CSE 332 Autumn 2023
Lecture 7: Priority Queues & Recurrences

Nathan Brunelle

http://www.cs.uw.edu/332
Thinking through implementations

<table>
<thead>
<tr>
<th>Data Structure</th>
<th>Worst case time to insert</th>
<th>Worst case time to deleteMin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unsorted Array</td>
<td>$\Theta(1)$</td>
<td>$\Theta(n)$</td>
</tr>
<tr>
<td>Unsorted Linked List</td>
<td>$\Theta(1)$</td>
<td>$\Theta(n)$</td>
</tr>
<tr>
<td>Sorted Circular Array</td>
<td>$\Theta(n)$</td>
<td>$\Theta(n)$</td>
</tr>
<tr>
<td>Sorted Linked List</td>
<td>$\Theta(n)$</td>
<td>$\Theta(1)$</td>
</tr>
<tr>
<td>Binary Search Tree</td>
<td>$\Theta(n)$</td>
<td>$\Theta(1)$</td>
</tr>
<tr>
<td>Binary Heap</td>
<td>$\Theta(\log n)$</td>
<td>$\Theta(\log n)$</td>
</tr>
</tbody>
</table>

Note: Assume we know the maximum size of the PQ in advance
Heap – Priority Queue Data Structure

• Idea: We need to keep some ordering, but it doesn’t need to be perfectly sorted
• $\Theta(\log n)$ worst case for deleteMin and insert
Heap Insert

```plaintext
insert(item)
    put item in the “next open” spot (keep tree complete)
    while (item.priority < parent(item).priority)
        swap item with parent
    swap item with parent

```
Heap deleteMin

deleMin() {
 min = root
 br = bottom-right item
 move br to the root
 while (br > either of its children) {
 swap br with its smallest child
 }
 return min
}
Percolate Up and Down

• Goal: restore the “Heap Property”

• Percolate Up:
 • Take a node that may be smaller than a parent, repeatedly swap with a parent until it is larger than its parent

• Percolate Down:
 • Take a node that may be larger than one of its children, repeatedly swap with smallest child until both children are larger

• Worst case running time of each:
 • \(\Theta(\log n) \)
Representing a Heap

- Every complete binary tree with the same number of nodes uses the same positions and edges
- Use an array to represent the heap
- Index of root: 1
- Parent of node i: $\left\lfloor \frac{i}{2} \right\rfloor$
- Left child of node i: $2 \cdot i$
- Right child of node i: $2 \cdot i + 1$
- Location of the leaves: last half
Other Operations

• Increase Key
 • Given the index of an item in the PQ, subtract from its priority value
 • Update the priority, then percolate [up or down?]

• Decrease Key
 • Given the index of an item in the PQ, add to its priority value
 • Update the priority, then percolate [up or down?]

• Remove
 • Given the item at the given index from the PQ
 • Change its priority to $-\infty$
 • deleteMin
Building a Heap From “Scratch”

- Suppose we had n items and wanted to “heapify” them.
Floyd’s buildHeap method

- Working towards the root, one row at a time, percolate down

```java
buildHeap()
    { for(int i = size; i>0; i--){ percolateDown(i); } }
```
Floyd’s buildHeap method

• Suppose we had n items and wanted to “heapify” them

```
buildHeap()
{
    for(int i = size; i>0; i--){
        percolateDown(i);
    }
}
```
Floyd’s buildHeap method

- Suppose we had \(n \) items and wanted to “heapify” them
Floyd’s buildHeap method

• Suppose we had \(n \) items and wanted to “heapify” them
Floyd’s buildHeap method

• Suppose we had n items and wanted to “heapify” them
Floyd's buildHeap method

• Suppose we had \(n \) items and wanted to “heapify” them

```
buildHeap()
{
    for(int i = size; i>0; i--){
        percolateDown(i);
    }
}
```
Floyd’s buildHeap method

• Suppose we had \(n \) items and wanted to “heapify” them

```
buildHeap()
{
    for(int i = size; i > 0; i--){
        percolateDown(i);
    }
}
```
How long did this take?

- Worst case running time of buildHeap:
 - No node can percolate down more than the height of its subtree
 - When \(i \) is a leaf: 0
 - When \(i \) is second-from-last level: 1
 - When \(i \) is third-from-last level: 2
 - Overall Running time:
 - \(\frac{n}{2} \) of the items are leaves
 - 0 swaps total
 - \(\frac{n}{4} \) of the items are at second-from-last level
 - \(\frac{n}{4} \) total swaps
 - \(\frac{n}{8} \) of the items are at third-from-last level
 - \(\frac{n}{8} \times 2 \) total swaps
 - \(\frac{n}{16} \times 3 \) total swaps
 - This sum converges to \(2n \in \Theta(n) \)

```java
buildHeap()
{
    for(int i = size; i>0; i--){
        percolateDown(i);
    }
}
```
End-of-Yarn Finding

1. Set aside the already-obtained “beginning”

2. If you see the end of the yarn, you’re done!

3. Separate the pile of yarn into 2 piles, note which connects to the beginning (call it pile A, the other pile B)

4. Count the number of strands crossing the piles

5. If the count is even, pile A contains the end, else pile B does
Analysis of Recursive Algorithms

• Overall structure of recursion:
 • Do some non-recursive “work”
 • Do one or more recursive calls on some portion of your input
 • Do some more non-recursive “work”
 • Repeat until you reach a base case

• Running time: \(T(n) = T(p_1) + T(p_2) + \cdots + T(p_x) + f(n) \)
 • The time it takes to run the algorithm on an input of size \(n \) is:
 • The sum of how long it takes to run the same algorithm on each smaller input
 • Plus the total amount of non-recursive work done at that step

• Usually:
 • \(T(n) = a \cdot T\left(\frac{n}{b}\right) + f(n) \)
 • Called “divide and conquer”
 • \(T(n) = T(n - c) + f(n) \)
 • Called “chip and conquer”
How Efficient Is It?

- $T(n) = \text{count}(n) + T\left(\left\lfloor \frac{n}{2} \right\rfloor \right)$
- $T(n) = 5 + T\left(\left\lfloor \frac{n}{2} \right\rfloor \right)$
- Base case: $T(1) = 5$

$T(n)$ = “cost” of running the entire algorithm on an n inch string

$\text{count}(n)$ = “cost” of counting the crossing strands (I arbitrarily picked 5)
Let’s Solve the Recurrence!

\[T(1) = 5 \]

\[T(n) = 5 + T\left(\frac{n}{2}\right) \]

\[5 + T\left(\frac{n}{4}\right) \]

\[5 + T\left(\frac{n}{8}\right) \]

\[\vdots \]

\[\sum_{i=1}^{\lceil \log_2 n \rceil} 5 = 5 \lceil \log_2 n \rceil \]

\[T(n) = \Theta(\log n) \]

\[T\left(\frac{n}{2}\right) = 5 + T\left(\frac{n}{4}\right) \]

\[\lceil \log_2 n \rceil \]
Recursive Linear Search

search(value, list){
 if(list.isEmpty()){
 return false;
 }
 if (value == list[0]){
 return true;
 }
 list.remove(0);
 return search(value, list);
}
Unrolling Method

• Repeatedly substitute the recursive part of the recurrence
• $T(n) = T(n - 1) + c$
• $T(n) = T(n - 2) + c + c$
• $T(n) = T(n - 3) + c + c + c$
• ...
• $T(n) = c + c + c + \cdots + c$
 • How many c’s?
Recursive List Summation

\[
T(n) = 2T\left(\frac{n}{2}\right) + \mathcal{O}(1)
\]

\[
\sum(\text{list})\{
 \text{return}\ \sum_\text{helper}(\text{list}, 0, \text{list.size});
\}

\sum_\text{helper}(\text{list}, \text{low}, \text{high})\{
 \text{if}\ (\text{low} == \text{high})\{ \text{return}\ \text{0}; \}
 \text{if}\ (\text{low} == \text{high}-1)\{ \text{return}\ \text{list[low]}; \}
 \text{middle} = (\text{high} + \text{low})/2;
 \text{return}\ \sum_\text{helper}(\text{list}, \text{low}, \text{middle}) + \sum_\text{helper}(\text{list}, \text{middle}, \text{high});
\}
Tree Method

\[T(n) = 2T\left(\frac{n}{2}\right) + c \]

- Red box represents a problem instance
- Blue value represents time spent at that level of recursion

\[T(n) = \sum_{i=1}^{\log_2 n} 2^i \cdot c \]
Recursive List Summation

\[T(n) = \sum_{i=1}^{\log_2 n} 2^i \cdot c \]

\[= c \cdot \sum_{i=1}^{\log_2 n} 2^i \]

\[= c \left(\frac{1 - 2^{\log_2 n}}{1 - 2} \right) \]
Binary Search

search(value, sortedArr){
 return helper(value, sortedArr, 0, sortedArr.length);
}
helper(value, arr, low, high){
 if (low == high){ return false; }
 mid = (high + low) / 2;
 if (arr[mid] == value){ return true; }
 if (arr[mid] < value){ return helper(value, arr, mid+1, high); }
 else { return helper(value, arr, low, mid); }
}