CSE 332 Autumn 2023
Lecture 29: P and NP

Nathan Brunelle

http://www.cs.uw.edu/332
Euler Path Problem

• Path:
 • A sequence of nodes v_1, v_2, \ldots such that for every consecutive pair are connected by an edge (i.e. (v_i, v_{i+1}) is an edge for each i in the path)

• Euler Path:
 • A path such that every edge in the graph appears exactly once
 • If the graph is not simple then some pairs need to appear multiple times!

• Euler path problem:
 • Given an undirected graph $G = (V, E)$, does there exist an Euler path for G?
Algorithm for the Euler Path Problem

• Given an undirected graph $G = (V, E)$, does there exist an Euler path for G?

• Algorithm:
 • Check if the graph is connected
 • Check the degree of each node
 • If the number of nodes with odd degree is 0 or 2, return true
 • Otherwise return false

• Running time?
 • $O(V + E)$
A Seemingly Similar Problem

• Hamiltonian Path:
 • A path that includes every node in the graph exactly once

• Hamiltonian Path Problem:
 • Given a graph $G = (V, E)$, does that graph have a Hamiltonian Path?

True!
A, B, C, E, G, H, F, D
Algorithms for the Hamiltonian Path Problem

• Option 1:
 • Explore all possible simple paths through the graph
 • Check to see if any of those are length V
 • Running time: $O(V!)$

• Option 2:
 • Write down every sequence of nodes
 • Check to see if any of those are a path
 • $O(V!)$

• Both options are examples of an Exhaustive Search ("Brute Force") algorithm
Tractability

• **Tractable:**
 • Feasible to solve in the “real world”

• **Intractable:**
 • Infeasible to solve in the “real world”

• Whether a problem is considered “tractable” or “intractable” depends on the use case
 • For machine learning, big data, etc. tractable might mean $O(n)$ or even $O(\log n)$
 • For most applications it’s more like $O(n^3)$ or $O(n^2)$

• **A strange pattern:**
 • Most “natural” problems are either done in small-degree polynomial (e.g. n^2) or else exponential time (e.g. 2^n)
 • It’s rare to have problems which require a running time of n^5, for example
Running Times

<table>
<thead>
<tr>
<th>n</th>
<th>n log₂ n</th>
<th>n²</th>
<th>n³</th>
<th>1.5ⁿ</th>
<th>2ⁿ</th>
<th>n!</th>
</tr>
</thead>
<tbody>
<tr>
<td>n = 10</td>
<td>< 1 sec</td>
<td>4 sec</td>
</tr>
<tr>
<td>n = 30</td>
<td>< 1 sec</td>
<td>< 1 sec</td>
<td>< 1 sec</td>
<td>< 1 sec</td>
<td>18 min</td>
<td>10²⁵ years</td>
</tr>
<tr>
<td>n = 50</td>
<td>< 1 sec</td>
<td>< 1 sec</td>
<td>< 1 sec</td>
<td>< 1 sec</td>
<td>11 min</td>
<td>36 years</td>
</tr>
<tr>
<td>n = 100</td>
<td>< 1 sec</td>
<td>< 1 sec</td>
<td>< 1 sec</td>
<td>1 sec</td>
<td>12,892 years</td>
<td>10¹⁷ years</td>
</tr>
<tr>
<td>n = 1,000</td>
<td>< 1 sec</td>
<td>< 1 sec</td>
<td>1 sec</td>
<td>18 min</td>
<td>very long</td>
<td>very long</td>
</tr>
<tr>
<td>n = 10,000</td>
<td>< 1 sec</td>
<td>< 1 sec</td>
<td>2 min</td>
<td>12 days</td>
<td>very long</td>
<td>very long</td>
</tr>
<tr>
<td>n = 100,000</td>
<td>< 1 sec</td>
<td>2 sec</td>
<td>3 hours</td>
<td>32 years</td>
<td>very long</td>
<td>very long</td>
</tr>
<tr>
<td>n = 1,000,000</td>
<td>1 sec</td>
<td>20 sec</td>
<td>12 days</td>
<td>31,710 years</td>
<td>very long</td>
<td>very long</td>
</tr>
</tbody>
</table>

Table 2.1 The running times (rounded up) of different algorithms on inputs of increasing size, for a processor performing a million high-level instructions per second. In cases where the running time exceeds 10²⁵ years, we simply record the algorithm as taking a very long time.
EXP and **P**

EXP
Exponential
Upper bounded by 2^{n^p}

P
Polynomial
Upper bounded by n^p
Tractable

Important!
$P \subset EXP$
Every problem within P is also within EXP
The intractable ones are the problems within EXP but NOT P
Important!
Some of the problems listed in EXP could also be members of P. Since membership is determined by a problem's most efficient algorithm, knowing if a problem belongs to P requires knowing the best algorithm possible!

P
- Sorting
- Shortest Path
- Euler Path
- Tractable

EXP
- Hamiltonian Path
- Longest Path
- Vertex Cover
- Independent Set
- Satisfiability
- Most Board Game Strategies
- Intractable
Organizing problems into complexity classes helps us to reason more carefully and flexibly about tractability.

The goal for each problem is to either:

- Find an efficient algorithm if it exists (i.e. show it belongs to P)
- Prove that no efficient algorithm exists (i.e. show it does not belong to P)

Complexity classes allow us to reason about sets of problems at a time, rather than each problem individually:

- If we can find more precise classes to organize problems into, we might be able to draw conclusions about the entire class.
- It may be easier to show a problem belongs to class C than to P, so it may help to show that $C \subseteq P$.
Some problems in EXP seem “easier”

• There are some problems that we do not have polynomial time algorithms to solve, but provided answers are easy to check

• Hamiltonian Path:
 • It’s “hard” to look at a graph and determine whether it has a Hamiltonian Path
 • It’s “easy” to look at a graph and a candidate path together and determine whether THAT path is a Hamiltonian Path
 • It’s easy to verify whether a given path is a Hamiltonian path
Class NP

- NP
 - The set of problems for which a candidate solution can be verified in polynomial time
 - Stands for “Non-deterministic Polynomial”
 - Corresponds to algorithms that can guess a solution (if it exists), that solution is then verified to be correct in polynomial time
 - Can also think of as allowing a special operation that allows the algorithm to magically guess the right choice at each step of an exhaustive search (or other algorithm)

- $P \subseteq NP$
 - Why?
EXP $\supset NP \supseteq P$

$P = NP$ or $P \subset NP$

EXP
Exponential
Upper bounded by 2^{n^p}

NP
Nondeterministic Polynomial
Verified in n^p time

P
Polynomial
Upper bounded by n^p
Solving and Verifying Hamiltonian Path

• Algorithm to solve Hamiltonian Path
 • Input: \(G = (V, E) \)
 • Output: True if \(G \) has a Hamiltonian Path
 • Algorithm: Check whether each permutation of \(V \) is a path.
 • Running time: \(|V|!\), so does not show whether it belongs to \(P \)

• Algorithm to verify Hamiltonian Path
 • Input: \(G = (V, E) \) and a sequence of nodes
 • Output: True if that sequence of nodes is a Hamiltonian Path
 • Algorithm:
 • Check that each node appears in the sequence exactly once
 • Check that the sequence is a path
 • Running time: \(O(|V| \cdot |E|) \), so it belongs to \(NP \)
Party Problem

Draw Edges between people who don’t get along
How many people can I invite to a party if everyone must get along?
Independent Set

• Independent set:
 • $S \subseteq V$ is an independent set if no two nodes in S share an edge

• Independent Set Problem:
 • Given a graph $G = (V, E)$ and a number k, determine whether there is an independent set S of size k
Example

Independent set of size 6
Solving and Verifying Independent Set

• Algorithm to solve independent set
 • Input: $G = (V, E)$ and a number k
 • Output: True if G has an independent set of size k
 • List every subset of V that has size k
 • $\approx |V|^{\left|V\right| - k}$
 • For each of the subsets, check whether any pair of nodes are adjacent
 • $k \cdot |E|$

• Give an algorithm to verify independent set
 • Input: $G = (V, E)$, a number k, and a set $S \subseteq V$
 • Output: True if S is an independent set of size k
Generalized Baseball
Generalized Baseball

Need to place defenders on bases such that every edge is defended

How many defenders would suffice?
Vertex Cover

• Vertex Cover:
 • $C \subseteq V$ is a vertex cover if every edge in E has one of its endpoints in C

• Vertex Cover Problem:
 • Given a graph $G = (V, E)$ and a number k, determine if there is a vertex cover C of size k
Example

Vertex cover of size 5
Solving and Verifying Vertex Cover

• Algorithm to solve vertex cover
 • Input: $G = (V, E)$ and a number k
 • Output: True if G has a vertex cover of size k

• Algorithm to verify vertex cover
 • Input: $G = (V, E)$, a number k, and a set $S \subseteq E$
 • Output: True if S is a vertex cover of size k
\(\text{EXP} \supset \text{NP} \supseteq \text{P} \)

\(P = \text{NP} \) or \(P \subset \text{NP} \)

- **Exponential**
 - Upper bounded by \(2^{n^p} \)
- **Polynomial**
 - Upper bounded by \(n^p \)
- **NP**
 - Nondeterministic Polynomial
 - Verified in \(n^p \) time
- **P**
 - Polynomial
 - Upper bounded by \(n^p \)

Unknown!\(\quad \)
Way Cool!

S is an independent set of G iff $V - S$ is a vertex cover of G
Way Cool!

\[S \text{ is an independent set of } G \text{ iff } V - S \text{ is a vertex cover of } G \]
Solving Vertex Cover and Independent Set

• Algorithm to solve vertex cover
 • Input: $G = (V, E)$ and a number k
 • Output: True if G has a vertex cover of size k
 • Check if there is an Independent Set of G of size $|V| - k$

• Algorithm to solve independent set
 • Input: $G = (V, E)$ and a number k
 • Output: True if G has an independent set of size k
 • Check if there is a Vertex Cover of G of size $|V| - k$

Either both problems belong to P, or else neither does!
NP-Complete

• A set of “together they stand, together they fall” problems
• The problems in this set either all belong to P, or none of them do
• Intuitively, the “hardest” problems in NP
• Collection of problems from NP that can all be “transformed” into each other in polynomial time
 • Like we could transform independent set to vertex cover, and vice-versa
 • We can also transform vertex cover into Hamiltonian path, and Hamiltonian path into independent set, and ...
$EXP \supset NP – Complete \supseteq NP \supseteq P$

$P = NP$ iff some problem from $NP – Complete$ belongs to P
Overview

• Problems not belonging to P are considered intractable
• The problems within NP have some properties that make them seem like they might be tractable, but we’ve been unsuccessful with finding polynomial time algorithms for many
• The class $NP - Complete$ contains problems with the properties:
 • All members are also members of NP
 • All members of NP can be transformed into every member of $NP - Complete$
 • Therefore if any one member of $NP - Complete$ belongs to P, then $P = NP$
Why should YOU care?

• If you can find a polynomial time algorithm for any $NP - Complete$ problem then:
 • You will win 1million
 • You will win a Turing Award
 • You will be world famous
 • You will have done something that no one else on Earth has been able to do in spite of the above!

• If you are told to write an algorithm a problem that is $NP - Complete$
 • You can tell that person everything above to set expectations
 • Change the requirements!
 • **Approximate the solution**: Instead of finding a path that visits every node, find a path that visits at least 75% of the nodes
 • **Add Assumptions**: problem might be tractable if we can assume the graph is acyclic, a tree
 • **Use Heuristics**: Write an algorithm that’s “good enough” for small inputs, ignore edge cases