CSE 332 Autumn 2019: Midterm Exam
(closed book, closed notes, no calculators)

Instructions: Read the directions for each question carefully before answering. We will give partial credit based on the work you write down, so show your work! Use only the data structures and algorithms we have discussed in class so far.

Note: For questions where you are drawing pictures, please circle your final answer.

Good Luck!

Total: 100 points. Time: 60 minutes.

<table>
<thead>
<tr>
<th>Question</th>
<th>Max Points</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>22</td>
<td>Big-O</td>
</tr>
<tr>
<td>2</td>
<td>16</td>
<td>Code Analysis</td>
</tr>
<tr>
<td>3</td>
<td>9</td>
<td>Theta, etc</td>
</tr>
<tr>
<td>4</td>
<td>8</td>
<td>Find Recurrence</td>
</tr>
<tr>
<td>5</td>
<td>9</td>
<td>Solve Recurrence</td>
</tr>
<tr>
<td>6</td>
<td>10</td>
<td>BTrees</td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td>BTrees ++</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>Heaps</td>
</tr>
<tr>
<td>9</td>
<td>10</td>
<td>AVL</td>
</tr>
<tr>
<td>Total</td>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>
1. (22 pts) Big-Oh
(2 pts each) For each of the operations/functions given below, indicate the tightest bound possible (in other words, giving $O(2^N)$ as the answer to every question is not likely to result in many points). Unless otherwise specified, all logs are base 2. Your answer should be as “tight” and “simple” as possible. For questions that ask about running time of operations, assume that the most efficient implementation is used. For array-based structures, assume that the underlying array is large enough.
You do not need to explain your answer.

a) Pop in a stack containing N elements implemented as an array (worst case) $O(1)$

b) $f(N) = N \log (\log (N + N)) + N (\log^2 N)$ $O(N \log^2 N)$

c) $T(N) = 2 T(N/2) + N$ $O(N \log N)$

d) Finding the largest odd value in an AVL tree containing N integers. (worst case) $O(N)$

e) $f(N) = 50 N + (\log N)^2$ $O(N)$

f) $T(N) = 2 T(N - 1) + 6$ $O(2^N)$

g) $f(N) = \log N + N^{1/2}$ $O(N^{1/2})$

h) $f(N) = \log (N^2) + \log^2 N$ $O(\log^2 N)$

i) Deleting the smallest value from a binary search tree containing N elements. (worst case) $O(N)$

j) $T(N) = T(N - 2) + 4 N$ $O(N^2)$

k) Inserting the integers 1, 2, 3, 4, … N (in that order) into a binary min heap. (No percolations are required) $O(N)$
2. (16 pts) Big-Oh and Run Time Analysis: Describe the worst case running time of the following pseudocode functions in Big-Oh notation in terms of the variable \(n \). Your answer should be as “tight” and “simple” as possible. *Showing your work is not required.*

I. void pumpkin(int n) {
 if (n < 10000) {
 for (int i = 0; i < n * n; i += n) {
 print("I love cse 332! ");
 }
 }
 print(n);
}

II. void boo(int n) {
 for (int i = 0; i < n; i++) {
 if (n % 4 == 0) {
 for (int j = 0; j < n; j++) {
 for (int k = 0; k < n; k++) {
 print("Happy Halloween!");
 }
 }
 }
 }
}

III. void spooky(int n) {
 for (int i = 0; i < n; i += 2) {
 if (i % 2 == 1) {
 for (int j = 0; j < n * n * n * n; j++) {
 print("wow this is awesome");
 }
 } else {
 for (int j = 0; j < n; j++) {
 print("who knew big O was so fun");
 }
 }
 }
}

IV. int candy(int n, int apple) {
 if (n < 1000) {
 for (int i = 0; i < n * n; i++) {
 apple++;
 }
 return apple;
 } else if (n < 2000) {
 return candy(n / 3, apple);
 } else {
 apple = apple + candy(n / 2, apple);
 }
 return apple + candy(n / 2, apple);
}

Runtime:

<table>
<thead>
<tr>
<th>Function</th>
<th>Runtime</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. pumpkin</td>
<td>(O(1))</td>
</tr>
<tr>
<td>II. boo</td>
<td>(O(n^3))</td>
</tr>
<tr>
<td>III. spooky</td>
<td>(O(n^2))</td>
</tr>
<tr>
<td>IV. candy</td>
<td>(O(n))</td>
</tr>
</tbody>
</table>
3. (9 pts) Big-O, Big Ω, Big Θ
(3 pts each) For parts (a) – (c) circle **ALL** of the items (if any) that are TRUE. You do not need to show any work or give an explanation.

a) \(N \log N + N^{(3/2)}\) is:

\[\begin{array}{c}
O\left(N^{(3/2)}\right) & \Theta\left(N \log N\right) & \Omega\left(N^2\right) & \Theta\left(N^{(3/2)}\right)
\end{array}\]

b) \(N \log (N^2)\) is:

\[\begin{array}{c}
\Theta\left(N \log^2 N\right) & \Omega\left(N \log N\right) & O(N \log N) & \Theta\left(N^2\right)
\end{array}\]

c) \(N^3 + 4^N \log N\) is:

\[\begin{array}{c}
O\left(N^6\right) & \Omega\left(N^4\right) & \Theta\left(4^N\right) & \Theta\left(N^N\right)
\end{array}\]
4. (8 pts) Recurrences

Give a base case and a recurrence for the runtime of the following function. Use variables appropriately for constants (e.g. \(c_1, c_2,\) etc.) in your recurrence (you do not need to attempt to count the exact number of operations). **YOU DO NOT NEED TO SOLVE** this recurrence.

```java
int dontTrieAtHome(int n) {
    if (n <= 3) {
        return 25;
    }
    if (dontTrieAtHome(n - 3) <= 5) {
        for (int i = 0; i < log(n); i++) {
            print("we're what you'd call professionals.");
        }
    }
    for (int i = 0; i < n; i++) {
        print("busted!");
    }
    return 2 * dontTrieAtHome(n / 2) + 5 * n * n;
}
```

\[
T(n) = \begin{cases}
 c_0 & \text{For } n \leq 3 \\
 T\left(\frac{n}{2}\right) + T(n-3) + c_1 \cdot n + c_2 & \text{For } n > 3
\end{cases}
\]

Yipee!!!! YOU DO NOT NEED TO SOLVE this recurrence…
5. (9 pts) Solving Recurrences

Suppose that the running time of an algorithm satisfies the recurrence relationship:

\[T(1) = 7. \]

and

\[T(N) = 2 \cdot T(N/2) + 6 \quad \text{for integers } N > 1 \]

Find the closed form for \(T(N) \). You may assume that \(N \) is a power of 2. Your answer should not be in Big-Oh notation – show the relevant exact constants and bases of logarithms in your answer (e.g. do NOT use “\(c_1, c_2 \)” in your answer). You should not have any summation symbols in your answer and you should combine like-terms. The list of summations on the last page of the exam may be useful. You must show your work to receive any credit.

\[
T(N) = 7 \cdot N + 6 \cdot \left(\sum_{i=0}^{\log_2 N} 2^i \right)
\]

\[
= 7 \cdot N + 6 \cdot \left(2^{\log_2 N} - 1 \right)
\]

\[
= 7N + 6(N-1)
\]

\[
= 7N + 6N - 6 = \boxed{13N - 6}
\]

\[
T(N) = 2 \cdot T\left(\frac{N}{2}\right) + 6
\]

\[
= 2 \cdot \left[2 \cdot T\left(\frac{N}{4}\right) + 6 \right] + 6
\]

\[
= 4 \cdot T\left(\frac{N}{4}\right) + 2 \cdot 6 + 6
\]

\[
= 4 \cdot \left[2 \cdot T\left(\frac{N}{8}\right) + 6 \right] + 3 \cdot 6
\]

\[
= 8 \cdot T\left(\frac{N}{8}\right) + 4 \cdot 6 + 3 \cdot 6
\]

\[
= 8 \cdot \left[2 \cdot T\left(\frac{N}{16}\right) + 6 \right] + 7 \cdot 6
\]

\[
= 16 \cdot T\left(\frac{N}{16}\right) + 8 \cdot 6 + 7 \cdot 6
\]

\[
= 16 \cdot T\left(\frac{N}{16}\right) + 15 \cdot 6
\]

\[
= k \cdot T\left(\frac{N}{k}\right) + (k-1) \cdot 6
\]

\[
= N \cdot T\left(\frac{N}{N}\right) + (N-1) \cdot 6
\]

\[
= N \cdot 7 + N \cdot 6 - 6 = \boxed{13N - 6}
\]

\[
\text{e.g. } N = 8
\]

\[
7 \quad 7 \quad 7 \quad 7 \quad 7 \quad 7 \quad 7
\]

\[
\text{We want } \frac{N}{k} = 1 \quad \text{for } k = N
\]
6. (10 pts total) B-Trees:

a) (6 pts) Given a B-tree (as defined in lecture and in Weiss) with M = 5 and L = 10, if you have inserted 200 items into the tree, what is minimum and maximum height of the tree? Give an exact number, not a formula for your answer. Explain briefly how you got your answers.

Minimum height: ______________

Maximum height: ______________

Explanation:

b) (4 pts) Given the following parameters for a B-tree with M = 11 and L = 5:

Key Size = 10 bytes

Disk Block Size (also known as Page size) = 128 bytes

Data Size = 20 bytes per record (includes the key)

Assuming that M and L were chosen appropriately, what is the likely size of a pointer in the environment where this implementation will be deployed? Give a numeric answer in bytes (not a formula) and a short justification based on an equation(s) using the parameter values above.

Likely size of a pointer in bytes: 2
7. (8 pts) B-tree Modifications

You are given a B-tree (as defined in lecture and in Weiss) with appropriately picked values for M and L. Your friend suggests the following modifications to improve the performance of the find operations.

a. Replace each current leaf node with an AVL tree.
b. Replace each current leaf node with a binary min heap.

For each idea, explain why you think this would or would NOT lead to an improvement in the performance of the find operation on the overall B-tree. Assume that no further modifications to the tree are made (no further insertions or deletions). In your answer, you may assume you have access to (but may not modify) the underlying structure of the AVL trees and binary min heaps.

a. Replace each current leaf node with an AVL tree.

Would Would NOT improve the performance of find operation on overall tree (circle one)

Find in leaf node of B-tree is currently worst case $O(\log_2 L)$ - binary search in a sorted array, and entire leaf is on one disk block. Find in AVL tree would also be worst case $O(\log_2 L)$, however all the nodes of the AVL tree would not be guaranteed to be on the same disk block due to the pointers in each node. Thus we would expect performance of find to be much worse if using an AVL tree as leaf node.

b. Replace each current leaf node with a binary min heap.

Would Would NOT improve the performance of find operation on overall tree (circle one)

Find in leaf node of B-tree is currently worst case $O(\log_2 L)$ - binary search in a sorted array, and entire leaf is on one disk block. "Find" is not a standard operation on a binary min heap. If you had access to the underlying array you could implement the find operation with a linear scan of the heap array in time $O(L)$. While the heap would likely fit on a disk block and a linear scan would have good spatial locality, a binary search with worst case runtime of $O(\log_2 L)$ would perform better.
8. (8 pts) Heaps
Given a 3-heap (Min heap) of height 3, backed by an array (Assume indexing starts at index 1):

a) (3 pts)
What is the index of the first child of node i? \(3 \times i - 1\)
What is the index of the second child of node i? \(3 \times i\)
What is the index of the third child of node i? \(3 \times i + 1\)

b) (5 pts) Finish the implementation of an insert in the 3-heap (Min heap). (Assume indexing starts at index 1)

Let \(\text{arr}\) be the backing array and let \(\text{size}\) be the size of the 3-heap.

```java
void insert(int val) {
    if (size == arr.length - 1) {
        resize();
    }
    size++;
    int i = percolate(________, val);
    arr[i] = val;
}
```

```java
int percolate(int hole, int val) {
    while (________) {
        arr[hole] = arr[(hole+1)/3];
        hole = (hole+1)/3;
    }
    return hole;
}
```
9. (10 pts) AVL Trees: Suppose you want to keep track of the parent node of each AVLNode in a field called parent, such that this is the format of an AVLNode:

```java
class AVLNode {
    AVLNode parent;
    String value;
    int key;
    int height;
    AVLNode[] children;
}
```

Note that the parent of the root node will be null.

You are originally given an AVL tree of height 10. You insert a (key, value) pair into the tree creating a new AVLNode.

a) Assuming this insertion causes a SINGLE ROTATION to occur, what is the maximum total number of AVLNodes that would have a different value for their parent field than before the insertion? Do NOT count the new node you just inserted in this total. For any credit, briefly explain your answer (a labelled diagram is fine).

Maximum total number of AVLNodes that would have a different value for their parent field:

3 nodes (a, b, root of sub-tree Y)

with new value for parent field. No other parts of the tree need to be changed since height has been restored to what it was before the insertion.
9. AVL Trees (continued)
b) Assuming this insertion causes a **DOUBLE ROTATION** to occur, what is the maximum total number of **AVLNodes** that would have different value for their **parent** field than before the insertion? Do NOT count the new node you just inserted in this total. For any credit, briefly explain your answer (a labelled diagram is fine).

Using a “case 3”, “case 2” is mirror image.

![Diagram](image)

Maximum total number of **AVLNodes** that would have a different value for their **parent** field:

5