
CSE 332: Data Structures & Parallelism

Lecture 1: Intro, Stacks & Queues

Ruth Anderson

Spring 2023

Welcome!

We have 10 weeks to learn fundamental data

structures and algorithms for organizing and

processing information

– “Classic” data structures / algorithms and

how to analyze rigorously their efficiency

and when to use them

– Queues, dictionaries, graphs, sorting, etc.

– Parallelism and concurrency (!)

3/27/2023 2

Today

• Introductions

• Administrative Info

• What is this course about?

• Review: Queues and stacks

3/27/2023 3

CSE 332 Course Staff!!

Instructor:

Ruth Anderson

Teaching Assistants:

• Aditi Joshi

• Allyson Mangus

• Amanda Yuan

• Ariel Fu

• Arya Krisna GJ

• Dara Stotland

• Mohamed Awadalla

• Neel Jog

• Nile Camai

• Winston Jodjana

• Youssef Ben Taleb

3/27/2023 4

Me (Ruth Anderson)

• Grad Student at UW in Programming Languages,
Compilers, Parallel Computing

• Taught Computer Science at the University of
Virginia for 5 years

• Grad Student at UW: PhD in Educational
Technology, Pen Computing

• Recent Research: Computing and the Developing
World, Computer Science Education

• Recently Taught: data structures, architecture,
compilers, programming languages, 142 & 143, data
programming in Python, Unix Tools, Designing
Technology for Resource-Constrained Environments

3/27/2023 5

Today

• Introductions

• Administrative Info

• What is this course about?

• Review: Queues and stacks

3/27/2023 6

Course Information

• Instructor: Ruth Anderson, CSE 558

– Office Hours: see course web page, and by

appointment, (rea@cs.washington.edu)

• Course Web page:

– http://www.cs.uw.edu/332

• Text (optional):

Data Structures & Algorithm Analysis in Java, (Mark

Allen Weiss), 3rd edition, 2012
(2nd edition also o.k.)

3/27/2023 7

Communication

• Course email list:
cse332a_sp23@uw

– You are already subscribed

– You must get and read announcements sent there

• Ed STEM Discussion board

– Your first stop for questions about course content &

assignments

• Anonymous feedback link

– For good and bad: if you don’t tell us, we won’t know!

3/27/2023 8

Course Meetings

• Lecture

– Materials posted (sometimes afterwards), but take notes

– Ask questions, focus on key ideas (rarely coding details)

• Section

– Practice problems!

– Answer Java/project/homework questions, etc.

– Occasionally may introduce new material

– An important part of the course (not optional)

• Office hours

– Use them: please visit us!

3/27/2023 9

Course Materials

• Lecture and section materials will be posted

– But they are visual aids, not always a complete description!

– If you have to miss, find out what you missed

• Textbook: Weiss 3rd Edition in Java

– Good read, but only responsible for lecture/section/hw topics

– 3rd edition improves on 2nd, but we’ll also support the 2nd

• Parallelism / concurrency units in separate free

resources designed for 332

3/27/2023 10

Course Work

• ~15 Weekly individual homework exercises (25%)

• 3 programming projects (with phases) (35%)

– Use Java and IntelliJ, Gitlab

– Done individually

• Midterm and final exam (40%)

– In-person, in this room (CSE2 G20)

– Dates:

• Midterm: Friday April 28, during lecture

• Final Exam: Thursday June 8, 8:30-10:20am

3/27/2023 11

Homework for Today!!

1. Preliminary Survey: due Thursday

2. Project #1: Checkpoint 0 due Friday

3. Review Java & install IntelliJ

4. Reading (optional) in Weiss (see course
web page)

3/27/2023 12

Reading

• Reading in Data Structures and Algorithm Analysis in

Java, 3rd Ed., 2012 by Weiss

• For this week:

– (Topic for Project #1) Weiss 3.1-3.7 – Lists,

Stacks, & Queues

– (Wed) Weiss 2.1-2.4 –Algorithm Analysis

– (Useful) Weiss 1.1-1.6 –Mathematics and Java

(Not covered in lecture – READ THIS)

3/27/2023 13

Today

• Introductions

• Administrative Info

• What is this course about?

• Review: Queues and stacks

3/27/2023 14

Data Structures + Parallemism

• About 70% of the course is a “classic data-structures

course”

– Timeless, essential stuff

– Core data structures and algorithms that underlie most

software

– How to analyze algorithms

• Plus a serious first treatment of programming with

multiple threads

– For parallelism: Use multiple processors to finish sooner

– For concurrency: Correct access to shared resources

– Will make many connections to the classic material

3/27/2023 15

What 332 is about

• Deeply understand the basic structures used in all

software

– Understand the data structures and their trade-offs

– Rigorously analyze the algorithms that use them (math!)

– Learn how to pick “the right thing for the job”

• Experience the purposes and headaches of

multithreading

• Practice design, analysis, and implementation

– The elegant interplay of “theory” and “engineering” at the

core of computer science

3/27/2023 16

Goals

• You will understand:

– what the tools are for storing and processing

common data types

– which tools are appropriate for which need

• So that you will be able to:

– make good design choices as a developer, project

manager, or system customer

– justify and communicate your design decisions

3/27/2023 17

One view on this course

• This is the class where you begin to think like a

computer scientist

– You stop thinking in Java code

– You start thinking that this is a hashtable problem,

a stack problem, etc.

3/27/2023 18

Data Structures?

“Clever” ways to organize information in

order to enable efficient computation

over that information.

3/27/2023 19

Example Trade-Offs

3/27/2023 20

Trade-Offs

A data structure strives to provide many useful, efficient

operations

But there are unavoidable trade-offs:

– Time vs. space

– One operation more efficient if another less efficient

– Generality vs. simplicity vs. performance

That is why there are many data structures and

educated CSEers internalize their main trade-offs

and techniques

– And recognize logarithmic < linear < quadratic < exponential

3/27/2023 21

Getting Serious: Terminology

• Abstract Data Type (ADT)

– Mathematical description of a “thing” with set of

operations on that “thing”

• Algorithm

– A high level, language-independent description of

a step-by-step process

• Data structure

– A specific organization of data and family of

algorithms for implementing an ADT

• Implementation of a data structure

– A specific implementation in a specific language

3/27/2023 22

The Stack ADT

• Stack Operations:

push

pop

top/peek

is_empty

3/27/2023 23

A

B

C

D

E

F

E D C B A

F

Terminology Example: Stacks

• The Stack ADT supports operations:

– push: adds an item

– pop: raises an error if isEmpty, else returns most-recently

pushed item not yet returned by a pop

– isEmpty: initially true, later true if there have been same

number of pops as pushes

– … (Often some more operations)

• A Stack data structure could use a linked-list or an

array or something else, and associated algorithms

for the operations

• One implementation is in the library
java.util.Stack

3/27/2023 24

Why useful

The Stack ADT is a useful abstraction because:

• It arises all the time in programming (see Weiss for

more)

– Recursive function calls

– Balancing symbols (parentheses)

– Evaluating postfix notation: 3 4 + 5 *

– Clever: Infix ((3+4) * 5) to postfix conversion (see Weiss)

• We can code up a reusable library

• We can communicate in high-level terms

– “Use a stack and push numbers, popping for operators…”

– Rather than, “create a linked list and add a node when…”

3/27/2023 25

Today

• Introductions

• Administrative Info

• What is this course about?

• Review: Queues and stacks

3/27/2023 26

The Queue ADT

Queue Operations:

enqueue

dequeue

is_empty

3/27/2023 27

F E D C B
enqueue dequeue

G A

Circular Array Queue Data Structure

3/27/2023 28

b c d e f

Q: 0 size - 1

front back

// Basic idea only!

enqueue(x) {

Q[back] = x;

back = (back + 1) % size

}

// Basic idea only!

dequeue() {

x = Q[front];

front = (front + 1) % size;

return x;

}

• What if queue is empty?

– Enqueue?

– Dequeue?

• What if array is full?

• How to test for empty?

• What is the complexity of

the operations?

Linked List Queue Data Structure

3/27/2023 29

b c d e f

front back

// Basic idea only!

enqueue(x) {

back.next = new Node(x);

back = back.next;

}

// Basic idea only!

dequeue() {

x = front.item;

front = front.next;

return x;

}

• What if queue is empty?

– Enqueue?

– Dequeue?

• Can list be full?

• How to test for empty?

• What is the complexity of

the operations?

Circular Array vs. Linked List

3/27/2023 30

Circular Array vs. Linked List

3/27/2023 31

Array:

– May waste unneeded space or

run out of space

– Space per element excellent

– Operations very simple / fast

Operations not in Queue ADT, but

also:

– Constant-time “access to kth

element”

– For operation “insertAtPosition”,

must shift all later elements

List:

– Always just enough space

– But more space per element

– Operations very simple / fast

Operations not in Queue ADT, but

also:

– No constant-time “access to kth

element”

– For operation “insertAtPosition”

must traverse all earlier elements

Homework for Today!!

1. Preliminary Survey: due Thursday

2. Project #1: Checkpoint 0 due Friday

3. Review Java & install IntelliJ

4. Reading (optional) in Weiss (see course
web page)

3/27/2023 32

