CSE 332: Data Structures & Parallelism

Lecture 11:More Hashing

Winston Jodjana
Spring 2023



Today

* Open Addressing
— Linear Probing
— Quadratic Probing
— Double Hashing

* Rehashing

4/21/2023



Hash Tables: Review

« Aim for constant-time (i.e., O(1)) £ind, insert, and delete
— “On average” under some reasonable assumptions

A hash table is an array of some fixed size hash table
— But growable as we’ll see 0
client hash table library

collision? collision

E ) int mms) table-index Hmm—)

resolution

TableSize —1

4/21/2023 3



Hashing Choices

1. Choose a Hash function
— Fast
— Even spread
2. Choose TableSize
— Prime Numbers
3. Choose a Collision Resolution Strategy from these:
— Separate Chaining
— Open Addressing
 Linear Probing
« Quadratic Probing
* Double Hashing
« Other issues to consider:
— What to do when the hash table gets “too full”?

4/21/2023



Open Addressing: Linear Probing

Why not use up the empty space in the table?
Store directly in the array cell (no linked list)
How to deal with collisions?
If h (key) is already full,
— try (h(key) + 1) % TableSize. Iffull,
— try (h(key) + 2) % TableSize. Iffull,
— try (h(key) + 3) %

Example: insert 38, 19, 8, 109, 10

4/21/2023

TableSize. Iffull...

O 0 3 O D h©~ W N — O

38




Open addressing

Linear probing is one example of open addressing

In general, open addressing means resolving collisions by trying a
sequence of other positions in the table.

Trying the next spot is called probing
— We just did linear probing:

- ith probe: (h(key) + i) % TableSize
— In general have some probe function £ and :
- ith probe: (h(key) + £(i)) % TableSize

Open addressing does poorly with high load factor A
— So want larger tables
— Too many probes means no more O(1)

4/21/2023 10



Questions: Open Addressing: Linear Probing

How should £ind work? If key is in table? If not there?

Worst case scenario for £ind?
How should we implement delete?

How does open addressing with linear probing compare to
separate chaining?

4/21/2023 12



Primary Clustering

It turns out linear probing is a bad idea, even though the probe
function is quick to compute (a good thing)

o el il
Liieyi feties
« Tends to produce i uuummiﬂmuumwuu o
. Lt
clusters, which lead { . wmmuummuuuuuu L
(! PO LAt
to long probe LI L

sequegnges uumuéﬁwmmuummuuu DI IES

o B8l
» Called primary uumummmmmuummuuu R

I -Uﬁﬂjuuumwu
clustering e ieeeie p e

ool BIL LIS

- Saw the start of a o mummmmLﬂUUIﬂLﬂU o

cluster in our linear e mmmummmuuuuuu

Ll

: oo L
probing example el

uumumQMMM?ffvvafvmmmummuu

|

MR UL

LAl LA .

el R. Sedgewick
g

4/21/2023 14



Analysis in chart form

« Linear-probing performance degrades rapidly as table gets full
— (Formula assumes “large table” but point remains)

Average # of Probes

Linear Probing Linear Probing
16.00 » 350.00
14.00 ] 2 30000
12.00 / g 250.00
10.00 / Y= 200.00
8.00 . . O _ _
/ ———linear probing #* 150.00 ——linear probing
6.00 / not found Qv not found
4.00 {?-Uﬁ 100.00
2'00 e linear probing S c0.00 / ——linear probing
: found > ' ] found
0.00 <  0.00 i'/
= 00w ~N OO M O M~ = — 00 = O o 00 ™~ W = M 4 -
OO0 A NNMS NWnmO NN O =4 AN mMmS NV~ O
OO0 0 COo0OCOo oo oo o OO0 000000 o oo
Load Factor Load Factor

« By comparison, separate chaining performance is linear in 4 and
has no trouble with 4>1

4/21/2023 16




Open Addressing: Linear probing

(h(key) + £(i)) % TableSize

— For linear probing:
f(i) = i

— So probe sequence is:

« Oth probe: h(key) % TableSize
1t probe: (h(key) + 1) % TableSize
2"d probe: (h(key) + 2) % TableSize
3d probe: (h(key) + 3) % TableSize

i probe: (h(key) + i) % TableSize

4/21/2023

17



Open Addressing: Quadratic probing

« We can avoid primary clustering by changing the probe function...
(h(key) + £(i)) % TableSize

— For quadratic probing:
£(i) = 12
— So probe sequence is:
« Oth probe: h(key) % TableSize
* 1stprobe: (h(key) + 1) % TableSize
« 2"dprobe: (h(key) + 4) % TableSize
« 39 probe: (h(key) + 9) % TableSize

 i"probe: (h(key) + i2?) % TableSize

 Intuition: Probes quickly “leave the neighborhood”

4/21/2023 18



ith probe: (h (key) + i?) % TableSi:ze

Quadratic Probing Example

4/21/2023

O 0 9 O N B~ W N = O

TableSize=10

Insert:

389

18

49

S8

79

19



ith probe: (h (key) + i?) % TableSize

Another Quadratic Probing Example

4/21/2023

A N A W N = O

TableSize =7

Insert:
76

40

48

5

55

47

(76 % 7 = 6)
40 % 7 =5)
(48 % 7 =6)
(5% 7=5)
(55 % 7 =6)
47 % 7=5)

26



ith probe: (h (key) + i?) % TableSize

Another Quadratic Probing Example

TableSize =7

0 | 48
1

2 | 5
3 | 55
4

5 | 40
6 | 76

Insert:

76 (76 % 7 =6)
40 40 % 7=195)
48 (48 % 7 =06)
5 5% 7=9)
55 55 % 7=06)
47 47 % T7=195)

Will we ever get a1 or

4/21/2023

421?

47+ 1) % 7 =6 collision!
47 +4) % 7 =2 collision!
47 +9) % 7 =0 collision!
(47 +16) % 7 = 0 collision!
(47 +25) % 7 =2 collision!
(47 + 36) % 7 = 6 collision!
(47 +49) % 7 =5 collision!

32



From bad news to good news

Bad News:

« After TableSize quadratic probes, we cycle through the same
indices
Good News:

* |f Tablesize is prime and A < 2, then quadratic probing will find an
empty slot in at most Tablesize/2 probes

 So: If you keep A < V2 and TableSize is prime, no need to detect
cycles

* Proof posted in lecturell. txt (slightly less detailed proof in textbook)
For prime TableSizeand 0 < i,j < TableSize/2 wherei # 7,
(h(key) + i?) % TableSize # (h(key) + j?) % TableSize

That is, if TableSize is prime, the first TableSize/2 quadratic probes

map to different locations (and one of those will be empty if the table
is < half full).

4/21/2023 34



Clustering reconsidered

* Quadratic probing does not suffer from primary clustering:
As we resolve collisions we are not merely growing “big blobs™ by
adding one more item to the end of a cluster, we are looking i?
locations away, for the next possible spot.

« But quadratic probing does not help resolve collisions between
keys that initially hash to the same index

— Any 2 keys that initially hash to the same index will have the
same series of moves after that looking for any empty spot

— Called secondary clustering

« Can avoid secondary clustering with a probe function that
depends on the key: double hashing...

4/21/2023 36



Open Addressing: Double hashing

Idea: Given two good hash functions h and g, and two different keys k71
and k2, it is very unlikely that: h (k1) ==h (k2) and g (k1) ==g (k2)

(h(key) + £(i)) % TableSize

— For double hashing:
£(1) = i*g(key)

— So probe sequence is:

« Oth probe: h(key) % TableSize
1st probe: (h(key) + g(key)) % TableSize
2"d probe: (h(key) + 2*g(key)) % TableSize
3 probe: (h(key) + 3*g(key)) % TableSize

i probe: (h(key) + i*g(key)) % TableSize

» Detail: Make sure g (key) can’'t be 0

4/21/2023 37



ith probe: (h (key) + i*g(key)) % TableSize

Open Addressing: Double Hashing

4/21/2023

-

O 0 1 O D B~ W N =

T =10 (TableSize)
Hash Functions:
h(key) = key
g(key) =1 + ((key/T) mod (T-1))

Insert these values into the hash table
in this order. Resolve any collisions
with double hashing:

13
28
33
147
43

38




ith probe: (h (key) + i*g(key)) % TableSize

Double Hashing
T =10 (TableSize)
Hash Functions:
h(key) = key
g(key) =1 + ((key/T) mod (T-1))

13

Insert these values into the hash table in this order. Resolve
any collisions with double hashing:

13

28

33

147 > g(147)=1+14mod 9 =6
43 > g43)=1+4mod9=5

We have a problem:
3+0=3 3+5=8 3+10=13
3+15=18 3+20=23
4/21/2023 43

33
28
147

© 00 N o o1 A WO N -~ O




Where are we?

« Separate Chaining is easy

- find, insert, delete proportional to load factor on
average if using unsorted linked list nodes

— If using another data structure for buckets (e.g. AVL tree),
runtime is proportional to runtime for that structure.

* Open addressing uses probing, has clustering issues as table fills
Why use it:

— Less memory allocation?

« Some run-time overhead for allocating linked list (or
whatever) nodes; open addressing could be faster

— Easier data representation?
 Now:
— Growing the table when it gets too full (aka “rehashing”)
— Relation between hashing/comparing and connection to Java

4/21/2023 48



Rehashing

» As with array-based stacks/queuesl/lists, if table gets too full,
create a bigger table and copy everything over

« With separate chaining, we get to decide what “too full” means
— Keep load factor reasonable (e.g., < 1)?
— Consider average or max size of non-empty chains?

« For open addressing, half-full is a good rule of thumb

 New table size
— Twice-as-big is a good idea, except, uhm, that won't be prime!
— S0 go about twice-as-big

— Can have a list of prime numbers in your code since you
probably won’t grow more than 20-30 times, and then
calculate after that

4/21/2023 49



A Generally Good hashCode()

Joshua Blodh e -

i

FI"I'L;{-[ ive Java

Lt minll Fdifiei

int result = 17; // start at a prime

foreach field f
int fieldHashcode =

boolean: (f ? 1: 0)
byte, char, short, int: (int) f

long: (int) (f * (f >>> 32))

float: Float.floatTolntBits(f)

double: Double.doubleToLongBits(f), then above
Obiject: object.hashCode( )

result = 31 * result + fieldHashcode;
return result;

4/21/2023 54



Final word on hashing

The hash table is one of the most important data structures
— Efficient find, insert, and delete
— Operations based on sorted order are not so efficient!
— Useful in many, many real-world applications
— Popular topic for job interview questions
Important to use a good hash function
— Good distribution, Uses enough of key’s components
— Not overly expensive to calculate (bit shifts good!)
Important to keep hash table at a good size
— Prime #
— Preferable A depends on type of table

Side-comment: hash functions have uses beyond hash tables

— Examples: Cryptography, check-sums

4/21/2023

55



	CSE 332: Data Structures & Parallelism��Lecture 11:More Hashing
	Today
	Hash Tables: Review
	Hashing Choices
	Open Addressing: Linear Probing
	Open addressing
	Questions: Open Addressing: Linear Probing
	Primary Clustering
	Analysis in chart form
	Open Addressing: Linear probing
	Open Addressing: Quadratic probing
	Quadratic Probing Example
	Another Quadratic Probing Example
	Another Quadratic Probing Example
	From bad news to good news
	Clustering reconsidered
	Open Addressing: Double hashing
	Open Addressing: Double Hashing
	Double Hashing
	Where are we?
	Rehashing
	A Generally Good hashCode()
	Final word on hashing

