CSE 332 Autumn 2023
Lecture 26: Topological Sort and Minimum Spanning Trees

Nathan Brunelle

http://www.cs.uw.edu/332
Depth-First Search

• Input: a node s

• Behavior: Start with node s, visit one neighbor of s, then all nodes reachable from that neighbor of s, then another neighbor of s, ...

• Output:
 • Does the graph have a cycle?
 • A topological sort of the graph.
DFS (non-recursive)

```java
void dfs(graph, s){
    found = new Stack();
    found.pop(s);
    mark s as “visited”;
    While (!found.isEmpty()){ 
        current = found.pop();
        for (v : neighbors(current)){
            if (! v marked “visited”){
                mark v as “visited”;
                found.push(v);
            }
        }
    }
}
```

Running time: $\Theta(|V| + |E|)$
DFS Recursively (more common)

```java
void dfs(graph, curr) {
    mark curr as “visited”;
    for (v : neighbors(current)) {
        if (! v marked “visited”) {
            dfs(graph, v);
        }
    }
    mark curr as “done”;
}
```
Using DFS

• Consider the “visited times” and “done times”

• Edges can be categorized:
 • Tree Edge
 • \((a, b)\) was followed when pushing
 • \((a, b)\) when \(b\) was unvisited when we were at \(a\)
 • Back Edge
 • \((a, b)\) goes to an “ancestor”
 • \(a\) and \(b\) visited but not done when we saw \((a, b)\)
 • \(t_{visited}(b) < t_{visited}(a) < t_{done}(a) < t_{done}(b)\)
 • Forward Edge
 • \((a, b)\) goes to a “descendent”
 • \(b\) was visited and done between when \(a\) was visited and done
 • \(t_{visited}(a) < t_{visited}(b) < t_{done}(b) < t_{done}(a)\)
 • Cross Edge
 • \((a, b)\) goes to a node that doesn’t connect to \(a\)
 • \(b\) was seen and done before \(a\) was ever visited
 • \(t_{done}(b) < t_{visited}(a)\)
boolean hasCycle(graph, curr) {
 mark curr as “visited”;
 cycleFound = false;
 for (v : neighbors(current)) {
 if (v marked “visited” && ! v marked “done”) {
 cycleFound = true;
 }
 if (! v marked “visited” && ! cycleFound) {
 cycleFound = hasCycle(graph, v);
 }
 }
 mark curr as “done”;
 return cycleFound;
}

Idea: Look for a back edge!
Topological Sort

• A Topological Sort of a **directed acyclic graph** $G = (V, E)$ is a permutation of V such that if $(u, v) \in E$ then u is before v in the permutation
Shift

but

socks

shoes

socks, shift, buy shoes
DFS Recursively

```java
void dfs(graph, curr){
    mark curr as “visited”;
    for (v : neighbors(current)){
        if (! v marked “visited”){
            dfs(graph, v);
        }
    }
    mark curr as “done”;
}
```
DFS Recursively

void dfs(graph, curr){
 mark curr as “visited”;
 for (v : neighbors(current)){
 if (! v marked “visited”){
 dfs(graph, v);
 }
 }
 mark curr as “done”;
}
DFS: Topological sort

```java
List topSort(graph){
    List<Nodes> done = new List<>();
    for (Node v : graph.vertices){
        if (!v.visited){
            finishTime(graph, v, finished);
        }
    }
    done.reverse();
    return done;
}

void finishTime(graph, curr, finished){
    curr.visited = true;
    for (Node v : curr.neighbors){
        if (!v.visited){
            finishTime(graph, v, finished);
        }
    }
    done.add(curr)
}
```

Idea: List in reverse order by “done” time
Definition: Tree

A connected graph with no cycles

Note: A tree does not need a root, but they often do!
Definition: Tree

A connected graph with no cycles

Pick some arbitrary root node and rearrange tree
Definition: Spanning Tree

A Tree \(T = (V_T, E_T) \) which connects (“spans”) all the nodes in a graph \(G = (V, E) \)

How many edges does \(T \) have? \(V - 1 \)

Any set of \(V-1 \) edges in the graph that doesn’t have any cycles is guaranteed to be a spanning tree!

Any set of \(V-1 \) edges that connects all the nodes in the graph is guaranteed to be a spanning tree!

Pick some arbitrary root node and rearrange tree
Definition: Minimum Spanning Tree

A Tree $T = (V_T, E_T)$ which connects ("spans") all the nodes in a graph $G = (V, E)$, that has minimal cost

$$Cost(T) = \sum_{e \in E_T} w(e)$$
Kruskal’s Algorithm

Start with an empty tree A

Add to A the lowest-weight edge that does not create a cycle
Kruskal’s Algorithm

Start with an empty tree A
Add to A the lowest-weight edge that does not create a cycle
Kruskal’s Algorithm

Start with an empty tree A
Add to A the lowest-weight edge that does not create a cycle
Kruskal’s Algorithm

Start with an empty tree A
Add to A the lowest-weight edge that does not create a cycle
Kruskal’s Algorithm

Start with an empty tree A
Add to A the lowest-weight edge that does not create a cycle
Kruskal’s Algorithm

Start with an empty tree \(A \)
Add to \(A \) the lowest-weight edge that does not create a cycle
Definition: Cut

A Cut of graph $G = (V, E)$ is a partition of the nodes into two sets, S and $V - S$.

Edge $(v_1, v_2) \in E$ crosses a cut if $v_1 \in S$ and $v_2 \in V - S$ (or opposite), e.g. (A, C).

A set of edges R Respects a cut if no edges cross the cut, e.g. $R = \{(A, B), (E, G), (F, G)\}$.
Cut Theorem

If a set of edges A is a subset of a minimum spanning tree T, let $(S, V - S)$ be any cut which A respects. Let e be the least-weight edge which crosses $(S, V - S)$. $A \cup \{e\}$ is also a subset of a minimum spanning tree.
Cut Theorem

If a set of edges A is a subset of a minimum spanning tree T, let $(S, V - S)$ be any cut which A respects. Let e be the least-weight edge which crosses $(S, V - S)$. $A \cup \{e\}$ is also a subset of a minimum spanning tree.
Cut Theorem

If a set of edges A is a subset of a minimum spanning tree T, let $(S, V - S)$ be any cut which A respects. Let e be the least-weight edge which crosses $(S, V - S)$. $A \cup \{e\}$ is also a subset of a minimum spanning tree.
Cut Theorem

If a set of edges A is a subset of a minimum spanning tree T, let $(S, V - S)$ be any cut which A respects. Let e be the least-weight edge which crosses $(S, V - S)$. $A \cup \{e\}$ is also a subset of a minimum spanning tree.
Cut Theorem

If a set of edges A is a subset of a minimum spanning tree T, let $(S, V - S)$ be any cut which A respects. Let e be the least-weight edge which crosses $(S, V - S)$. $A \cup \{e\}$ is also a subset of a minimum spanning tree.
Proof of Kruskal’s Algorithm

Start with an empty tree \(A \)
Repeat \(V - 1 \) times:
Add the min-weight edge that doesn’t cause a cycle

Proof: Suppose we have some arbitrary set of edges \(A \) that Kruskal’s has already selected to include in the MST. \(e = (F, G) \) is the edge Kruskal’s selects to add next

We know that there cannot exist a path from \(F \) to \(G \) using only edges in \(A \) because \(e \) does not cause a cycle

We can cut the graph therefore into 2 disjoint sets:
- nodes reachable from \(G \) using edges in \(A \)
- nodes reachable from \(F \) using edges in \(A \)

\(e \) is the minimum cost edge that crosses this cut, so by the Cut Theorem, Kruskal’s is optimal!
Kruskal’s Algorithm Runtime

Start with an empty tree A

Repeat $V - 1$ times:

Add the min-weight edge that doesn’t cause a cycle

Keep edges in a Disjoint-set data structure (very fancy) $O(E \log V)$
General MST Algorithm

Start with an empty tree A

Repeat $V - 1$ times:

Pick a cut $(S, V - S)$ which A respects

Add the min-weight edge which crosses $(S, V - S)$
Prim’s Algorithm

Start with an empty tree A

Repeat $V - 1$ times:

Pick a cut $(S, V - S)$ which A respects

Add the min-weight edge which crosses $(S, V - S)$

S is all endpoint of edges in A

e is the min-weight edge that grows the tree
Prim’s Algorithm
Start with an empty tree A
Pick a start node
Repeat $V - 1$ times:
 Add the min-weight edge which connects to node in A with a node not in A
Prim’s Algorithm

Start with an empty tree A

Pick a start node

Repeat $V - 1$ times:

Add the min-weight edge which connects to node in A with a node not in A
Prim’s Algorithm
Start with an empty tree A
Pick a start node
Repeat $V - 1$ times:
Add the min-weight edge which connects to node in A with a node not in A
Prim’s Algorithm
Start with an empty tree A
Pick a start node
Repeat $V - 1$ times:
Add the min-weight edge which connects to node in A with a node not in A
Prim’s Algorithm

Start with an empty tree A

Pick a start node

Repeat $V - 1$ times:

Add the min-weight edge which connects to node in A with a node not in A

Keep edges in a Heap

$O(E \log V)$
Dijkstra’s Algorithm

```java
int dijkstras(graph, start, end){
    PQ = new minheap();
    PQ.insert(0, start);  // priority=0, value=start
    start.distance = 0;
    while (!PQ.isEmpty){
        current = PQ.extractmin();
        if (current.known) continue;
        current.known = true;
        for (neighbor : current.neighbors){
            if (!neighbor.known){
                new_dist = current.distance + weight(current,neighbor);
                if(neighbor.dist != ∞) PQ.insert(new_dist, neighbor);
                else if (new_dist < neighbor.distance){
                    neighbor.distance = new_dist;
                    PQ.decreaseKey(new_dist,neighbor); }
            }
        }
    }
    return end.distance;
}
```
Prim’s Algorithm

```java
int dijkstrasp(graph, start, end){
    PQ = new minheap();
PQ.insert(0, start);  // priority=0, value=start
start.distance = 0;
while (!PQ.isEmpty){
    current = PQ.extractmin();
    if (current.known){ continue;}  
current.known = true;
for (neighbor : current.neighbors){
    if (!neighbor.known){
        new_dist = weight(current,neighbor);
        if(neighbor.dist != ∞){ PQ.insert(new_dist, neighbor);}
    else if (new_dist < neighbor.distance){
        neighbor.distance = new_dist;
PQ.decreaseKey(new_dist,neighbor); }
    }
}
}
return end.distance;
```
Dijkstra’s Algorithm

```java
int dijkstras(graph, start, end){
    PQ = new minheap();
    PQ.insert(0, start); // priority=0, value=start
    start.distance = 0;
    while (!PQ.isEmpty){
        current = PQ.extractmin();
        if (current.known){ continue;}
        current.known = true;
        for (neighbor : current.neighbors){
            if (!neighbor.known){
                new_dist = current.distance + weight(current,neighbor);
                if(neighbor.dist != ∞){ PQ.insert(new_dist, neighbor);} 
                else if (new_dist < neighbor.distance){
                    neighbor.distance = new_dist;
                    PQ.decreaseKey(new_dist,neighbor); }
            }
        }
    }
    return end.distance;
}
```
Prim’s Algorithm

```java
int dijkstras(graph, start, end){
    PQ = new minheap();
    PQ.insert(0, start);  // priority=0, value=start
    start.distance = 0;
    while (!PQ.isEmpty){
        current = PQ.extractmin();
        if (current.known){ continue;}
        current.known = true;
        for (neighbor : current.neighbors){
            if (!neighbor.known){
                new_dist = weight(current,neighbor);
                if(neighbor.dist != ∞){ PQ.insert(new_dist, neighbor);}
                else if (new_dist < neighbor.distance){
                    neighbor.distance = new_dist;
                    PQ.decreaseKey(new_dist,neighbor);
                }
            }
        }
    }
    return end.distance;
}
```