Goals for Algorithm Analysis

• Identify a *function* which maps the algorithm’s input size to a measure of resources used
 • Domain of the function: *sizes* of the input
 • Number of characters in a string, number of items in a list, number of pixels in an image
 • Codomain of the function: *counts* of resources used
 • Number of times the algorithm adds two numbers together, number times the algorithm does a > or < comparison, maximum number of bytes of memory the algorithm uses at any time

• Important note: Make sure you know the “units” of your domain and codomain!
 • Domain = inputs to the function
 • Codomain = outputs to the function
Worst Case Running Time Analysis

• If an algorithm has a worst case running time of $f(n)$
 • Among all possible size-n inputs, the “worst” one will do $f(n)$ “operations”
 • I.e. $f(n)$ gives the maximum operation count from among all inputs of size n
Comparing

\[54 \approx 15\]
\[f(n) \in \Theta(g(n)) \]
Asymptotic Notation

- $O(g(n))$
 - The set of functions with asymptotic behavior less than or equal to $g(n)$
 - Upper-bounded by a constant times g for large enough values n
 - $f \in O(g(n)) \equiv \exists c > 0. \exists n_0 > 0. \forall n \geq n_0. f(n) \leq c \cdot g(n)$

- $\Omega(g(n))$
 - The set of functions with asymptotic behavior greater than or equal to $g(n)$
 - Lower-bounded by a constant times g for large enough values n
 - $f \in \Omega(g(n)) \equiv \exists c > 0. \exists n_0 > 0. \forall n \geq n_0. f(n) \geq c \cdot g(n)$

- $\Theta(g(n))$
 - “Tightly” within constant of g for large n
 - $\Omega(g(n)) \cap O(g(n))$
Asymptotic Notation Example

• Show: $10n + 100 \in O(n^2)$
 • Technique: find values $c > 0$ and $n_0 > 0$ such that $\forall n > n_0. \ 10n + 100 \leq c \cdot n^2$
 • Proof:
Asymptotic Notation Example

• Show: $10n + 100 \in O(n^2)$

 • **Technique:** find values $c > 0$ and $n_0 > 0$ such that $\forall n \geq n_0. \ 10n + 100 \leq c \cdot n^2$

 • **Proof:** Let $c = 10$ and $n_0 = 6$. Show $\forall n \geq 6. \ 10n + 100 \leq 10n^2$

 $10n + 100 \leq 10n^2$

 $\equiv n + 10 \leq n^2$

 $\equiv 10 \leq n^2 - n$

 $\equiv 10 \leq n(n - 1)$

 This is True because $n(n - 1)$ is strictly increasing and $6(6 - 1) > 10$
Asymptotic Notation Example

• Show: $13n^2 - 50n \in \Omega(n^2)$
 • Technique: find values $c > 0$ and $n_0 > 0$ such that $\forall n \geq n_0. 13n^2 - 50n \geq c \cdot n^2$
 • Proof:
Asymptotic Notation Example

• Show: $13n^2 - 50n \in \Omega(n^2)$
 • **Technique:** find values $c > 0$ and $n_0 > 0$ such that $\forall n \geq n_0. 13n^2 - 50n \geq c \cdot n^2$
 • **Proof:** let $c = 12$ and $n_0 = 50$. Show $\forall n \geq 50. 13n^2 - 50n \geq 12n^2$

 $13n^2 - 50n \geq 12n^2$

 $\equiv n^2 - 50n \geq 0$

 $\equiv n^2 \geq 50n$

 $\equiv n \geq 50$

 This is certainly true $\forall n \geq 50$.
Worst Case Running Time - Example

myFunction(List n){
 b = 55 + 5;
 c = b / 3;
 b = c + 100;
 for (i = 0; i < n.size(); i++) {
 b++;
 }
 if (b % 2 == 0) {
 c++;
 }
 else {
 for (i = 0; i < n.size(); i++) {
 c++;
 }
 }
 return c;
}

Questions to ask:
• What are the units of the input size?
• What are the operations we’re counting?
• For each line:
 • How many times will it run?
 • How long does it take to run?
 • Does this change with the input size?

Θ(n)
Worst Case Running Time – Example 2

beAnnoying(List n){
 List m = [];
 for (i=0; i < n.size(); i++){
 m.add(n[i]);
 for (j=0; j < n.size(); j++){
 print (“Hi, I’m annoying”);
 }
 }
 return;
}

Questions to ask:
• What are the units of the input size?
• What are the operations we’re counting?
• For each line:
 • How many times will it run?
 • How long does it take to run?
 • Does this change with the input size?

n^2
Gaining Intuition

• When doing asymptotic analysis of functions:
 • If multiple expressions are added together, ignore all but the “biggest”
 • If \(f(n) \) grows asymptotically faster than \(g(n) \), then \(f(n) + g(n) \in \Theta(f(n)) \)
 • Ignore all multiplicative constants
 • \(f(n) + c \in \Theta(f(n)) \) for any constant \(c \in \mathbb{R} \)
 • Ignore bases of logarithms
 • Do NOT ignore:
 • Non-multiplicative and non-additive constants (e.g. in exponents, bases of exponents)
 • Logarithms themselves
More Examples

• Is each of the following True or False?
 • $4 + 3n \in O(n)$
 • $n + 2 \log n \in O(\log n)$
 • $\log n + 2 \in O(1)$
 • $n^{50} \in O(1.1^n)$
 • $3^n \in \Theta(2^n)$

\times
Common Categories

- $O(1)$ “constant”
- $O(\log n)$ “logarithmic”
- $O(n)$ “linear”
- $O(n \log n)$ “log-linear”
- $O(n^2)$ “quadratic”
- $O(n^3)$ “cubic”
- $O(n^k)$ “polynomial”
- $O(k^n)$ “exponential”
Defining your running time function

- **Worst-case complexity:**
 - max number of steps algorithm takes on “most challenging” input
- **Best-case complexity:**
 - min number of steps algorithm takes on “easiest” input
- **Average/expected complexity:**
 - avg number of steps algorithm takes on random inputs (context-dependent)
- **Amortized complexity:**
 - max total number of steps algorithm takes on M “most challenging” consecutive inputs, divided by M (i.e., divide the max total sum by M).
ADT: Queue

• What is it?
 • A “First In First Out” (FIFO) collection of items

• What Operations do we need?
 • Enqueue
 • Add a new item to the queue
 • Dequeue
 • Remove the “oldest” item from the queue
 • Is_empty
 • Indicate whether or not there are items still on the queue
ADT: Priority Queue

• What is it?
 • A collection of items and their “priorities”
 • Allows quick access/removal to the “top priority” thing

• What Operations do we need?
 • `insert(item, priority)`
 • Add a new item to the PQ with indicated priority
 • Usually, smaller priority value means more important
 • `deleteMin`
 • Remove and return the “top priority” item from the queue
 • `is_empty`
 • Indicate whether or not there are items still on the queue

• Note: the “priority” value can be any type/class so long as it’s comparable
 (i.e. you can use “<” or “compareTo” with it)
Priority Queue, example

PriorityQueue PQ = new PriorityQueue();
PQ.insert(5,5)
PQ.insert(6,6)
PQ.insert(1,1)
PQ.insert(3,3)
PQ.insert(8,8)
Print(PQ.deleteMin)
Print(PQ.deleteMin)
Print(PQ.deleteMin)
Print(PQ.deleteMin)
Print(PQ.deleteMin)
Priority Queue, example

PriorityQueue PQ = new PriorityQueue();
PQ.insert(5,5)
PQ.insert(6,6)
PQ.insert(1,1)
Print(PQ.deleteMin)
PQ.insert(3,3)
Print(PQ.deleteMin)
Print(PQ.deleteMin)
PQ.insert(8,8)
Print(PQ.deleteMin)
Print(PQ.deleteMin)
Applications?

• ER
• Finding shortest paths (graphs, maps)
• Compression
• Disneyland lines
• Work orders
• Airport boarding
Thinking through implementations

<table>
<thead>
<tr>
<th>Data Structure</th>
<th>Worst case time to insert</th>
<th>Worst case time to deleteMin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unsorted Array</td>
<td>$\Theta(1)$</td>
<td>$\Theta(n)$</td>
</tr>
<tr>
<td>Unsorted Linked List</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sorted Circular Array</td>
<td>$\Theta(n)$</td>
<td></td>
</tr>
<tr>
<td>Sorted Linked List</td>
<td>$\Theta(n)$</td>
<td>$\Theta(1)$</td>
</tr>
<tr>
<td>Binary Search Tree</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: Assume we know the maximum size of the PQ in advance
Thinking through implementations

<table>
<thead>
<tr>
<th>Data Structure</th>
<th>Worst case time to insert</th>
<th>Worst case time to deleteMin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unsorted Array</td>
<td>$\Theta(1)$</td>
<td>$\Theta(n)$</td>
</tr>
<tr>
<td>Unsorted Linked List</td>
<td>$\Theta(1)$</td>
<td>$\Theta(n)$</td>
</tr>
<tr>
<td>Sorted Circular Array</td>
<td>$\Theta(n)$</td>
<td>$\Theta(n)$</td>
</tr>
<tr>
<td>Sorted Linked List</td>
<td>$\Theta(n)$</td>
<td>$\Theta(1)$</td>
</tr>
<tr>
<td>Binary Search Tree</td>
<td>$\Theta(n)$</td>
<td>$\Theta(1)$</td>
</tr>
</tbody>
</table>

Note: Assume we know the maximum size of the PQ in advance
Heap – Priority Queue Data Structure

• Idea: We need to keep some ordering, but it doesn’t need to be perfectly sorted
• $\Theta(\log n)$ worst case for deleteMin and insert
Heap – Priority Queue Data Structure

• Idea: We need to keep some ordering, but it doesn’t need to be perfectly sorted
• $\Theta(\log n)$ worst case for deleteMin and insert
Tree Terminology – Review?

• root(T): 1
• leaves(T): 5,9,7,5,6
• children(3): 4,7
• parent(4): 3
• siblings(7): 4
• ancestors(9): 4,3,1
• descendents(3): 4,7,5,9
• subtree(4):
• height(T): 3
• depth(4): 2
• branchingFactor(T): 2
Trees for Heaps

• Binary Trees:
 • The branching factor is 2
 • Every node has \(\leq 2 \) children

• Complete Tree:
 • All “layers” are full, except the bottom
 • Bottom layer filled left-to-right
Challenge!

• What is the maximum number of total nodes in a binary tree of height h?
• If I have n nodes in a binary tree, what is the its minimum height?
Challenge!

• What is the maximum number of total nodes in a binary tree of height h?
 • $2^{h+1} - 1$
 • $\Theta(2^h)$

• If I have n nodes in a binary tree, what is its minimum height?
 • $\lceil \log_2 n \rceil$
 • $\Theta(\log n)$

• Heap Idea:
 • If n values are inserted into a complete tree, the height will be roughly $\log n$
 • Ensure each insert and deleteMin requires just one “trip” from root to leaf
Heap Data Structure

• Keep items in a complete binary tree
• Maintain the “Heap Property” of the tree
 • Every node’s priority is ≤ its children’s priority

• Where is the min?
• How do I insert?
• How do I deleteMin?
• How to do it in Java?
Heap Insert

```plaintext
insert(item){
    put item in the “next open” spot (keep tree complete)
    while (item.priority < parent(item).priority){
        swap item with parent
    }
}
```
Heap Insert

insert(item){
 put item in the “next open” spot (keep tree complete)
 while (item.priority < parent(item).priority){
 swap item with parent
 }
}

Heap Insert

```java
insert(item){
    put item in the “next open” spot (keep tree complete)
    while (item.priority < parent(item).priority){
        swap item with parent
    }
}
```
Heap Insert

insert(item){
 put item in the “next open” spot (keep tree complete)
 while (item.priority < parent(item).priority){
 swap item with parent
 }
}

Percolate Up
Heap Insert

```
insert(item){
    put item in the “next open” spot (keep tree complete)
    while (item.priority < parent(item).priority){
        swap item with parent
    }
}
```
Heap deleteMin

deleteMin()
 min = root
 br = bottom-right item
 move br to the root
 while(br > either of its children){
 swap br with its smallest child
 }
 return min
Heap deleteMin

deleteMin(){
 min = root
 br = bottom-right item
 move br to the root
 while(br > either of its children){
 swap br with its smallest child
 }
 return min
}
Heap deleteMin

deleteMin()
{
 min = root
 br = bottom-right item
 move br to the root
 while(br > either of its children){
 swap br with its smallest child
 }
 return min
}
Heap deleteMin

deleteMin(){
 min = root
 br = bottom-right item
 move br to the root
 while(br > either of its children){
 swap br with its smallest child
 Percolate Down
 }
 return min
}
Heap deleteMin

deleteMin()
 min = root
 br = bottom-right item
 move br to the root
 while(br > either of its children){
 swap br with its smallest child
 }

 return min
}