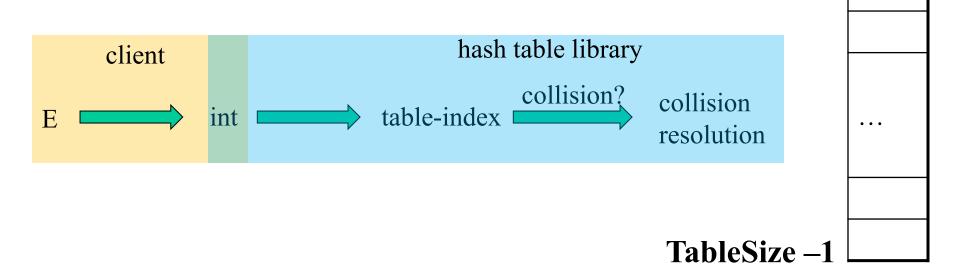
Winston Jodjana Spring 2023

Today

- Open Addressing
 - Linear Probing
 - Quadratic Probing
 - Double Hashing
- Rehashing

Hash Tables: Review

- Aim for constant-time (i.e., O(1)) find, insert, and delete
 - "On average" under some reasonable assumptions
- A hash table is an array of some fixed size
 - But growable as we'll see



4/21/2023

hash table

0

Hashing Choices

- 1. Choose a Hash function
 - Fast
 - Even spread
- 2. Choose TableSize
 - Prime Numbers
- 3. Choose a Collision Resolution Strategy from these:
 - Separate Chaining
 - Open Addressing
 - Linear Probing
 - Quadratic Probing
 - Double Hashing
- Other issues to consider:
 - What to do when the hash table gets "too full"?

Open Addressing: Linear Probing

- Why not use up the empty space in the table?
- Store directly in the array cell (no linked list)
- How to deal with collisions?
- If h (key) is already full,
 - try (h(key) + 1) % TableSize. If full,
 - try (h(key) + 2) % TableSize. If full,
 - try (h(key) + 3) % TableSize. If full...
- Example: insert 38, 19, 8, 109, 10

0	
1	
2	
2 3	
4	
4 5 6	
6	
7	
8	38
9	

Open addressing

Linear probing is one example of open addressing

In general, open addressing means resolving collisions by trying a sequence of other positions in the table.

Trying the *next* spot is called probing

- We just did linear probing:
 - ith probe: (h(key) + i) % TableSize
- In general have some probe function f and :
 - ith probe: (h(key) + f(i)) % TableSize

Open addressing does poorly with high load factor λ

- So want larger tables
- Too many probes means no more O(1)

Questions: Open Addressing: Linear Probing

How should **find** work? If key is in table? If not there?

Worst case scenario for find?

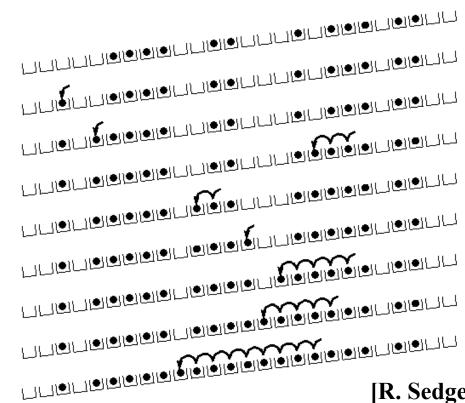
How should we implement delete?

How does **open addressing with linear probing** compare to **separate chaining**?

Primary Clustering

It turns out linear probing is a *bad idea*, even though the probe function is quick to compute (a good thing)

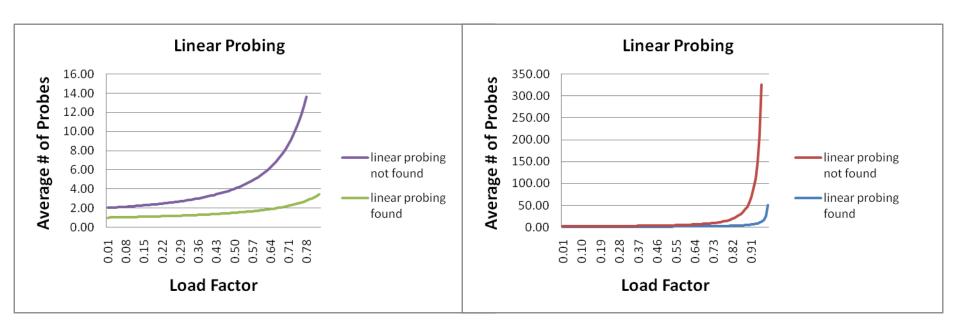
- Tends to produce clusters, which lead to long probe sequences
- Called primary clustering
- Saw the start of a cluster in our linear probing example



[R. Sedgewick]

Analysis in chart form

- Linear-probing performance degrades rapidly as table gets full
 - (Formula assumes "large table" but point remains)



 By comparison, separate chaining performance is linear in λ and has no trouble with λ>1

Open Addressing: Linear probing

```
(h(key) + f(i)) % TableSize
```

– For linear probing:

```
f(i) = i
```

- So probe sequence is:
 - 0th probe: h(key) % TableSize
 - 1st probe: (h(key) + 1) % TableSize
 - 2nd probe: (h(key) + 2) % TableSize
 - 3rd probe: (h(key) + 3) % TableSize
 - •
 - ith probe: (h(key) + i) % TableSize

Open Addressing: Quadratic probing

We can avoid primary clustering by changing the probe function...

```
(h(key) + f(i)) % TableSize
```

– For quadratic probing:

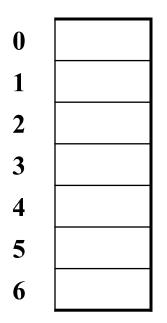
$$f(i) = i^2$$

- So probe sequence is:
 - 0th probe: h(key) % TableSize
 - 1st probe: (h(key) + 1) % TableSize
 - 2nd probe: (h(key) + 4) % TableSize
 - 3rd probe: (h(key) + 9) % TableSize
 - •
 - ith probe: (h(key) + i²) % TableSize
- Intuition: Probes quickly "leave the neighborhood"

Quadratic Probing Example

0	
1	
2	
2 3	
4	
4 5 6	
7	
8	
9	

Another Quadratic Probing Example



TableSize = 7

Insert:

76	(76 % 7 = 6)
40	(40 % 7 = 5)
48	(48 % 7 = 6)
5	(5%7=5)
55	(55 % 7 = 6)
47	(47 % 7 = 5)

Another Quadratic Probing Example

Will we ever get a 1 or

4?!?

$$TableSize = 7$$

Insert:

$$76 (76 \% 7 = 6)$$

40
$$(40 \% 7 = 5)$$

48
$$(48 \% 7 = 6)$$

$$5 (5 \% 7 = 5)$$

$$55 (55 \% 7 = 6)$$

$$47 (47 \% 7 = 5)$$

$$(47 + 1) \% 7 = 6$$
 collision!

$$(47 + 4) \% 7 = 2$$
 collision!

$$(47 + 9) \% 7 = 0$$
 collision!

$$(47 + 16) \% 7 = 0$$
 collision!

$$(47 + 25) \% 7 = 2$$
 collision!

$$(47 + 36) \% 7 = 6$$
 collision!

$$(47 + 49) \% 7 = 5$$
 collision!

From bad news to good news

Bad News:

 After TableSize quadratic probes, we cycle through the same indices

Good News:

- If TableSize is prime and $\lambda < \frac{1}{2}$, then quadratic probing will find an empty slot in at most TableSize/2 probes
- So: If you keep $\lambda < \frac{1}{2}$ and **TableSize** is *prime*, no need to detect cycles
- Proof posted in lecture11.txt (slightly less detailed proof in textbook)
 For prime TableSize and 0 ≤ i, j ≤ TableSize/2 where i ≠ j,
 (h(key) + i²) % TableSize ≠ (h(key) + j²) % TableSize

That is, if **TableSize** is prime, the first **TableSize**/2 quadratic probes map to different locations (and one of those will be empty if the table is < half full).

Clustering reconsidered

- Quadratic probing does not suffer from primary clustering:
 As we resolve collisions we are not merely growing "big blobs" by adding one more item to the end of a cluster, we are looking i² locations away, for the next possible spot.
- But quadratic probing does not help resolve collisions between keys that initially hash to the same index
 - Any 2 keys that initially hash to the same index will have the same series of moves after that looking for any empty spot
 - Called secondary clustering
- Can avoid secondary clustering with a probe function that depends on the key: double hashing...

Open Addressing: Double hashing

Idea: Given two good hash functions h and g, and two different keys k1 and k2, it is very unlikely that: h(k1) == h(k2) and g(k1) == g(k2)

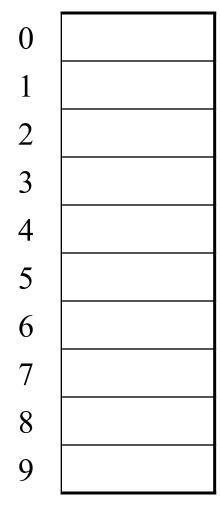
```
(h(key) + f(i)) % TableSize
```

– For double hashing:

```
f(i) = i*g(key)
```

- So probe sequence is:
 - 0th probe: h(key) % TableSize
 - 1st probe: (h(key) + g(key)) % TableSize
 - 2nd probe: (h(key) + 2*g(key)) % TableSize
 - 3rd probe: (h(key) + 3*g(key)) % TableSize
 - •
 - ith probe: (h(key) + i*g(key)) % TableSize
- Detail: Make sure g (key) can't be 0

Open Addressing: Double Hashing



```
T = 10 (TableSize)

<u>Hash Functions</u>:

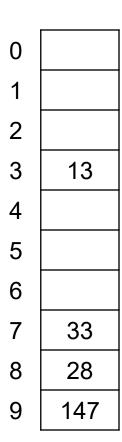
h(key) = key

g(key) = 1 + ((key/T) mod (T-1))
```

Insert these values into the hash table in this order. Resolve any collisions with double hashing:

- **13**
- **28**
- 33
- 147
- 43

Double Hashing



Insert these values into the hash table in this order. Resolve any collisions with double hashing:

- 13
- 28
- 33

147
$$\rightarrow$$
 g(147) = 1 + 14 mod 9 = 6

43
$$\rightarrow$$
 g(43) = 1 + 4 mod 9 = 5

We have a problem:

$$3 + 0 = 3$$
 $3 + 5 = 8$

$$3 + 5 = 8$$

$$3 + 10 = 13$$

$$3 + 15 = 18$$

$$3 + 15 = 18$$
 $3 + 20 = 23$

Where are we?

- Separate Chaining is easy
 - find, insert, delete proportional to load factor on average if using unsorted linked list nodes
 - If using another data structure for buckets (e.g. AVL tree),
 runtime is proportional to runtime for that structure.
- Open addressing uses probing, has clustering issues as table fills
 Why use it:
 - Less memory allocation?
 - Some run-time overhead for allocating linked list (or whatever) nodes; open addressing could be faster
 - Easier data representation?
- Now:
 - Growing the table when it gets too full (aka "rehashing")
 - Relation between hashing/comparing and connection to Java

Rehashing

- As with array-based stacks/queues/lists, if table gets too full, create a bigger table and copy everything over
- With separate chaining, we get to decide what "too full" means
 - Keep load factor reasonable (e.g., < 1)?</p>
 - Consider average or max size of non-empty chains?
- For open addressing, half-full is a good rule of thumb
- New table size
 - Twice-as-big is a good idea, except, uhm, that won't be prime!
 - So go about twice-as-big
 - Can have a list of prime numbers in your code since you probably won't grow more than 20-30 times, and then calculate after that

A Generally Good hashCode()

```
int result = 17; // start at a prime
foreach field f
  int fieldHashcode =
    boolean: (f? 1: 0)
    byte, char, short, int: (int) f
    long: (int) (f ^ (f >>> 32))
    float: Float.floatToIntBits(f)
    double: Double.doubleToLongBits(f), then above
    Object: object.hashCode()
    result = 31 * result + fieldHashcode;
return result;
```

Effective Java
Second Edition

Final word on hashing

- The hash table is one of the most important data structures
 - Efficient find, insert, and delete
 - Operations based on sorted order are not so efficient!
 - Useful in many, many real-world applications
 - Popular topic for job interview questions
- Important to use a good hash function
 - Good distribution, Uses enough of key's components
 - Not overly expensive to calculate (bit shifts good!)
- Important to keep hash table at a good size
 - Prime #
 - Preferable λ depends on type of table
- Side-comment: hash functions have uses beyond hash tables
 - Examples: Cryptography, check-sums