Warm Up!

• What is the maximum number of total nodes in a binary tree of height h?
 • Height: The number of edges in the path from root to the deepest leaf
• If I have n nodes in a binary tree, what is the its minimum height?
Trees for Heaps

• Binary Trees:
 • The branching factor is 2
 • Every node has ≤ 2 children

• Complete Tree:
 • All “layers” are full, except the bottom
 • Bottom layer filled left-to-right

Tree T
ADT: Priority Queue

• What is it?
 • A collection of items and their “priorities”
 • Allows quick access/removal to the “top priority” thing

• What Operations do we need?
 • insert(item, priority)
 • Add a new item to the PQ with indicated priority
 • Usually, smaller priority value means more important
 • deleteMin
 • Remove and return the “top priority” item from the queue
 • Is_empty
 • Indicate whether or not there are items still on the queue

• Note: the “priority” value can be any type/class so long as it’s comparable
 (i.e. you can use “<” or “compareTo” with it)
Thinking through implementations

<table>
<thead>
<tr>
<th>Data Structure</th>
<th>Worst case time to insert</th>
<th>Worst case time to deleteMin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unsorted Array</td>
<td>$\Theta(1)$</td>
<td>$\Theta(n)$</td>
</tr>
<tr>
<td>Unsorted Linked List</td>
<td>$\Theta(1)$</td>
<td>$\Theta(n)$</td>
</tr>
<tr>
<td>Sorted Circular Array</td>
<td>$\Theta(n)$</td>
<td>$\Theta(n)$</td>
</tr>
<tr>
<td>Sorted Linked List</td>
<td>$\Theta(n)$</td>
<td>$\Theta(1)$</td>
</tr>
<tr>
<td>Binary Search Tree</td>
<td>$\Theta(n)$</td>
<td>$\Theta(1)$</td>
</tr>
<tr>
<td>Binary Heap</td>
<td>$\Theta(\log n)$</td>
<td>$\Theta(\log n)$</td>
</tr>
</tbody>
</table>

Note: Assume we know the maximum size of the PQ in advance
Heap – Priority Queue Data Structure

• Idea: We need to keep some ordering, but it doesn’t need to be perfectly sorted
• $\Theta(\log n)$ worst case for deleteMin and insert
Heap – Priority Queue Data Structure

• Idea: We need to keep some ordering, but it doesn’t need to be perfectly sorted
• $\Theta(\log n)$ worst case for deleteMin and insert
Challenge!

• What is the maximum number of total nodes in a binary tree of height h?
 • $2^{h+1} - 1$
 • $\Theta(2^h)$

• If I have n nodes in a binary tree, what is its minimum height?
 • $\Theta(\log n)$

• Heap Idea:
 • If n values are inserted into a complete tree, the height will be roughly $\log n$
 • Ensure each insert and deleteMin requires just one “trip” from root to leaf
Heap Data Structure

• Keep items in a complete binary tree
• Maintain the “Heap Property” of the tree
 • Every node’s priority is ≤ its children’s priority

• Where is the min?
• How do I insert?
• How do I deleteMin?
• How to do it in Java?
Heap Insert

insert(item){
 put item in the “next open” spot (keep tree complete)
 while (item.priority < parent(item).priority){
 swap item with parent
 }
}

Heap Insert

\[
\text{insert(item)} \{ \\
\text{put item in the “next open” spot (keep tree complete)} \\
\text{while (item.priority < parent(item).priority)} \{ \\
\text{swap item with parent} \\
\}
\}
\]
Heap Insert

```java
insert(item){
    put item in the “next open” spot (keep tree complete)
    while (item.priority < parent(item).priority){
        swap item with parent
    }
}
```
Heap Insert

insert(item){
 put item in the “next open” spot (keep tree complete)
 while (item.priority < parent(item).priority){
 swap item with parent
 }
}

Percolate Up
Heap Insert

```java
insert(item){
    put item in the "next open" spot (keep tree complete)
    while (item.priority < parent(item).priority){
        swap item with parent
    }
}
```
Heap deleteMin

deleteMin(){
 min = root
 br = bottom-right item
 move br to the root
 while(br > either of its children){
 swap br with its smallest child
 }
 return min
}
Heap deleteMin

deletemin(){
 min = root
 br = bottom-right item
 move br to the root
 while(br > either of its children){
 swap br with its smallest child
 }
 return min
}
Heap deleteMin

deleteMin()

 min = root
 br = bottom-right item
 move br to the root
 while(br > either of its children){
 swap br with its smallest child
 }
 return min

Percolate Down
Heap deleteMin

deleteMin()

min = root
br = bottom-right item
move br to the root
while(br > either of its children){
 swap br with its smallest child
}
return min
Heap deleteMin

deleteMin()

 min = root
 br = bottom-right item
 move br to the root
 while (br > either of its children){
 swap br with its smallest child
 }
 return min
Percolate Up and Down

• Goal: restore the “Heap Property”
• Percolate Up:
 • Take a node that may be smaller than a parent, repeatedly swap with a parent until it is larger than its parent
• Percolate Down:
 • Take a node that may be larger than one of its children, repeatedly swap with smallest child until both children are larger
• Worst case running time of each:
 • $\Theta(\log n)$
Representing a Heap

- Every complete binary tree with the same number of nodes uses the same positions and edges.
- Use an array to represent the heap.
- Index of root:
- Parent of node i:
- Left child of node i:
- Right child of node i:
- Location of the leaves:
Insert Psuedocode

```
insert(item){
    if(size == arr.length - 1){resize();}
    size++;
    arr[i] = item;
    percolateUp(i)
}
```
Percolate Up

percolateUp(i) {
 parent = i/2; // index of parent
 val = arr[i]; // value at location
 while (i > 1 && arr[i] < arr[parent]) {
 // until location is root or heap property holds
 arr[i] = arr[parent]; // move parent value to this location
 arr[parent] = val; // put current value into parent’s location
 i = parent; // make current location the parent
 }
 parent = i/2; // update new parent
}
}
DeleteMin Psuedocode

deleteMin()
{
 theMin = arr[1];
 arr[1] = arr[size];
 size--;
 percolateDown(1);
 return theMin;
}

Percolate Down

percolateDown(i){
 left = i*2; \ index of left child
 right = i*2+1; \ index of right child
 val = arr[i]; \ value at location

 while(left <= size){ \ until location is leaf
 toSwap = right;
 if(right > size || arr[left] < arr[right]){ \ if there is no right child or if left child is smaller
 toSwap = left; \ swap with left
 } \ now toSwap has the smaller of left/right, or left if right does not exist
 if (arr[toSwap]< val){ \ if the smaller child is less than the current value
 arr[i] = arr[toSwap];
 arr[toSwap] = val; \ swap parent with smaller child
 i = toSwap; \ update current node to be smaller child
 left = i*2;
 right = i*2+1;
 }
 else{ break;} \ if we don’t swap, then heal property holds
 }
}
Other Operations

• Increase Key
 • Given the index of an item in the PQ, subtract from its priority value

• Decrease Key
 • Given the index of an item in the PQ, add to its priority value

• Remove
 • Given the item at the given index from the PQ
Aside: Expected Running time of Insert
Building a Heap From “Scratch”

• Suppose we had \(n \) items and wanted to “heapify” them

Violate Heap Property!

Two ways for “fix” the heap:
1) Percolate Up
2) Percolate Down
Floyd’s buildHeap method

- Working towards the root, one row at a time, percolate down

```java
buildHeap(){
    for(int i = size; i>0; i--){
        percolateDown(i);
    }
}
```
Floyd’s buildHeap method

• Suppose we had n items and wanted to “heapify” them.

```
buildHeap()
{
    for(int i = size; i>0; i--){
        percolateDown(i);
    }
}
```
Floyd’s buildHeap method

• Suppose we had n items and wanted to “heapify” them

```
buildHeap()
{
    for(int i = size; i>0; i--){
        percolateDown(i);
    }
}
```
Floyd’s buildHeap method

- Suppose we had n items and wanted to “heapify” them

```java
buildHeap(
    for(int i = size; i>0; i--){
        percolateDown(i);
    }
)
```
Floyd’s buildHeap method

• Suppose we had n items and wanted to “heapify” them
Floyd’s buildHeap method

- Suppose we had \(n \) items and wanted to “heapify” them

```java
buildHeap()
{
    for (int i = size; i > 0; i--)
    {
        percolateDown(i);
    }
}
```
Floyd’s buildHeap method

• Suppose we had \(n \) items and wanted to “heapify” them

Violate Heap Property!

buildHeap()

```java
for (int i = size; i > 0; i--)
    percolateDown(i);
```
How long did this take?

- **Worst case running time of buildHeap:**
- **No node can percolate down more than the height of its subtree**
 - When i is a leaf:
 - When i is second-from-last level:
 - When i is third-from-last level:

- **Overall Running time:**

```java
buildHeap()
    for(int i = size; i>0; i--){
        percolateDown(i);
    }
```