
CSE332: Data Structures & Parallelism

Lecture 2: Algorithm Analysis

Ruth Anderson

Spring 2023

Today – Algorithm Analysis

• What do we care about?

• How to compare two algorithms

• Analyzing Code

• Asymptotic Analysis

• Big-Oh Definition

03/29/2023 2

What do we care about?

• Correctness:

– Does the algorithm do what is intended.

• Performance:

– Speed time complexity

– Memory space complexity

• Why analyze?

– To make good design decisions

– Enable you to look at an algorithm (or code) and identify the

bottlenecks, etc.

03/29/2023 3

Q: How should we compare two algorithms?

03/29/2023 4

A: How should we compare two algorithms?

• Uh, why NOT just run the program and time it??

– Too much variability, not reliable or portable:

• Hardware: processor(s), memory, etc.

• OS, Java version, libraries, drivers

• Other programs running

• Implementation dependent

– Choice of input

• Testing (inexhaustive) may miss worst-case input

• Timing does not explain relative timing among inputs

(what happens when n doubles in size)

• Often want to evaluate an algorithm, not an implementation

– Even before creating the implementation (“coding it up”)

03/29/2023 5

Comparing algorithms

When is one algorithm (not implementation) better than another?

– Various possible answers (clarity, security, …)

– But a big one is performance: for sufficiently large inputs,

runs in less time (our focus) or less space

Large inputs (n) because probably any algorithm is “plenty good”

for small inputs (if n is 10, probably anything is fast enough)

Answer will be independent of CPU speed, programming language,

coding tricks, etc.

Answer is general and rigorous, complementary to “coding it up

and timing it on some test cases”

– Can do analysis before coding!

03/29/2023 6

Today – Algorithm Analysis

• What do we care about?

• How to compare two algorithms

• Analyzing Code

– How to count different code constructs

– Best Case vs. Worst Case

– Ignoring Constant Factors

• Asymptotic Analysis

• Big-Oh Definition

03/29/2023 7

Analyzing code (“worst case”)

Basic operations take “some amount of” constant time

– Arithmetic

– Assignment

– Access one Java field or array index

– Etc.

(This is an approximation of reality: a very useful “lie”.)

Consecutive statements Sum of time of each statement

Loops Num iterations * time for loop body

Conditionals Time of condition plus time of

slower branch

Function Calls Time of function’s body

Recursion Solve recurrence equation

03/29/2023 8

Examples
b = b + 5

c = b / a

b = c + 100

for (i = 0; i < n; i++) {

sum++;

}

if (j < 5) {

sum++;

} else {

for (i = 0; i < n; i++) {

sum++;

}

}

03/29/2023 9

Another Example

int coolFunction(int n, int sum) {

int i, j;

for (i = 0; i < n; i++) {

for (j = 0; j < n; j++) {

sum++;

}

}

print "This program is great!"

for (i = n; i > 1; i = i / 2) {

sum++;

}

return sum

}

03/29/2023 10

Using Summations for Loops

for (i = 0; i < n; i++) {

sum++;

}

03/29/2023 11

Today – Algorithm Analysis

• What do we care about?

• How to compare two algorithms

• Analyzing Code

– How to count different code constructs

– Best Case vs. Worst Case

– Ignoring Constant Factors

• Asymptotic Analysis

• Big-Oh Definition

03/29/2023 12

Complexity cases

We’ll start by focusing on two cases:

• Worst-case complexity: max # steps algorithm takes on “most

challenging” input of size N

• Best-case complexity: min # steps algorithm takes on “easiest”

input of size N

03/29/2023 13

Example

Find an integer in a sorted array

2 3 5 16 37 50 73 75 126

// requires array is sorted

// returns whether k is in array

boolean find(int[]arr, int k){

???

}

03/29/2023 14

Linear search – Best Case & Worst Case

Find an integer in a sorted array

2 3 5 16 37 50 73 75 126

// requires array is sorted

// returns whether k is in array

boolean find(int[]arr, int k){

for(int i=0; i < arr.length; ++i)

if(arr[i] == k)

return true;

return false;

}
Best case:

Worst case:

03/29/2023 15

Linear search – Running Times

Find an integer in a sorted array

2 3 5 16 37 50 73 75 126

// requires array is sorted

// returns whether k is in array

boolean find(int[]arr, int k){

for(int i=0; i < arr.length; ++i)

if(arr[i] == k)

return true;

return false;

}

Best case: 6 “ish” steps = O(1)

Worst case: 5 “ish” * (arr.length)

= O(arr.length)

03/29/2023 16

Remember a faster search algorithm?

03/29/2023 17

Today – Algorithm Analysis

• What do we care about?

• How to compare two algorithms

• Analyzing Code

– How to count different code constructs

– Best Case vs. Worst Case

– Ignoring Constant Factors

• Asymptotic Analysis

• Big-Oh Definition

03/29/2023 18

Ignoring constant factors

• So binary search is O(log n) and linear is O(n)

– But which will actually be faster?

– Depending on constant factors and size of n, in a particular

situation, linear search could be faster….

• Could depend on constant factors

– How many assignments, additions, etc. for each n

• And could depend on size of n – what if n is small?

• But there exists some n0 such that for all n > n0 binary search “wins”

• Let’s look at a couple plots to get some intuition…

03/29/2023 19

Linear Search vs. Binary Search

• Plotting linear f(N) = N and binary search f(N) = log N

– Let’s even give linear search a boost (N/600)

• For small values of N, linear search might run faster

• But eventually, binary search will win

03/29/2023 20

Logarithms and Exponents

03/29/2023 21

Logarithms and Exponents

03/29/2023 22

Logarithms and Exponents

03/29/2023 23

Review: Logarithms and Exponents

• Since so much is binary in CS, log almost always means log2

• Definition: log2 x = y if x = 2y

• So, log2 1,000,000 = “a little under 20”

• Just as exponents grow very quickly, logarithms grow very slowly

03/29/2023 24

See Excel file

for plot data –

play with it!

Aside: Log base doesn’t matter (much)

“Any base B log is equivalent to base 2 log within a constant factor”

– And we are about to stop worrying about constant factors!

– In particular, log2 x = 3.22 log10 x

– In general, we can convert log bases via a constant multiplier

– Say, to convert from base B to base A:

logB x = (logA x) / (logA B)

03/29/2023 25

Review: Properties of logarithms

26

• log(A*B) = log A + log B

– So log(Nk)= k log N

• log(A/B) = log A – log B

• X =

• log(log x) is written log log x

– Grows as slowly as 22 grows fast

– Ex:

• (log x)(log x) is written log2x

– It is greater than log x for all x > 2

y

532log2loglog~4loglog 2

32

2222 ==billion

x2log2

03/29/2023

Today – Algorithm Analysis

• What do we care about?

• How to compare two algorithms

• Analyzing Code

• Asymptotic Analysis

• Big-Oh Definition

03/29/2023 27

Asymptotic notation

About to show formal definition, which amounts to saying:

1. Eliminate low-order terms

2. Eliminate coefficients

Examples:

– 4n + 5

– 0.5n log n + 2n + 7

– n3 + 2n + 3n

– n log (10n2)

03/29/2023 28

Big-Oh relates functions

We use O on a function f(n) (for example n2) to mean the set of

functions with asymptotic behavior less than or equal to f(n)

So (3n2+17) is in O(n2)

– 3n2+17 and n2 have the same asymptotic behavior

Confusingly, we also say/write:

– (3n2+17) is O(n2)

– (3n2+17) = O(n2)

But we would never say O(n2) = (3n2+17)

03/29/2023 29

Formally Big-Oh

Definition: g(n) is in O(f(n)) iff there exist

positive constants c and n0 such that

g(n) c f(n) for all n n0

03/29/2023

Note: n0 1 (and a natural number) and c > 0

30

Why n0? Why c?

Definition: g(n) is in O(f(n)) iff there exist

positive constants c and n0 such that

g(n) c f(n) for all n n0

03/29/2023

Note: n0 1 (and a natural number) and c > 0

31

Why 𝑛0?
Why 𝑐?

Formally Big-Oh

Definition: g(n) is in O(f(n)) iff there exist

positive constants c and n0 such that

g(n) c f(n) for all n n0

Note: n0 1 (and a natural number) and c > 0

To show g(n) is in O(f(n)), pick a c large enough to “cover the

constant factors” and n0 large enough to “cover the lower-order

terms”.

Example: Let g(n) = 3n + 4 and f(n) = n

c = 4 and n0 = 5 is one possibility

This is “less than or equal to”

– So 3n + 4 is also O(n5) and O(2n) etc.

03/29/2023 32

What’s with the c?

• To capture this notion of similar asymptotic behavior, we allow a

constant multiplier (called c)

• Consider:

g(n) = 7n+5

f(n) = n

• These have the same asymptotic behavior (linear),

so g(n) is in O(f(n)) even though g(n) is always larger

• There is no positive n0 such that g(n) ≤ f(n) for all n ≥ n0

• The ‘c’ in the definition allows for that:

g(n) c f(n) for all n n0

• To show g(n) is in O(f(n)), have c = 12, n0 = 1

03/29/2023 33

An Example

To show g(n) is in O(f(n)), pick a c large enough to “cover the constant

factors” and n0 large enough to “cover the lower-order terms”

• Example: Let g(n) = 4n2 + 3n + 4 and f(n) = n3

03/29/2023 34

Examples
True or false?

1. 4+3n is O(n)

2. n+2logn is O(logn)

3. logn+2 is O(1)

4. n50 is O(1.1n)

Notes:

• Do NOT ignore constants that are not multipliers:

– n3 is O(n2) : FALSE

– 3n is O(2n) : FALSE

• When in doubt, refer to the definition

03/29/2023 37

What you can drop

• Eliminate coefficients because we don’t have units anyway

– 3n2 versus 5n2 doesn’t mean anything when we cannot

count operations very accurately

• Eliminate low-order terms because they have vanishingly small

impact as n grows

• Do NOT ignore constants that are not multipliers

– n3 is not O(n2)

– 3n is not O(2n)

(This all follows from the formal definition)

03/29/2023 39

Big Oh: Common Categories

From fastest to slowest

O(1) constant (same as O(k) for constant k)

O(log n) logarithmic

O(n) linear

O(n log n) “n log n”

O(n2) quadratic

O(n3) cubic

O(nk) polynomial (where is k is any constant > 1)

O(kn) exponential (where k is any constant > 1)

Usage note: “exponential” does not mean “grows really fast”, it

means “grows at rate proportional to kn for some k>1”

03/29/2023 40

More Asymptotic Notation

• Upper bound: O(f(n)) is the set of all functions asymptotically less

than or equal to f(n)

– g(n) is in O(f(n)) if there exist constants c and n0 such that

g(n) c f(n) for all n n0

• Lower bound: (f(n)) is the set of all functions asymptotically

greater than or equal to f(n)

– g(n) is in (f(n)) if there exist constants c and n0 such that

g(n) c f(n) for all n n0

• Tight bound: (f(n)) is the set of all functions asymptotically equal

to f(n)

– Intersection of O(f(n)) and (f(n)) (can use different c values)

03/29/2023 41

Summary of Complexity cases

Problem size N

– Worst-case complexity: max # steps algorithm takes on
“most challenging” input of size N

– Best-case complexity: min # steps algorithm takes on
“easiest” input of size N

– Average-case complexity: avg # steps algorithm takes on
random inputs of size N

– Amortized complexity: max total # steps algorithm takes
on M “most challenging” consecutive inputs of size N,
divided by M (i.e., divide the max total by M).

03/29/2023 42

Regarding use of terms

A common error is to say O(f(n)) when you mean (f(n))

– People often say O() to mean a tight bound

– Say we have f(n)=n; we could say f(n) is in O(n), which is

true, but only conveys the upper-bound

– Since f(n)=n is also O(n5), it’s tempting to say “this algorithm

is exactly O(n)”

– Somewhat incomplete; instead say it is (n)

– That means that it is not, for example O(log n)

Less common notation:

– “little-oh”: like “big-Oh” but strictly less than

• Example: sum is o(n2) but not o(n)

– “little-omega”: like “big-Omega” but strictly greater than

• Example: sum is (log n) but not (n)

03/29/2023 43

What we are analyzing

• The most common thing to do is give an O or bound to the

worst-case running time of an algorithm

• Example: True statements about binary-search algorithm

– Common: (log n) running-time in the worst-case

– Less common: (1) in the best-case (item is in the middle)

– Less common: Algorithm is (log log n) in the worst-case

(it is not really, really, really fast asymptotically)

– Less common (but very good to know): the find-in-sorted-
array problem is (log n) in the worst-case

• No algorithm can do better (without parallelism)

• A problem cannot be O(f(n)) since you can always find a

slower algorithm, but can mean there exists an algorithm

03/29/2023 44

Other things to analyze

• Space instead of time

– Remember we can often use space to gain time

• Average case

– Sometimes only if you assume something about the

distribution of inputs

• See CSE312 and STAT391

– Sometimes uses randomization in the algorithm

• Will see an example with sorting; also see CSE312

• Sometimes an amortized guarantee

03/29/2023 45

Summary

Analysis can be about:

• The problem or the algorithm (usually algorithm)

• Time or space (usually time)

– Or power or dollars or …

• Best-, worst-, or average-case (usually worst)

• Upper-, lower-, or tight-bound (usually upper or tight)

03/29/2023 46

Big-Oh Caveats

• Asymptotic complexity (Big-Oh) focuses on behavior for large n

and is independent of any computer / coding trick

– But you can “abuse” it to be misled about trade-offs

– Example: n1/10 vs. log n

• Asymptotically n1/10 grows more quickly

• But the “cross-over” point is around 5 * 1017

• So if you have input size less than 258, prefer n1/10

• Comparing O() for small n values can be misleading

– Quicksort: O(nlogn) (expected)

– Insertion Sort: O(n2) (expected)

– Yet in reality Insertion Sort is faster for small n’s

– We’ll learn about these sorts later

03/29/2023 47

Addendum: Timing vs. Big-Oh?

• At the core of CS is a backbone of theory & mathematics

– Examine the algorithm itself, mathematically, not the
implementation

– Reason about performance as a function of n

– Be able to mathematically prove things about performance

• Yet, timing has its place

– In the real world, we do want to know whether
implementation A runs faster than implementation B on data
set C

– Ex: Benchmarking graphics cards

• Evaluating an algorithm? Use asymptotic analysis

• Evaluating an implementation of hardware/software? Timing
can be useful

03/29/2023 48

