CSE 332 Autumn 2023
Lecture 25: Race Conditions

Nathan Brunelle

http://www.cs.uw.edu/332
Bank Account Example

- The following code implements a bank account object correctly for a sequential situation
- Assume the initial balance is 150

```java
class BankAccount {
    private int balance = 0;
    int getBalance() { return balance; }
    void setBalance(int x) { balance = x; }
    void withdraw(int amount) {
        int b = getBalance();
        if (amount > b)
            throw new WithdrawTooLargeException();
        setBalance(b - amount);
    }
    // other operations like deposit, etc.
}
```

What Happens here?

- `withdraw(100);` will fail with `WithdrawTooLargeException`
- `withdraw(75)` will successfully reduce the balance to 75

- Note: `WithdrawTooLargeException` should be defined elsewhere in the code.
A “Bad” Interleaving

• Assume the initial balance is 150

Thread 1:

withdraw(100);

Thread 2:

withdraw(75);

int b = getBalance();

if (amount > b)
 throw new Exception();
setBalance(b – amount);

int b = getBalance();
if (amount > b)
 throw new Exception();
setBalance(b – amount);
What we want – Mutual Exclusion

• While one thread is withdrawing from the account, we want to exclude all other threads from also withdrawing

• Called mutual exclusion:
 • One thread using a resource (here: a bank account) means another thread must wait
 • We call the area of code that we want to have mutual exclusion (only one thread can be there at a time) a **critical section**.

• The programmer must implement critical sections!
 • It requires programming language primitives to do correctly
Solution

• We need a construct from Java to do this
• One Solution – A **Mutual Exclusion Lock** (called a Mutex or Lock)
• We define a **Lock** to be a ADT with operations:
 • **New:**
 • make a new lock, initially “not held”
 • **Acquire:**
 • If lock is not held, mark it as “held”
 • These two steps always done together in a way that cannot be interrupted!
 • If lock is held, pause until it is marked as “not held”
 • **Release:**
 • Mark the lock as “not held”
Re-entrant Lock Details

- A re-entrant lock (a.k.a. recursive lock)
- “Remembers”
 - the thread (if any) that currently holds it
 - a count of “layers” that the thread holds it
- When the lock goes from not-held to held, the count is set to 0
- If (code running in) the current holder calls acquire:
 - it does not block
 - it increments the count
- On release:
 - if the count is > 0, the count is decremented
 - if the count is 0, the lock becomes not-held
Java’s Re-entrant Lock Class

- **java.util.concurrent.locks.ReentrantLock**
- Has methods `lock()` and `unlock()`
- Important to guarantee that lock is always released!!!
- Recommend something like this:
  ```java
  myLock.lock();
  try { // method body } 
  finally { myLock.unlock(); }
  ```
How this looks in Java

```java
java.util.concurrent.locks.ReentrantLock;
class BankAccount {
    private int balance = 0;
    private ReentrantLock lck = new ReentrantLock();
    int setBalance(int x) {
        try{
            lck.lock();
            balance = x; 
        } finally{
            lck.unlock();
        }
    }
    void withdraw(int amount) {
        try{
            lck.lock();
            int b = getBalance();
            if (amount > b)
                throw new WithdrawTooLargeException();
            setBalance(b - amount);
        } finally {
            lck.unlock();
        }
    }
}
```
Java Synchronized Keyword

- Syntactic sugar for re-entrant locks
- You can use the synchronized statement as an alternative to declaring a ReentrantLock

Syntax:
```
synchronized( /* expression returning an Object */ ) {statements}
```

- Any Object can serve as a “lock”
 - Primitive types (e.g. int) cannot serve as a lock

- Acquires a lock and blocks if necessary
 - Once you get past the “{“, you have the lock

- Released the lock when you pass “}”
 - Even in the cases of returning, exceptions, anything!
 - Impossible to forget to release the lock
class BankAccount {
 private int balance = 0;
 private Object lk = new Object();

 int getBalance() {
 synchronized (lk) { return balance; }
 }

 void setBalance(int x) {
 synchronized (lk) { balance = x; }
 }

 void withdraw(int amount) {
 synchronized (lk) {
 int b = getBalance();
 if (amount > b)
 throw new Exception();
 setBalance(b – amount);
 }
 }
} // deposit would also use synchronized(lk)
class BankAccount {
 private int balance = 0;
 int getBalance() {
 synchronized (this) { return balance; }
 }
 void setBalance(int x) {
 synchronized (this) { balance = x; }
 }
 void withdraw(int amount) {
 synchronized (this) {
 int b = getBalance();
 if (amount > b)
 throw new Exception();
 setBalance(b - amount);
 } // deposit would also use synchronized(lk)
 }
}
More Syntactic Sugar!

- Using the object itself as a lock is common enough that Java has convenient syntax for that as well!
- Declaring a method as “synchronized” puts its body into a synchronized block with “this” as the lock
class BankAccount {
 private int balance = 0;

 synchronized int getBalance() { return balance; }
 synchronized void setBalance(int x) { balance = x; }

 synchronized void withdraw(int amount) {
 int b = getBalance();
 if (amount > b)
 throw new WithdrawTooLargeException();
 setBalance(b - amount);
 }

 // other operations like deposit (which would use synchronized)
}
Race Condition

- Occurs when the computation result depends on scheduling (how threads are interleaved)
 - We, as programmers can’t influence scheduling of threads
 - We need to write programs that work independent of scheduling

- Two Types: Data Races and Bad Interleavings
 - Data Race:
 - When there is the potential for two threads to be writing a variable in parallel
 - When there is the potential for one thread to be reading a variable while another writes to it
 - Bad Interleaving:
 - A race condition other than a data race
 - Usually it looks like exposing a “bad” intermediate state
Example: Shared Stack (no problems so far)

class Stack {
 private E[] array = (E[])new Object[SIZE];
 private int index = -1;

 synchronized boolean isEmpty() {
 return index==-1;
 }

 synchronized void push(E val) {
 array[++index] = val;
 }

 synchronized E pop() {
 if(isEmpty())
 throw new StackEmptyException();
 return array[index--];
 }
}
Race Condition, but no Data Race

class Stack {
 private E[] array = (E[])new Object[SIZE];
 private int index = -1;
 synchronized boolean isEmpty() { ... }
 synchronized void push(E val) { ... }
 synchronized E pop() { ... }
 E peek(){
 E ans = pop();
 push(ans);
 return ans;
 }
}
Race Condition, including a Data Race

class Stack {
 private E[] array = (E[])new Object[SIZE];
 private int index = -1;
 synchronized boolean isEmpty() { ... }
 synchronized void push(E val) { ... }
 synchronized E pop() { ... }
 E peek(){
 System.out.println(index);
 E ans = pop();
 push(ans);
 return ans;
 }
}

Peek and isEmpty

Thread 1:
peek();

Thread 2:
push(x);
boolean b = isEmpty();

E ans = pop();
push(ans);
return ans;

Expected Behavior:
Thread 2 should not see an empty stack if there is a push but no pop.
Peek and Push

Thread 1:
peek();

Thread 2:
push(x);
push(y);
System.out.println(pop());
System.out.println(pop());

E ans = pop();
push(ans);
return ans;

Expected Behavior:
Thread 2 items from a stack are popped in LIFO order
peek() and pop()

Thread 1:
peek();
push(x);
push(y);
System.out.println(pop());
System.out.println(pop());

Thread 2:
push(x);
push(y);
E ans = pop();
push(ans);
return ans;
push(x);
push(y);
System.out.println(pop());
System.out.println(pop());

Expected Behavior:
Thread 2 items from a stack are popped in LIFO order
class Stack {
 private E[] array = (E[])new Object[SIZE];
 private int index = -1;
 synchronized boolean isEmpty() { ... }
synchronized void push(E val) { ... }
 synchronized E pop() { ... }
 E peek(){
 E ans = pop();
 push(ans);
 return ans;
 }
}
class Stack {
 private E[] array = (E[])new Object[SIZE];
 private int index = -1;
 synchronized boolean isEmpty() { … }
 synchronized void push(E val) { … }
 synchronized E pop() { … }
 synchronized E peek(){
 E ans = pop(); // Make a bigger critical section
 push(ans);
 return ans;
 }
}
class Stack {
 private E[] array = (E[])new Object[SIZE];
 private int index = -1;
 synchronized boolean isEmpty() { … }
 synchronized void push(E val) { … }
 synchronized E pop() { … }
 E peek(){
 return array[index];
 }
}

Did this fix it?

No! Now it has a data race!
Parallel Code Conventional Wisdom
Memory Categories

All memory must fit one of three categories:

1. Thread Local: Each thread has its own copy
2. Shared and Immutable: There is just one copy, but nothing will ever write to it
3. Shared and Mutable: There is just one copy, it may change
 • Requires Synchronization!
Thread Local Memory

• Whenever possible, avoid sharing resources
• Dodges all race conditions, since no other threads can touch it!
 • No synchronization necessary! (Remember Ahmdal’s law)
• Use whenever threads do not need to communicate using the resource
 • E.g., each thread should have its own Random object
• In most cases, most objects should be in this category
Immutable Objects

• Whenever possible, avoid changing objects
 • Make new objects instead
• Parallel reads are not data races
 • If an object is never written to, no synchronization necessary!
• Many programmers over-use mutation, minimize it
Shared and Mutable Objects

• For everything else, use locks
• Avoid all data races
 • Every read and write should be projected with a lock, even if it “seems safe”
 • Almost every Java/C program with a data race is wrong
• Even without data races, it still may be incorrect
 • Watch for bad interleavings as well!
Consistent Locking

• For each location needing synchronization, have a lock that is always held when reading or writing the location

• The same lock can (and often should) “guard” multiple fields/objects
 • Clearly document what each lock guards!
 • In Java, the lock should usually be the object itself (i.e. “this”)

• Have a mapping between memory locations and lock objects and stick to it!
Lock Granularity

• Coarse Grained: Fewer locks guarding more things each
 • One lock for an entire data structure
 • One lock shared by multiple objects (e.g. one lock for all bank accounts)

• Fine Grained: More locks guarding fewer things each
 • One lock per data structure location (e.g. array index)
 • One lock per object or per field in one object (e.g. one lock for each account)

• Note: there’s really a continuum between them...
Example: Separate Chaining Hashtable

• Coarse-grained: One lock for the entire hashtable
• Fine-grained: One lock for each bucket
• Which supports more parallelism in insert and find?
• Which makes rehashing easier?
• What happens if you want to have a size field?
Tradeoffs

• Coarse-Grained Locking:
 • Simpler to implement and avoid race conditions
 • Faster/easier to implement operations that access multiple locations (because all guarded by the same lock)
 • Much easier for operations that modify data-structure shape

• Fine-Grained Locking:
 • More simultaneous access (performance when coarse grained would lead to unnecessary blocking)
 • Can make multi-location operations more difficult: say, rotations in an AVL tree

• Guideline:
 • Start with coarse-grained, make finer only as necessary to improve performance
Similar But Separate Issue: Critical Section Granularity

• Coarse-grained
 • For every method that needs a lock, put the entire method body in a lock

• Fine-grained
 • Keep the lock only for the sections of code where it’s necessary

• Guideline:
 • Try to structure code so that expensive operations (like I/O) can be done outside of your critical section
 • E.g., if you’re trying to print all the values in a tree, maybe copy items into an array inside your critical section, then print the array’s contents outside.
Atomicity

• Atomic: indivisible
• Atomic operation: one that should be thought of as a single step
• Some sequences of operations should behave as if they are one unit
 • Between two operations you may need to avoid exposing an intermediate state
 • Usually ADT operations should be atomic
 • You don’t want another thread trying to do an insert while another thread is rotating the AVL tree
• Think first in terms of what operations need to be atomic
 • Design critical sections and locking granularity based on these decisions
Use Pre-Tested Code

• Whenever possible, use built-in libraries!
• Other people have already invested tons of effort into making things both efficient and correct, use their work when you can!
 • Especially true for concurrent data structures
 • Use thread-safe data structures when available
 • E.g. Java as ConcurrentHashMap
Deadlock

- Occurs when two or more threads are mutually blocking each other
- T1 is blocked by T2, which is blocked by T3, ..., Tn is blocked by T1
 - A cycle of blocking
Bank Account

class BankAccount {
 ...
 synchronized void withdraw(int amt) {...}
 synchronized void deposit(int amt) {...}
 synchronized void transferTo(int amt, BankAccount a) {
 this.withdraw(amt);
 a.deposit(amt);
 }
}
The Deadlock

Thread 1:
```
x.transferTo(1,y);
```

Thread 2:
```
y.transferTo(1,x);
```

Expected Behavior:
Thread 2 items from a stack are popped in LIFO order.

- acquire lock for account x b/c transferTo is synchronized
- acquire lock for account y b/c deposit is synchronized
- release lock for account y after deposit
- release lock for account x at end of transferTo

- acquire lock for account y b/c transferTo is synchronized
- acquire lock for account x b/c deposit is synchronized
- release lock for account x after deposit
- release lock for account y at end of transferTo
The Deadlock

Thread 1:

x.transferTo(1,y);

Thread 2:

y.transferTo(1,x);

acquire lock for account x b/c transferTo is synchronized
acquire lock for account y b/c deposit is synchronized
release lock for account y after deposit
release lock for account x at end of transferTo

Expected Behavior:
Thread 2 items from a stack are popped in LIFO order

acquire lock for account y b/c transferTo is synchronized
acquire lock for account x b/c deposit is synchronized
release lock for account x after deposit
release lock for account y at end of transferTo
Resolving Deadlocks

- Deadlocks occur when there are multiple locks necessary to complete a task and different threads may obtain them in a different order
- Option 1:
 - Have a coarser lock granularity
 - E.g. one lock for ALL bank accounts
- Option 2:
 - Have a finer critical section so that only one lock is needed at a time
 - E.g. instead of a synchronized transferTo, have the withdraw and deposit steps locked separately
- Option 3:
 - Force the threads to always acquire the locks in the same order
 - E.g. make transferTo acquire both locks before doing either the withdraw or deposit, make sure both threads agree on the order to acquire
Option 1: Coarser Locking

```
static final Object BANK = new Object();
class BankAccount {
    ...
    synchronized void withdraw(int amt) {...}
    synchronized void deposit(int amt) {...}
    void transferTo(int amt, BankAccount a) {
        synchronized(BANK){
            this.withdraw(amt);
            a.deposit(amt);
        }
    }
}
```
Option 2: Finer Critical Section

class BankAccount {
 ...
 synchronized void withdraw(int amt) {...}
 synchronized void deposit(int amt) {...}
 void transferTo(int amt, BankAccount a) {
 synchronized(this){
 this.withdraw(amt);
 }
 synchronized(a){
 a.deposit(amt);
 }
 }
}
Option 3: First Get All Locks In A Fixed Order

class BankAccount {

 ...
 synchronized void withdraw(int amt) {...}
 synchronized void deposit(int amt) {...}

 void transferTo(int amt, BankAccount a) {
 if (this.acctNum < a.acctNum) {
 synchronized(this) {
 synchronized(a) {
 this.withdraw(amt);
 a.deposit(amt);
 }
 }
 } else {
 synchronized(a) {
 synchronized(this) {
 this.withdraw(amt);
 a.deposit(amt);
 }
 }
 }
 }
}