
CSE 332: Data Structures & Parallelism

Lecture 10: Hashing

Winston Jodjana

Spring 2023

Today

• Dictionaries

– Hashing

• Hash Table

• Hash Function

• Separate Chaining

– Insert, Find, Delete

4/19/2023 2

Motivating Hash Tables

For dictionary with n key/value pairs

insert find delete

• Unsorted linked-list O(n) * O(n) O(n)

• Unsorted array O(n) * O(n) O(n)

• Sorted linked list O(n) O(n) O(n)

• Sorted array O(n) O(log n) O(n)

• Balanced tree O(log n) O(log n) O(log n)

* Assuming we must check to see if the key has already been inserted.

Cost becomes cost of a find operation, inserting itself is O(1).

4/19/2023 3

Hash Tables

• m = possible keys (e.g. possible student no., 9,999,999)

• n = no. of keys (e.g. total students, 130 in CSE332)

• We expect our table to have only n items

• n is much less than m (often written n << m)

Many dictionaries have this property

– Compiler: variable names in a file << possible variable names

– Database: enrolled student names << possible student names

– AI: Chess-board configurations considered by the current player

vs. All possible chess-board configurations

– …

4/19/2023 4

Hash Tables

• Aim for constant-time (i.e., O(1)) find, insert, and delete

– “On average” under some reasonable assumptions

• A hash table is an array of some fixed size

• Basic idea:

4/19/2023 5

0

…

TableSize –1

hash table

key space (e.g., integers, strings)

key ⟶ int ⟶ index

h(key) int mod TableSize

Aside: Hash Tables vs. Balanced Trees

• In terms of a Dictionary ADT for just insert, find, delete, hash

tables and balanced trees are just different data structures

– Hash tables O(1) on average (assuming few collisions)

– Balanced trees O(log n) worst-case

• Constant-time is better, right?

– Yes, but you need “hashing to behave” (must avoid collisions)

– Yes, but what if we want to findMin, findMax, predecessor,

and successor, printSorted?

• Hashtables are not designed to efficiently implement these

operations

• Your textbook considers Hash tables to be a different ADT

• Not so important to argue over the definitions

4/19/2023 6

Hash Functions

An ideal hash function:

• Is fast to compute

• “Rarely” hashes two “used” keys to the same index

– Often impossible in theory; easy in practice

– Will handle collisions a bit later

4/19/2023 7

0

…

TableSize –1

hash table

key ⟶ int ⟶ index

h(key) int mod TableSize

key space (e.g., integers, strings)

Who hashes what?

• Hash tables can be generic

– To store keys of type E, we just need to be able to:

1. Test equality: are you the E I’m looking for?

2. Hashable: convert any E to an int

• When hash tables are a reusable library, the division of

responsibility generally breaks down into two roles:

4/19/2023 8

• We will learn both roles, but most programmers “in the real world”

spend more time as clients while understanding the library

E int table-index
collision? collision

resolution

client hash table library

21

More on roles

4/19/2023 9

Two roles must both contribute to minimizing collisions (heuristically)

• Client should aim for different ints for expected items

– Avoid “wasting” any part of E or the 32 bits of the int

• Library should aim for putting “similar” ints in different indices

– conversion to index is almost always “mod table-size”

– using prime numbers for table-size is common

E int table-index
collision? collision

resolution

client hash table library

Some ambiguity in terminology on which parts are “hashing”

“hashing”? “hashing”?

What to hash?

• We will focus on two most common things to hash: ints and strings

• If you have objects with several fields, it is usually best to have most

of the “identifying fields” contribute to the hash to avoid collisions

• Example:
class Person {

String first; String middle; String last;

Day birthday; Month birthmonth; Year birthyear;

}

• An inherent trade-off: hashing-time vs. collision-avoidance

– Use all the fields?

– Use only the birthdate?

– Admittedly, what-to-hash is often an unprincipled guess 

4/19/2023 10

Hashing integers

key space = integers

Simple hash function:

• Client: h(x) = x

• Library: g(x) = h(x) % TableSize

• index = x % TableSize

Example:

• TableSize = 10

• Insert 7, 18, 41, 34, 10

• (As usual, ignoring corresponding data)

4/19/2023 11

0

1

2

3

4

5

6

7

8

9

Hashing integers (Soln)

4/19/2023 12

0 10

1 41

2

3

4 34

5

6

7 7

8 18

9

key space = integers

Simple hash function:

h(key) = key % TableSize

• Client: f(x) = x

• Library g(x) = f(x) % TableSize

• Fairly fast and natural

Example:

• TableSize = 10

• Insert 7, 18, 41, 34, 10

• (As usual, ignoring corresponding data)

Collision-avoidance

• With “x % TableSize” the number of collisions depends on

– the ints inserted (obviously)

– TableSize

• Larger table-size tends to help, but not always

– Example: 70, 24, 56, 43, 10

with TableSize = 10 and TableSize = 60

• Technique: Pick table size to be prime. Why?

– Real-life data tends to have a pattern

– “Multiples of 61” are probably less likely than “multiples of 60”

– We’ll see some collision strategies do better with prime size

4/19/2023 13

More arguments for a prime table size
If TableSize is 60 and…

– Lots of keys are multiples of 5, wasting 80% of table

– Lots of keys are multiples of 10, wasting 90% of table

– Lots of keys are multiples of 2, wasting 50% of table

If TableSize is 61…

– Collisions can still happen, but 5, 10, 15, 20, … will fill table

– Collisions can still happen but 10, 20, 30, 40, … will fill table

– Collisions can still happen but 2, 4, 6, 8, … will fill table

In general, if x and y are “co-prime” (means gcd(x,y)==1), then

(a * x) % y == (b * x) % y if and only if a % y == b % y

– Given table size y and keys as multiples of x, we’ll get a decent

distribution if x & y are co-prime

– So good to have a TableSize that has no common factors

with any “likely pattern” x
4/19/2023 14

What if the key is not an int?

• If keys aren’t ints, the client must convert to an int

– Trade-off: speed and distinct keys hashing to distinct ints

• Common and important example: Strings

– Key space K = s0s1s2…sm-1

• where si are chars: si  [0,256]

– Some choices: Which avoid collisions best?

1. h(K) = s0

2. h(K) =

3. h(K) =

4/19/2023 15

Then on the library side we

typically mod by Tablesize

to find index into the table

1

0

m

i

i

s
−

=

 
 
 












−

=

1

0

37
m

i

i

is

Aside: Don’t use pow

ℎ 𝑘 = ෍

𝑖=0

𝑚−1

𝑠𝑖 ⋅ 37
𝑖

ℎ 𝑘 = 𝑆0 ⋅ 37
0 + 𝑆1 ⋅ 37

1 + 𝑆2 ⋅ 37
2 +⋯+ 𝑆𝑚−1 ⋅ 37

𝑚−1

Use Horner’s Rule (to simplify):

ℎ 𝑘 = 𝑆0 + 37 𝑆1 + 37 𝑆2 + 37 …+ 37 ⋅ 𝑆𝑚−1

4/19/2023 16

Specializing hash functions

How might you hash differently if all your strings were web

addresses (URLs)?

4/19/2023 17

Aside: Combining hash functions

A few rules of thumb / tricks:

1. Use all 32 bits (careful, that includes negative numbers)

2. Use different overlapping bits for different parts of the hash

– This is why a factor of 37i works better than 256i

3. When smashing two hashes into one hash, use bitwise-xor

– bitwise-and produces too many 0 bits

– bitwise-or produces too many 1 bits

4. Rely on expertise of others; consult books and other resources

5. If keys are known ahead of time, choose a perfect hash

4/19/2023 18

Collision resolution

Collision:

When two keys map to the same location in the hash table

We try to avoid it, but number-of-possible-keys exceeds table size

So hash tables should support collision resolution

– Ideas?

4/19/2023 19

Flavors of Collision Resolution

Separate Chaining

Open Addressing

• Linear Probing

• Quadratic Probing

• Double Hashing

4/19/2023 20

Separate Chaining

Chaining: All keys that map to the same

table location are kept in a list

(a.k.a. a “chain” or “bucket”)

Insertion Algorithm:

1. Check if duplicate exists

– h(K) -> int -> index

– LL.find(K) at index

2. If no duplicate, LL.insert(K) at index

Example: insert 10, 22, 107, 12, 42 with
mod hashing and TableSize = 10

Delete?

4/19/2023 21

0 /

1 /

2 /

3 /

4 /

5 /

6 /

7 /

8 /

9 /

Separate Chaining

4/19/2023 22

0

1 /

2 /

3 /

4 /

5 /

6 /

7 /

8 /

9 /

10 / Chaining: All keys that map to the same

table location are kept in a list

(a.k.a. a “chain” or “bucket”)

As easy as it sounds

Example: insert 10, 22, 107, 12, 42 with
mod hashing and TableSize = 10

Separate Chaining

4/19/2023 23

0

1 /

2

3 /

4 /

5 /

6 /

7 /

8 /

9 /

10 /

22 /

Chaining: All keys that map to the same

table location are kept in a list

(a.k.a. a “chain” or “bucket”)

As easy as it sounds

Example: insert 10, 22, 107, 12, 42 with
mod hashing and TableSize = 10

Separate Chaining

4/19/2023 24

0

1 /

2

3 /

4 /

5 /

6 /

7

8 /

9 /

10 /

22 /

107 /

Chaining: All keys that map to the same

table location are kept in a list

(a.k.a. a “chain” or “bucket”)

As easy as it sounds

Example: insert 10, 22, 107, 12, 42 with
mod hashing and TableSize = 10

Separate Chaining

4/19/2023 25

0

1 /

2

3 /

4 /

5 /

6 /

7

8 /

9 /

10 /

12

107 /

22 /

Chaining: All keys that map to the same

table location are kept in a list

(a.k.a. a “chain” or “bucket”)

As easy as it sounds

Example: insert 10, 22, 107, 12, 42 with
mod hashing and TableSize = 10

Separate Chaining

4/19/2023 26

0

1 /

2

3 /

4 /

5 /

6 /

7

8 /

9 /

10 /

42

107 /

12 22 /

Chaining: All keys that map to the same

table location are kept in a list

(a.k.a. a “chain” or “bucket”)

As easy as it sounds

Example: insert 10, 22, 107, 12, 42 with
mod hashing and TableSize = 10

Worst case time for find?

Separate Chaining Deletion

27

• Not too bad

– Find in table

– Delete from bucket

• Say, delete 12

• Similar run-time as insert

0

1 /

2

3 /

4 /

5 /

6 /

7

8 /

9 /

10 /

42

107 /

12 22 /

4/19/2023

Separate Chaining Deletion

28

• Not too bad

– Find in table

– Delete from bucket

• Say, delete 12

• Similar run-time as insert

0

1 /

2

3 /

4 /

5 /

6 /

7

8 /

9 /

10 /

42

107 /

22 /

4/19/2023

Thoughts on separate chaining

29

Worst-case time for find?

• Linear

• But only with really bad luck or bad hash function

• So not worth avoiding (e.g., with balanced trees at each bucket)

– Keep # of items in each bucket small

– Overhead of AVL tree, etc. not worth it if small # items per bucket

Beyond asymptotic complexity, some “data-structure engineering” can
improve constant factors

• Linked list vs. array or a hybrid of the two

• Move-to-front (part of Project 2)

• Leave room for 1 element (or 2?) in the table itself, to optimize
constant factors for the common case

– A time-space trade-off…

4/19/2023

Time vs. space
(only makes a difference in constant factors)

4/19/2023 30

0

1 /

2

3 /

4 /

5 /

6 /

7

8 /

9 /

10 /

42

107 /

12 22 /

0 10 /

1 / X

2 42

3 / X

4 / X

5 / X

6 / X

7 107 /

8 / X

9 / X

12 22 /

More rigorous separate chaining analysis

Definition: The load factor, , of a hash table is

4/19/2023 31

 number of elements

Under chaining, the average number of elements per bucket is ___

So if some inserts are followed by random finds, then on average:

• Each unsuccessful find compares against ____ items

• Each successful find compares against _____ items

• How big should TableSize be??

N

TableSize
 =

More rigorous separate chaining analysis

Definition: The load factor, , of a hash table is

4/19/2023 32

 number of elements

Under chaining, the average number of elements per bucket is 

So if some inserts are followed by random finds, then on average:

• Each unsuccessful find compares against  items

• Each successful find compares against  / 2 items

• If  is low, find & insert likely to be O(1)

• We like to keep  around 1 for separate chaining

N

TableSize
 =

Load Factor?

0

1 /

2

3 /

4 /

5 /

6

7 /

8 /

9 /

10 /

42

86 /

12 22 /

𝜆 =
𝑛

𝑇𝑎𝑏𝑙𝑒𝑆𝑖𝑧𝑒
= ?

4/19/2023 33

Load Factor?

0

1 /

2

3 /

4 /

5 /

6

7 /

8 /

9 /

10 /

42

86 /

12 22 /

𝜆 =
𝑛

𝑇𝑎𝑏𝑙𝑒𝑆𝑖𝑧𝑒
= ?=

5

10
= 0.5

4/19/2023 34

Load Factor?

0

1

2

3

4 /

5

6

7

8

9

10 /

42

86 /

12 22 /

𝜆 =
𝑛

𝑇𝑎𝑏𝑙𝑒𝑆𝑖𝑧𝑒
= ?

71 2 31 /

63 73 /

75 5 65 95 /

27 47

88 18 38 98 /

99 /

4/19/2023 35

Load Factor?

0

1

2

3

4 /

5

6

7

8

9

10 /

42

86 /

12 22 /

𝜆 =
𝑛

𝑇𝑎𝑏𝑙𝑒𝑆𝑖𝑧𝑒
= ?=
21

10
= 2.1

71 2 31 /

63 73 /

75 5 65 95 /

27 47

88 18 38 98 /

99 /

4/19/2023 36

	Slide 1: CSE 332: Data Structures & Parallelism Lecture 10: Hashing
	Slide 2: Today
	Slide 3: Motivating Hash Tables
	Slide 4: Hash Tables
	Slide 5: Hash Tables
	Slide 6: Aside: Hash Tables vs. Balanced Trees
	Slide 7: Hash Functions
	Slide 8: Who hashes what?
	Slide 9: More on roles
	Slide 10: What to hash?
	Slide 11: Hashing integers
	Slide 12: Hashing integers (Soln)
	Slide 13: Collision-avoidance
	Slide 14: More arguments for a prime table size
	Slide 15: What if the key is not an int?
	Slide 16: Aside: Don’t use pow
	Slide 17: Specializing hash functions
	Slide 18: Aside: Combining hash functions
	Slide 19: Collision resolution
	Slide 20: Flavors of Collision Resolution
	Slide 21: Separate Chaining
	Slide 22: Separate Chaining
	Slide 23: Separate Chaining
	Slide 24: Separate Chaining
	Slide 25: Separate Chaining
	Slide 26: Separate Chaining
	Slide 27: Separate Chaining Deletion
	Slide 28: Separate Chaining Deletion
	Slide 29: Thoughts on separate chaining
	Slide 30: Time vs. space (only makes a difference in constant factors)
	Slide 31: More rigorous separate chaining analysis
	Slide 32: More rigorous separate chaining analysis
	Slide 33: Load Factor?
	Slide 34: Load Factor?
	Slide 35: Load Factor?
	Slide 36: Load Factor?

