CSE 332 Autumn 2023
Lecture 21: Dijkstra’s

Nathan Brunelle

http://www.cs.uw.edu/332
Breadth-First Search

• Input: a node s

• Behavior: Start with node s, visit all neighbors of s, then all neighbors of neighbors of s, ...

• Output:
 • How long is the shortest path?
 • Is the graph connected?
void bfs(graph, s){
 found = new Queue();
 found.enqueue(s);
 mark s as “visited”;
 While (!found.isEmpty()){
 current = found.dequeue();
 for (v : neighbors(current)){
 if (!v marked “visited”){
 mark v as “visited”;
 found.enqueue(v);
 }
 }
 }
}

Running time: \(\Theta(|V| + |E|) \)
int shortestPath(graph, s, t){
 found = new Queue();
 layer = 0;
 found.enqueue(s);
 mark s as "visited";
 While (!found.isEmpty()){
 current = found.dequeue();
 layer = depth of current;
 for (v : neighbors(current)){
 if (!v marked "visited"){
 mark v as "visited";
 depth of v = layer + 1;
 found.enqueue(v);
 }
 }
 }
 return depth of t;
}
Single-Source Shortest Path

Find the quickest way to get from UVA to each of these other places

Given a graph \(G = (V, E) \) and a start node \(s \in V \), for each \(v \in V \) find the least-weight path from \(s \to v \) (call this weight \(\delta(s, v) \))

(assumption: all edge weights are positive)
Some “Tricky” Observations

• Shortest path by sum of edge weights does not necessarily use the fewest edges.

• Negative Edges:
 • Today’s algorithm assumes that a path from A to B cannot be longer than a path from A to B to C.
 • Assumption is guaranteed to be true if no edges have negative weights
 • If there are negative weight cycles, problem is ill-defined
Dealing with Negative Edges (Incorrectly)

• Why doesn’t this work?
 • Take the most negative edge and add it’s absolute value to every other edge

![Diagram showing the process of dealing with negative edges incorrectly.](image-url)
Dijkstra’s Algorithm

• Input: graph with **no negative edge weights**, start node s, end node t
• Behavior: Start with node s, repeatedly go to the incomplete node “nearest” to s, stop when
• Output:
 • Distance from start to end
 • Distance from start to every node
Dijkstra’s Algorithm

Start: 0
End: 8

Node	Done?
0 | F
1 | F
2 | F
3 | F
4 | F
5 | F
6 | F
7 | F
8 | F

Node	Distance
0 | 0
1 | ∞
2 | ∞
3 | ∞
4 | ∞
5 | ∞
6 | ∞
7 | ∞
8 | ∞

Idea: When a node is the closest “unknown” node to the start, we have found its shortest path.
Dijkstra’s Algorithm

Start: 0
End: 8

<table>
<thead>
<tr>
<th>Node</th>
<th>Done?</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>T</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
</tr>
<tr>
<td>2</td>
<td>F</td>
</tr>
<tr>
<td>3</td>
<td>F</td>
</tr>
<tr>
<td>4</td>
<td>F</td>
</tr>
<tr>
<td>5</td>
<td>F</td>
</tr>
<tr>
<td>6</td>
<td>F</td>
</tr>
<tr>
<td>7</td>
<td>F</td>
</tr>
<tr>
<td>8</td>
<td>F</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Node</th>
<th>Distance</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>12</td>
</tr>
<tr>
<td>3</td>
<td>∞</td>
</tr>
<tr>
<td>4</td>
<td>∞</td>
</tr>
<tr>
<td>5</td>
<td>∞</td>
</tr>
<tr>
<td>6</td>
<td>∞</td>
</tr>
<tr>
<td>7</td>
<td>∞</td>
</tr>
<tr>
<td>8</td>
<td>∞</td>
</tr>
</tbody>
</table>

Idea: When a node is the closest “unknown” node to the start, we have found its shortest path.
Dijkstra’s Algorithm

Start: 0
End: 8

Idea: When a node is the closest “unknown” node to the start, we have found its shortest path.
Dijkstra’s Algorithm

Start: 0
End: 8

<table>
<thead>
<tr>
<th>Node</th>
<th>Done?</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>T</td>
</tr>
<tr>
<td>1</td>
<td>T</td>
</tr>
<tr>
<td>2</td>
<td>T</td>
</tr>
<tr>
<td>3</td>
<td>F</td>
</tr>
<tr>
<td>4</td>
<td>F</td>
</tr>
<tr>
<td>5</td>
<td>F</td>
</tr>
<tr>
<td>6</td>
<td>F</td>
</tr>
<tr>
<td>7</td>
<td>F</td>
</tr>
<tr>
<td>8</td>
<td>F</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Node</th>
<th>Distance</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>12</td>
</tr>
<tr>
<td>3</td>
<td>15</td>
</tr>
<tr>
<td>4</td>
<td>18</td>
</tr>
<tr>
<td>5</td>
<td>13</td>
</tr>
<tr>
<td>6</td>
<td>∞</td>
</tr>
<tr>
<td>7</td>
<td>∞</td>
</tr>
<tr>
<td>8</td>
<td>∞</td>
</tr>
</tbody>
</table>

Idea: When a node is the closest “unknown” node to the start, we have found its shortest path.
Dijkstra’s Algorithm

Start: 0
End: 8

<table>
<thead>
<tr>
<th>Node</th>
<th>Done?</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>T</td>
</tr>
<tr>
<td>1</td>
<td>T</td>
</tr>
<tr>
<td>2</td>
<td>T</td>
</tr>
<tr>
<td>3</td>
<td>F</td>
</tr>
<tr>
<td>4</td>
<td>F</td>
</tr>
<tr>
<td>5</td>
<td>T</td>
</tr>
<tr>
<td>6</td>
<td>F</td>
</tr>
<tr>
<td>7</td>
<td>F</td>
</tr>
<tr>
<td>8</td>
<td>F</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Node</th>
<th>Distance</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>12</td>
</tr>
<tr>
<td>3</td>
<td>14</td>
</tr>
<tr>
<td>4</td>
<td>18</td>
</tr>
<tr>
<td>5</td>
<td>13</td>
</tr>
<tr>
<td>6</td>
<td>∞</td>
</tr>
<tr>
<td>7</td>
<td>20</td>
</tr>
<tr>
<td>8</td>
<td>∞</td>
</tr>
</tbody>
</table>

Idea: When a node is the closest “unknown” node to the start, we have found its shortest path.
Dijkstra’s Algorithm

```java
int dijkstras(graph, start, end){
    PQ = new minheap();
PQ.insert(0, start); // priority=0, value=start
start.distance = 0;
while (!PQ.isEmpty){
    current = PQ.extractmin();
    if (current.known){ continue;}
current.known = true;
    for (neighbor : current.neighbors){
        if (!neighbor.known){
            new_dist = current.distance + weight(current,neighbor);
            if (new_dist < neighbor.distance){
                neighbor.distance = new_dist;
PQ.decreaseKey(new_dist,neighbor); }
        }
    }
}
return end.distance;
}
```
Dijkstra’s Algorithm: Running Time

• How many total priority queue operations are necessary?
 • How many times is each node added to the priority queue?
 • How many times might a node’s priority be changed?

• What’s the running time of each priority queue operation?

• Overall running time:
 • $\Theta(|E| \log |V|)$
Dijkstra’s Algorithm: Correctness

• Claim: when a node is removed from the priority queue, we have found its shortest path
• Induction over number of completed nodes
 • Base Case:
 • Inductive Step:
Dijkstra’s Algorithm: Correctness

• Claim: when a node is removed from the priority queue, its distance is that of the shortest path
• Induction over number of completed nodes
• Base Case: Only the start node removed
 • It is indeed 0 away from itself
• Inductive Step:
 • If we have correctly found shortest paths for the first k nodes, then when we remove node $k + 1$ we have found its shortest path
Dijkstra’s Algorithm: Correctness

• Suppose \(a \) is the next node removed from the queue. What do we know bout \(a \)?
Dijkstra’s Algorithm: Correctness

• Suppose a is the next node removed from the queue.
 • No other node incomplete node has a shorter path discovered so far

• Claim: no undiscovered path to a could be shorter
 • Consider any other incomplete node b that is 1 edge away from a complete node
 • a is the closest node that is one away from a complete node
 • Thus no path that includes b can be a shorter path to a
 • Therefore the shortest path to a must use only complete nodes, and therefore we have found it already!
Dijkstra’s Algorithm: Correctness

• Suppose a is the next node removed from the queue.
 • No other node incomplete node has a shorter path discovered so far

• Claim: no undiscovered path to a could be shorter
 • Consider any other incomplete node b that is 1 edge away from a complete node
 • a is the closest node that is one away from a complete node
 • No path from b to a can have negative weight
 • Thus no path that includes b can be a shorter path to a
 • Therefore the shortest path to a must use only complete nodes, and therefore we have found it already!
Depth-First Search
Depth-First Search

• Input: a node s
• Behavior: Start with node s, visit one neighbor of s, then all nodes reachable from that neighbor of s, then another neighbor of s,...
• Output:
 • Does the graph have a cycle?
 • A topological sort of the graph.
void dfs(graph, s){
 found = new Stack();
 found.pop(s);
 mark s as “visited”;
 While (!found.isEmpty()){
 current = found.pop();
 for (v : neighbors(current)){
 if (!v marked “visited”){
 mark v as “visited”;
 found.push(v);
 }
 }
 }
}
DFS Recursively (more common)

```java
void dfs(graph, curr){
    mark curr as “visited”;  
    for (v : neighbors(current)){
        if (! v marked “visited”){
            dfs(graph, v);
        }
    }
    mark curr as “done”;  
}
```
Using DFS

• Consider the “visited times” and “done times”

• Edges can be categorized:
 • Tree Edge
 • (a, b) was followed when pushing
 • (a, b) when b was unvisited when we were at a
 • Back Edge
 • (a, b) goes to an “ancestor”
 • a and b visited but not done when we saw (a, b)
 • $t_{visited}(b) < t_{visited}(a) < t_{done}(a) < t_{done}(b)$
 • Forward Edge
 • (a, b) goes to a “descendent”
 • b was visited and done between when a was visited and done
 • $t_{visited}(a) < t_{visited}(b) < t_{done}(b) < t_{done}(a)$
 • Cross Edge
 • (a, b) goes to a node that doesn’t connect to a
 • b was seen and done before a was ever visited
 • $t_{done}(b) < t_{visited}(a)$
boolean hasCycle(graph, curr){
 mark curr as “visited”;
 cycleFound = false;
 for (v : neighbors(current)){
 if (v marked “visited” && ! v marked “done”){
 cycleFound=true;
 }
 if (! v marked “visited” && ! cycleFound){
 cycleFound = hasCycle(graph, v);
 }
 }
 mark curr as “done”;
 return cycleFound;
}
Topological Sort

• A Topological Sort of a directed acyclic graph $G = (V, E)$ is a permutation of V such that if $(u, v) \in E$ then u is before v in the permutation
DFS Recursively

```java
void dfs(graph, curr){
    mark curr as “visited”;
    for (v : neighbors(current)){
        if (! v marked “visited”){
            dfs(graph, v);
        }
    }
    mark curr as “done”;
}
```
DFS: Topological sort

```python
def dfs(graph, s):
    seen = [False, False, False, ...] # length matches |V|
    done = [False, False, False, ...] # length matches |V|
    dfs_rec(graph, s, seen, done)

def dfs_rec(graph, curr, seen, done):
    mark curr as seen
    for v in neighbors(current):
        if v not seen:
            dfs_rec(graph, v, seen, done)
    mark curr as done
```

Idea: List in reverse order by finish time
DFS Recursively

```java
void dfs(graph, curr){
    mark curr as “visited”;
    for (v : neighbors(current)){
        if (! v marked “visited”){
            dfs(graph, v);
        }
    }
    mark curr as “done”;
}
```

Idea: List in reverse order by finish time
DFS: Topological sort

List topSort(graph){
 List<Nodes> finished = new List<>();
 for (Node v : graph.vertices){
 if (!v.visited){
 finishTime(graph, v, finished);
 }
 }
 finished.reverse();
 return finished;
}

void finishTime(graph, curr, finished){
 curr.visited = true;
 for (Node v : curr.neighbors){
 if (!v.visited){
 finishTime(graph, v, finished);
 }
 }
 finished.add(curr)
}